initial model commit
Browse files- README.md +136 -0
- loss.tsv +151 -0
- pytorch_model.bin +3 -0
- training.log +0 -0
README.md
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- flair
|
4 |
+
- token-classification
|
5 |
+
- sequence-tagger-model
|
6 |
+
language: en
|
7 |
+
datasets:
|
8 |
+
- ontonotes
|
9 |
+
inference: false
|
10 |
+
---
|
11 |
+
|
12 |
+
## English Verb Disambiguation in Flair (fast model)
|
13 |
+
|
14 |
+
This is the fast verb disambiguation model for English that ships with [Flair](https://github.com/flairNLP/flair/).
|
15 |
+
|
16 |
+
F1-Score: **88,27** (Ontonotes) - predicts [Proposition Bank verb frames](http://verbs.colorado.edu/propbank/framesets-english-aliases/).
|
17 |
+
|
18 |
+
Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF.
|
19 |
+
|
20 |
+
---
|
21 |
+
|
22 |
+
### Demo: How to use in Flair
|
23 |
+
|
24 |
+
Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
|
25 |
+
|
26 |
+
```python
|
27 |
+
from flair.data import Sentence
|
28 |
+
from flair.models import SequenceTagger
|
29 |
+
|
30 |
+
# load tagger
|
31 |
+
tagger = SequenceTagger.load("flair/frame-english-fast")
|
32 |
+
|
33 |
+
# make example sentence
|
34 |
+
sentence = Sentence("George returned to Berlin to return his hat.")
|
35 |
+
|
36 |
+
# predict NER tags
|
37 |
+
tagger.predict(sentence)
|
38 |
+
|
39 |
+
# print sentence
|
40 |
+
print(sentence)
|
41 |
+
|
42 |
+
# print predicted NER spans
|
43 |
+
print('The following frame tags are found:')
|
44 |
+
# iterate over entities and print
|
45 |
+
for entity in sentence.get_spans('frame'):
|
46 |
+
print(entity)
|
47 |
+
|
48 |
+
```
|
49 |
+
|
50 |
+
This yields the following output:
|
51 |
+
```
|
52 |
+
Span [2]: "returned" [− Labels: return.01 (0.9867)]
|
53 |
+
Span [6]: "return" [− Labels: return.02 (0.4741)]
|
54 |
+
```
|
55 |
+
|
56 |
+
So, the word "*returned*" is labeled as **return.01** (as in *go back somewhere*) while "*return*" is labeled as **return.02** (as in *give back something*) in the sentence "*George returned to Berlin to return his hat*".
|
57 |
+
|
58 |
+
|
59 |
+
---
|
60 |
+
|
61 |
+
### Training: Script to train this model
|
62 |
+
|
63 |
+
The following Flair script was used to train this model:
|
64 |
+
|
65 |
+
```python
|
66 |
+
from flair.data import Corpus
|
67 |
+
from flair.datasets import ColumnCorpus
|
68 |
+
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings
|
69 |
+
|
70 |
+
# 1. load the corpus (Ontonotes does not ship with Flair, you need to download and reformat into a column format yourself)
|
71 |
+
corpus = ColumnCorpus(
|
72 |
+
"resources/tasks/srl", column_format={1: "text", 11: "frame"}
|
73 |
+
)
|
74 |
+
|
75 |
+
# 2. what tag do we want to predict?
|
76 |
+
tag_type = 'frame'
|
77 |
+
|
78 |
+
# 3. make the tag dictionary from the corpus
|
79 |
+
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
|
80 |
+
|
81 |
+
# 4. initialize each embedding we use
|
82 |
+
embedding_types = [
|
83 |
+
|
84 |
+
BytePairEmbeddings("en"),
|
85 |
+
|
86 |
+
FlairEmbeddings("news-forward-fast"),
|
87 |
+
|
88 |
+
FlairEmbeddings("news-backward-fast"),
|
89 |
+
]
|
90 |
+
|
91 |
+
# embedding stack consists of Flair and GloVe embeddings
|
92 |
+
embeddings = StackedEmbeddings(embeddings=embedding_types)
|
93 |
+
|
94 |
+
# 5. initialize sequence tagger
|
95 |
+
from flair.models import SequenceTagger
|
96 |
+
|
97 |
+
tagger = SequenceTagger(hidden_size=256,
|
98 |
+
embeddings=embeddings,
|
99 |
+
tag_dictionary=tag_dictionary,
|
100 |
+
tag_type=tag_type)
|
101 |
+
|
102 |
+
# 6. initialize trainer
|
103 |
+
from flair.trainers import ModelTrainer
|
104 |
+
|
105 |
+
trainer = ModelTrainer(tagger, corpus)
|
106 |
+
|
107 |
+
# 7. run training
|
108 |
+
trainer.train('resources/taggers/frame-english-fast',
|
109 |
+
train_with_dev=True,
|
110 |
+
max_epochs=150)
|
111 |
+
```
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
---
|
116 |
+
|
117 |
+
### Cite
|
118 |
+
|
119 |
+
Please cite the following paper when using this model.
