|
import ast |
|
import logging |
|
import os |
|
import sys |
|
from dataclasses import dataclass, field |
|
from typing import Dict, List, Optional, Tuple |
|
|
|
from datasets import load_dataset |
|
from tokenizers import ByteLevelBPETokenizer |
|
from transformers import ( |
|
HfArgumentParser, |
|
) |
|
|
|
from data_utils import ( |
|
filter_by_lang_regex, |
|
filter_by_num_tokens, |
|
filter_by_num_sents, |
|
normalizer |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
class TokenizerArguments: |
|
""" |
|
Arguments to which tokenizer we are going to set up. |
|
""" |
|
|
|
output_dir: str = field( |
|
default=".", |
|
metadata={"help": "The output directory where the config will be written."}, |
|
) |
|
dataset_name: Optional[str] = field( |
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} |
|
) |
|
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
special_tokens: Optional[List[str]] = field( |
|
default=None, |
|
metadata={"help": "The list of special tokens that you want to add in your training."} |
|
) |
|
vocab_size: Optional[int] = field( |
|
default=50257, |
|
metadata={"help": "The size of the final vocabulary, including all tokens and alphabet"} |
|
) |
|
min_frequency: Optional[int] = field( |
|
default=2, |
|
metadata={"help": "The minimum frequency a pair should have in order to be merged"} |
|
) |
|
show_progress: Optional[bool] = field( |
|
default=True, |
|
metadata={"help": "Whether to show progress bars while training"} |
|
) |
|
|
|
def __post_init__(self): |
|
if self.special_tokens is None: |
|
self.special_tokens = [ |
|
"<s>", "<pad>", "</s>", "<unk>", "<mask>", |
|
"<|endoftext|>", "<|startoftext|>", |
|
"<sep>", "<cls>", "<nl>", "<tab>", "<zwnj>" |
|
] |
|
|
|
self.special_tokens = self.special_tokens + [f"[U{i}]" for i in range(1, 21)] |
|
if self.dataset_name is None and self.train_file is None: |
|
raise ValueError("Need either a dataset name or a training file.") |
|
else: |
|
if self.train_file is not None: |
|
extension = self.train_file.split(".")[-1] |
|
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." |
|
|
|
|
|
def main(): |
|
parser = HfArgumentParser([TokenizerArguments]) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
tokenizer_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))[0] |
|
else: |
|
tokenizer_args = parser.parse_args_into_dataclasses()[0] |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
logger.setLevel(logging.INFO) |
|
|
|
logger.info(f"Training tokenizer") |
|
|
|
if tokenizer_args.dataset_name is not None: |
|
raw_dataset = load_dataset( |
|
tokenizer_args.dataset_name, |
|
tokenizer_args.dataset_config_name, |
|
cache_dir=tokenizer_args.cache_dir, |
|
split="train[:10%]" |
|
) |
|
else: |
|
data_files = {"train": tokenizer_args.train_file} |
|
extension = tokenizer_args.train_file.split(".")[-1] |
|
if extension == "txt": |
|
extension = "text" |
|
|
|
raw_dataset = load_dataset( |
|
extension, |
|
data_files=data_files, |
|
delimiter="\t", |
|
cache_dir=tokenizer_args.cache_dir, |
|
) |
|
|
|
logger.info("Preprocessing the dataset") |
|
dataset = raw_dataset.filter(lambda example: filter_by_lang_regex(example["text"], ratio=0.75)) |
|
dataset = dataset.filter(lambda example: filter_by_num_tokens(example["text"], gt=64)) |
|
dataset = dataset.filter(lambda example: filter_by_num_sents(example["text"], gt=2)) |
|
dataset = dataset.map(normalizer) |
|
logger.info(f"Preprocessed dataset kept {len(dataset)} out of {len(raw_dataset)}") |
|
|
|
tokenizer = ByteLevelBPETokenizer() |
|
|
|
def batch_iterative(batch_size=1000): |
|
for i in range(0, len(dataset), batch_size): |
|
yield dataset[i: i + batch_size]["text"] |
|
|
|
tokenizer.train_from_iterator( |
|
batch_iterative(), |
|
vocab_size=tokenizer_args.vocab_size, |
|
special_tokens=tokenizer_args.special_tokens, |
|
min_frequency=tokenizer_args.min_frequency, |
|
show_progress=tokenizer_args.show_progress, |
|
) |
|
|
|
logger.info(f"Your tokenizer saved here {tokenizer_args.output_dir}") |
|
os.makedirs(tokenizer_args.output_dir, exist_ok=True) |
|
tokenizer.save_model(tokenizer_args.output_dir) |
|
tokenizer.save(f"{tokenizer_args.output_dir}/tokenizer.json", pretty=True) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|