Add SetFit model
Browse files- 1_Pooling/config.json +1 -3
- README.md +476 -166
- config.json +1 -1
- config_setfit.json +2 -2
- model.safetensors +1 -1
- model_head.pkl +1 -1
1_Pooling/config.json
CHANGED
@@ -3,7 +3,5 @@
|
|
3 |
"pooling_mode_cls_token": false,
|
4 |
"pooling_mode_mean_tokens": true,
|
5 |
"pooling_mode_max_tokens": false,
|
6 |
-
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
-
"pooling_mode_weightedmean_tokens": false,
|
8 |
-
"pooling_mode_lasttoken": false
|
9 |
}
|
|
|
3 |
"pooling_mode_cls_token": false,
|
4 |
"pooling_mode_mean_tokens": true,
|
5 |
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
|
|
|
|
7 |
}
|
README.md
CHANGED
@@ -32,7 +32,7 @@ model-index:
|
|
32 |
split: test
|
33 |
metrics:
|
34 |
- type: accuracy
|
35 |
-
value: 0.
|
36 |
name: Accuracy
|
37 |
---
|
38 |
|
@@ -64,17 +64,17 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
64 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
65 |
|
66 |
### Model Labels
|
67 |
-
| Label | Examples
|
68 |
-
|
69 |
-
| positif | <ul><li>'
|
70 |
-
| negatif | <ul><li>'
|
71 |
|
72 |
## Evaluation
|
73 |
|
74 |
### Metrics
|
75 |
| Label | Accuracy |
|
76 |
|:--------|:---------|
|
77 |
-
| **all** | 0.
|
78 |
|
79 |
## Uses
|
80 |
|
@@ -126,12 +126,12 @@ preds = model("film yang cepat, lucu, dan sangat menghibur.")
|
|
126 |
### Training Set Metrics
|
127 |
| Training set | Min | Median | Max |
|
128 |
|:-------------|:----|:-------|:----|
|
129 |
-
| Word count | 1 | 9.
|
130 |
|
131 |
| Label | Training Sample Count |
|
132 |
|:--------|:----------------------|
|
133 |
-
| negatif |
|
134 |
-
| positif |
|
135 |
|
136 |
### Training Hyperparameters
|
137 |
- batch_size: (32, 32)
|
@@ -151,168 +151,478 @@ preds = model("film yang cepat, lucu, dan sangat menghibur.")
|
|
151 |
- load_best_model_at_end: True
|
152 |
|
153 |
### Training Results
|
154 |
-
| Epoch | Step
|
155 |
-
|
156 |
-
| 0.
|
157 |
-
| 0.
|
158 |
-
| 0.
|
159 |
-
| 0.
|
160 |
-
| 0.
|
161 |
-
| 0.
|
162 |
-
| 0.
|
163 |
-
| 0.
|
164 |
-
| 0.
|
165 |
-
| 0.
|
166 |
-
| 0.
|
167 |
-
| 0.
|
168 |
-
| 0.
|
169 |
-
| 0.
|
170 |
-
| 0.
|
171 |
-
| 0.
|
172 |
-
| 0.
|
173 |
-
| 0.
|
174 |
-
| 0.
|
175 |
-
| 0.
|
176 |
-
| 0.
|
177 |
-
| 0.
|
178 |
-
| 0.
|
179 |
-
| 0.
|
180 |
-
| 0.
|
181 |
-
| 0.
|
182 |
-
| 0.
|
183 |
-
| 0.
|
184 |
-
| 0.
|
185 |
-
| 0.
|
186 |
-
| 0.
|
187 |
-
| 0.
|
188 |
-
| 0.
|
189 |
-
| 0.
|
190 |
-
| 0.
|
191 |
-
| 0.
|
192 |
-
| 0.
|
193 |
-
| 0.
|
194 |
-
| 0.
|
195 |
-
| 0.
|
196 |
-
| 0.
|
197 |
-
| 0.
|
198 |
-
| 0.
|
199 |
-
| 0.
|
200 |
-
| 0.
|
201 |
-
| 0.
|
202 |
-
| 0.
|
203 |
-
| 0.
|
204 |
-
| 0.
|
205 |
-
| 0.
|
206 |
-
| 0.