|
120 |
+
|
121 |
+
```
|
122 |
+
@inproceedings{akbik2019flair,
|
123 |
+
title={FLAIR: An easy-to-use framework for state-of-the-art NLP},
|
124 |
+
author={Akbik, Alan and Bergmann, Tanja and Blythe, Duncan and Rasul, Kashif and Schweter, Stefan and Vollgraf, Roland},
|
125 |
+
booktitle={{NAACL} 2019, 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)},
|
126 |
+
pages={54--59},
|
127 |
+
year={2019}
|
128 |
+
}
|
129 |
+
|
130 |
+
```
|
131 |
+
|
132 |
+
---
|
133 |
+
|
134 |
+
### Issues?
|
135 |
+
|
136 |
+
The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
|
loss.tsv
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS
|
2 |
+
0 16:57:14 0 0.1000 1.0331835177934394
|
3 |
+
1 16:59:12 0 0.1000 0.7534246457297847
|
4 |
+
2 17:01:13 0 0.1000 0.6512561359383026
|
5 |
+
3 17:03:14 0 0.1000 0.5802008084643562
|
6 |
+
4 17:05:13 0 0.1000 0.5318850766825226
|
7 |
+
5 17:07:13 0 0.1000 0.49175757394646696
|
8 |
+
6 17:09:14 0 0.1000 0.4636917464969293
|
9 |
+
7 17:11:13 0 0.1000 0.4397412589248621
|
10 |
+
8 17:13:15 0 0.1000 0.4138992549001046
|
11 |
+
9 17:15:16 0 0.1000 0.39738916210970787
|
12 |
+
10 17:17:15 0 0.1000 0.38295740701679915
|
13 |
+
11 17:19:14 0 0.1000 0.36864354551963086
|
14 |
+
12 17:21:15 0 0.1000 0.35686040904162064
|
15 |
+
13 17:23:16 0 0.1000 0.3453934264239275
|
16 |
+
14 17:25:19 0 0.1000 0.3375645263127561
|
17 |
+
15 17:27:19 0 0.1000 0.3270221893405015
|
18 |
+
16 17:29:20 0 0.1000 0.32138253754321133
|
19 |
+
17 17:31:19 0 0.1000 0.31224814824057073
|
20 |
+
18 17:33:18 0 0.1000 0.3062455494336362
|
21 |
+
19 17:35:15 0 0.1000 0.2996281926333904
|
22 |
+
20 17:37:14 0 0.1000 0.2947730497003726
|
23 |
+
21 17:39:17 0 0.1000 0.28902314991321204
|
24 |
+
22 17:41:18 0 0.1000 0.2831355856865082
|
25 |
+
23 17:43:16 0 0.1000 0.2788279781420276
|
26 |
+
24 17:45:18 0 0.1000 0.2748661895377456
|
27 |
+
25 17:47:19 0 0.1000 0.2696077431035492
|
28 |
+
26 17:49:20 0 0.1000 0.2637459493498757
|
29 |
+
27 17:51:21 1 0.1000 0.26441867144040343
|
30 |
+
28 17:53:21 0 0.1000 0.2582800485756037
|
31 |
+
29 17:55:25 0 0.1000 0.25666302521273776
|
32 |
+
30 17:57:22 0 0.1000 0.25244936207836527
|
33 |
+
31 17:59:25 0 0.1000 0.24905876575494712
|
34 |
+
32 18:01:17 0 0.1000 0.24767023563947319
|
35 |
+
33 18:03:16 0 0.1000 0.24386378206453233
|
36 |
+
34 18:05:14 0 0.1000 0.2412380929825441
|
37 |
+
35 18:07:15 0 0.1000 0.2386068048623373
|
38 |
+
36 18:09:17 0 0.1000 0.2357153587240093
|
39 |
+
37 18:11:19 0 0.1000 0.23516571177345402
|
40 |
+
38 18:13:21 0 0.1000 0.23385607737415243
|
41 |
+
39 18:15:22 0 0.1000 0.23066844930907465
|
42 |
+
40 18:17:22 0 0.1000 0.22724409378080998
|
43 |
+
41 18:19:22 0 0.1000 0.22416442974277262
|
44 |
+
42 18:21:22 0 0.1000 0.2223501536221999
|
45 |
+
43 18:23:21 0 0.1000 0.22130560749825443
