flyingfishinwater commited on
Commit
3faa8a3
1 Parent(s): a8b4aa3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -1
README.md CHANGED
@@ -1,3 +1,73 @@
 
1
  ---
2
- license: apache-2.0
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
  ---
3
+ tags:
4
+ - code
5
+ - starcoder2
6
+ library_name: transformers
7
+ pipeline_tag: text-generation
8
+ license: bigcode-openrail-m
9
  ---
10
+
11
+ # GGUF version of starcoder2-instruct
12
+
13
+ The base model is: [https://huggingface.co/TechxGenus/starcoder2-3b-instruct](https://huggingface.co/TechxGenus/starcoder2-3b-instruct)
14
+
15
+ Refer to the following instruction
16
+
17
+ <p align="center">
18
+ <img width="300px" alt="starcoder2-instruct" src="https://huggingface.co/TechxGenus/starcoder2-3b-instruct/resolve/main/starcoder2-instruct.jpg">
19
+ </p>
20
+
21
+ ### starcoder2-instruct
22
+
23
+ We've fine-tuned starcoder2-3b with an additional 0.7 billion high-quality, code-related tokens for 3 epochs. We used DeepSpeed ZeRO 3 and Flash Attention 2 to accelerate the training process. It achieves **65.9 pass@1** on HumanEval-Python. This model operates using the Alpaca instruction format (excluding the system prompt).
24
+
25
+ ### Usage
26
+
27
+ Here give some examples of how to use our model:
28
+
29
+ ```python
30
+ from transformers import AutoTokenizer, AutoModelForCausalLM
31
+ import torch
32
+ PROMPT = """### Instruction
33
+ {instruction}
34
+ ### Response
35
+ """
36
+ instruction = <Your code instruction here>
37
+ prompt = PROMPT.format(instruction=instruction)
38
+ tokenizer = AutoTokenizer.from_pretrained("TechxGenus/starcoder2-3b-instruct")
39
+ model = AutoModelForCausalLM.from_pretrained(
40
+ "TechxGenus/starcoder2-3b-instruct",
41
+ torch_dtype=torch.bfloat16,
42
+ device_map="auto",
43
+ )
44
+ inputs = tokenizer.encode(prompt, return_tensors="pt")
45
+ outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=2048)
46
+ print(tokenizer.decode(outputs[0]))
47
+ ```
48
+
49
+ With text-generation pipeline:
50
+
51
+
52
+ ```python
53
+ from transformers import pipeline
54
+ import torch
55
+ PROMPT = """### Instruction
56
+ {instruction}
57
+ ### Response
58
+ """
59
+ instruction = <Your code instruction here>
60
+ prompt = PROMPT.format(instruction=instruction)
61
+ generator = pipeline(
62
+ model="TechxGenus/starcoder2-3b-instruct",
63
+ task="text-generation",
64
+ torch_dtype=torch.bfloat16,
65
+ device_map="auto",
66
+ )
67
+ result = generator(prompt, max_length=2048)
68
+ print(result[0]["generated_text"])
69
+ ```
70
+
71
+ ### Note
72
+
73
+ Model may sometimes make errors, produce misleading contents, or struggle to manage tasks that are not related to coding. It has undergone very limited testing. Additional safety testing should be performed before any real-world deployments.