|
46 |
+
44 18:25:21 0 0.1000 0.21995896535380832
|
47 |
+
45 18:27:18 0 0.1000 0.21820789429095555
|
48 |
+
46 18:29:18 0 0.1000 0.21622849897955948
|
49 |
+
47 18:31:21 0 0.1000 0.21285639654071825
|
50 |
+
48 18:33:22 1 0.1000 0.21415038008172557
|
51 |
+
49 18:35:25 0 0.1000 0.21017705502375117
|
52 |
+
50 18:37:24 1 0.1000 0.21117525756640254
|
53 |
+
51 18:39:24 0 0.1000 0.20859856243684607
|
54 |
+
52 18:41:25 0 0.1000 0.20696946369308344
|
55 |
+
53 18:43:23 0 0.1000 0.2034898224922846
|
56 |
+
54 18:45:25 1 0.1000 0.2036386628280271
|
57 |
+
55 18:47:26 2 0.1000 0.20351923452514523
|
58 |
+
56 18:49:25 0 0.1000 0.20184031808432543
|
59 |
+
57 18:51:24 0 0.1000 0.19936612990104927
|
60 |
+
58 18:53:25 1 0.1000 0.20003940500178427
|
61 |
+
59 18:55:24 0 0.1000 0.19871857148718158
|
62 |
+
60 18:57:25 0 0.1000 0.19630298754235484
|
63 |
+
61 18:59:29 0 0.1000 0.19466442022683486
|
64 |
+
62 19:01:29 1 0.1000 0.19517241837983987
|
65 |
+
63 19:03:28 0 0.1000 0.19327369366052016
|
66 |
+
64 19:05:28 0 0.1000 0.19094432177127532
|
67 |
+
65 19:07:31 1 0.1000 0.19181827962679682
|
68 |
+
66 19:09:33 0 0.1000 0.1905410680399751
|
69 |
+
67 19:11:33 0 0.1000 0.18911360864650528
|
70 |
+
68 19:13:33 0 0.1000 0.18823809698926952
|
71 |
+
69 19:15:34 0 0.1000 0.18625521179640067
|
72 |
+
70 19:17:36 0 0.1000 0.18619693292621173
|
73 |
+
71 19:19:38 0 0.1000 0.18402512382083344
|
74 |
+
72 19:21:38 1 0.1000 0.18475884994527078
|
75 |
+
73 19:23:40 0 0.1000 0.1827168076780607
|
76 |
+
74 19:25:42 0 0.1000 0.1817589691632761
|
77 |
+
75 19:27:43 1 0.1000 0.18176379647035643
|
78 |
+
76 19:29:46 0 0.1000 0.17918735781930528
|
79 |
+
77 19:31:41 1 0.1000 0.1793345402195206
|
80 |
+
78 19:33:42 0 0.1000 0.1786906721850611
|
81 |
+
79 19:35:43 1 0.1000 0.1789407252745246
|
82 |
+
80 19:37:45 0 0.1000 0.17831588239602322
|
83 |
+
81 19:39:42 0 0.1000 0.17584702046271766
|
84 |
+
82 19:41:43 1 0.1000 0.1762350451833797
|
85 |
+
83 19:43:43 2 0.1000 0.17732474481300364
|
86 |
+
84 19:45:41 0 0.1000 0.17411043922293862
|
87 |
+
85 19:47:44 1 0.1000 0.17464976874584298
|
88 |
+
86 19:49:43 0 0.1000 0.17278475104216134
|
89 |
+
87 19:51:38 0 0.1000 0.17179934699580354
|
90 |
+
88 19:53:41 1 0.1000 0.17227861699630628
|
91 |
+
89 19:55:41 0 0.1000 0.17142761870656373
|
92 |
+
90 19:57:39 1 0.1000 0.172426446091454
|
93 |
+
91 19:59:39 0 0.1000 0.16916301577580425
|
94 |
+
92 20:01:33 1 0.1000 0.16914823445649643
|
95 |
+
93 20:03:33 2 0.1000 0.16946013499965082
|
96 |
+
94 20:05:32 0 0.1000 0.16705357644777252
|
97 |
+
95 20:07:32 1 0.1000 0.16741124850539665
|
98 |
+
96 20:09:34 0 0.1000 0.16701223869931023
|
99 |
+
97 20:11:34 0 0.1000 0.16492121913101312
|
100 |
+
98 20:13:28 1 0.1000 0.16647207704355133
|
101 |
+
99 20:15:29 2 0.1000 0.1652054013494613
|
102 |
+
100 20:17:31 0 0.1000 0.16403524821659304
|
103 |
+
101 20:19:31 0 0.1000 0.16295314669187339
|
104 |
+
102 20:21:31 0 0.1000 0.1626499580690321
|
105 |
+
103 20:23:33 0 0.1000 0.16245061348772274
|
106 |
+
104 20:25:33 0 0.1000 0.16223129581449167
|
107 |
+
105 20:27:35 0 0.1000 0.16204805483795562
|
108 |
+
106 20:29:31 0 0.1000 0.16133132974494177
|
109 |
+
107 20:31:34 0 0.1000 0.15999848231813818
|
110 |
+
108 20:33:26 1 0.1000 0.16073288552041323
|
111 |
+
109 20:35:25 0 0.1000 0.1589496636812417
|
112 |
+
110 20:37:26 0 0.1000 0.15854845318451244
|
113 |
+
111 20:39:28 1 0.1000 0.15915251742275255
|
114 |
+
112 20:41:20 0 0.1000 0.15699748720903442
|
115 |
+
113 20:43:21 0 0.1000 0.15639148999638153
|
116 |
+
114 20:45:22 0 0.1000 0.15555391123694068
|
117 |
+
115 20:47:20 1 0.1000 0.15687556487912277
|
118 |
+
116 20:49:19 0 0.1000 0.1554397045230528
|
119 |
+
117 20:51:21 1 0.1000 0.15632058387516803
|
120 |
+
118 20:53:23 2 0.1000 0.15620806326421927
|
121 |
+
119 20:55:23 0 0.1000 0.15403140755756847
|
122 |
+
120 20:57:23 1 0.1000 0.1557127451404648
|
123 |
+
121 20:59:26 0 0.1000 0.15287466880426093
|
124 |
+
122 21:01:27 1 0.1000 0.15640640995693655
|
125 |
+
123 21:03:26 0 0.1000 0.15265837827381099
|
126 |
+
124 21:05:28 0 0.1000 0.1526175081673658
|
127 |
+
125 21:07:30 0 0.1000 0.1525260404300577
|
128 |
+
126 21:09:31 0 0.1000 0.1517760738280584
|
129 |
+
127 21:11:32 0 0.1000 0.151606065611232
|
130 |
+
128 21:13:35 0 0.1000 0.14943727196387524
|
131 |
+
129 21:15:36 1 0.1000 0.15108451109168664
|
132 |
+
130 21:17:41 2 0.1000 0.1498852201874526
|
133 |
+
131 21:19:41 3 0.1000 0.150005940512385
|
134 |
+
132 21:21:43 4 0.1000 0.14968857790361034
|
135 |
+
133 21:23:41 0 0.0500 0.1478070142921412
|
136 |
+
134 21:25:42 0 0.0500 0.147253034192155
|
137 |
+
135 21:27:42 0 0.0500 0.14682998076081277
|
138 |
+
136 21:29:42 1 0.0500 0.1477076671328747
|
139 |
+
137 21:31:40 2 0.0500 0.14722670022468523
|
140 |
+
138 21:33:43 0 0.0500 0.14526898582870104
|
141 |
+
139 21:35:43 1 0.0500 0.1462407725768269
|
142 |
+
140 21:37:47 2 0.0500 0.14537999585973765
|
143 |
+
141 21:39:47 3 0.0500 0.14673884121173958
|
144 |
+
142 21:41:51 4 0.0500 0.1463078955729615
|
145 |
+
143 21:43:51 0 0.0250 0.14519840987223498
|
146 |
+
144 21:45:52 1 0.0250 0.14544011011579128
|
147 |
+
145 21:47:55 0 0.0250 0.1447246475363115
|
148 |
+
146 21:49:55 0 0.0250 0.144590772277904
|
149 |
+
147 21:51:55 0 0.0250 0.14405259212092408
|
150 |
+
148 21:53:57 1 0.0250 0.14514965839402855
|
151 |
+
149 21:55:58 2 0.0250 0.1447441032781916
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0da4b41236ad48520a42c15b4fe34c986a04c4b06903b954620b8f20988ea5e2
|
3 |
+
size 115076956
|
training.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|