|
207 |
-
|
|
208 |
-
|
|
209 |
-
|
|
210 |
-
|
|
211 |
-
|
|
212 |
-
|
|
213 |
-
|
|
214 |
-
|
|
215 |
-
|
|
216 |
-
|
|
217 |
-
|
|
218 |
-
|
|
219 |
-
|
|
220 |
-
|
|
221 |
-
|
|
222 |
-
|
|
223 |
-
|
|
224 |
-
|
|
225 |
-
|
|
226 |
-
|
|
227 |
-
|
|
228 |
-
|
|
229 |
-
|
|
230 |
-
|
|
231 |
-
|
|
232 |
-
|
|
233 |
-
|
|
234 |
-
|
|
235 |
-
|
|
236 |
-
|
|
237 |
-
|
|
238 |
-
|
|
239 |
-
|
|
240 |
-
|
|
241 |
-
|
|
242 |
-
|
|
243 |
-
|
|
244 |
-
|
|
245 |
-
|
|
246 |
-
|
|
247 |
-
|
|
248 |
-
|
|
249 |
-
|
|
250 |
-
|
|
251 |
-
|
|
252 |
-
|
|
253 |
-
|
|
254 |
-
|
|
255 |
-
|
|
256 |
-
|
|
257 |
-
|
|
258 |
-
|
|
259 |
-
|
|
260 |
-
|
|
261 |
-
|
|
262 |
-
|
|
263 |
-
|
|
264 |
-
|
|
265 |
-
|
|
266 |
-
|
|
267 |
-
|
|
268 |
-
|
|
269 |
-
|
|
270 |
-
|
|
271 |
-
|
|
272 |
-
|
|
273 |
-
|
|
274 |
-
|
|
275 |
-
|
|
276 |
-
|
|
277 |
-
|
|
278 |
-
|
|
279 |
-
|
|
280 |
-
|
|
281 |
-
|
|
282 |
-
|
|
283 |
-
|
|
284 |
-
|
|
285 |
-
|
|
286 |
-
|
|
287 |
-
|
|
288 |
-
|
|
289 |
-
|
|
290 |
-
|
|
291 |
-
|
|
292 |
-
|
|
293 |
-
|
|
294 |
-
|
|
295 |
-
|
|
296 |
-
|
|
297 |
-
|
|
298 |
-
|
|
299 |
-
|
|
300 |
-
|
|
301 |
-
|
|
302 |
-
|
|
303 |
-
|
|
304 |
-
|
|
305 |
-
|
|
306 |
-
|
|
307 |
-
|
|
308 |
-
|
|
309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
|
311 |
* The bold row denotes the saved checkpoint.
|
312 |
### Framework Versions
|
313 |
- Python: 3.10.13
|
314 |
- SetFit: 1.0.3
|
315 |
-
- Sentence Transformers: 2.
|
316 |
- Transformers: 4.36.2
|
317 |
- PyTorch: 2.1.2+cu121
|
318 |
- Datasets: 2.16.1
|
|
|
32 |
split: test
|
33 |
metrics:
|
34 |
- type: accuracy
|
35 |
+
value: 0.82
|
36 |
name: Accuracy
|
37 |
---
|
38 |
|
|
|
64 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
65 |
|
66 |
### Model Labels
|
67 |
+
| Label | Examples |
|
68 |
+
|:--------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
69 |
+
| positif | <ul><li>'Layak untuk kunjungan lain.'</li><li>'gulungan dari sebuah tong tong yang tersesat'</li><li>'adalah film yang hebat .'</li></ul> |
|
70 |
+
| negatif | <ul><li>'Anda berada di rumah menonton film itu daripada di bioskop menonton yang ini.'</li><li>'dengan banyak warna biru gelap dan merah muda yang serius'</li><li>'hal buruk'</li></ul> |
|
71 |
|
72 |
## Evaluation
|
73 |
|
74 |
### Metrics
|
75 |
| Label | Accuracy |
|
76 |
|:--------|:---------|
|
77 |
+
| **all** | 0.82 |
|
78 |
|
79 |
## Uses
|
80 |
|
|
|
126 |
### Training Set Metrics
|
127 |
| Training set | Min | Median | Max |
|
128 |
|:-------------|:----|:-------|:----|
|
129 |
+
| Word count | 1 | 9.4029 | 51 |
|
130 |
|
131 |
| Label | Training Sample Count |
|
132 |
|:--------|:----------------------|
|
133 |
+
| negatif | 350 |
|
134 |
+
| positif | 350 |
|
135 |
|
136 |
### Training Hyperparameters
|
137 |
- batch_size: (32, 32)
|
|
|
151 |
- load_best_model_at_end: True
|
152 |
|
153 |
### Training Results
|
154 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
155 |
+
|:-------:|:---------:|:-------------:|:---------------:|
|
156 |
+
| 0.0001 | 1 | 0.3328 | - |
|
157 |
+
| 0.0065 | 50 | 0.4117 | - |
|
158 |
+
| 0.0130 | 100 | 0.2903 | - |
|
159 |
+
| 0.0195 | 150 | 0.3104 | - |
|
160 |
+
| 0.0260 | 200 | 0.2411 | - |
|
161 |
+
| 0.0326 | 250 | 0.2341 | - |
|
162 |
+
| 0.0391 | 300 | 0.2144 | - |
|
163 |
+
| 0.0456 | 350 | 0.1785 | - |
|
164 |
+
| 0.0521 | 400 | 0.1649 | - |
|
165 |
+
| 0.0586 | 450 | 0.037 | - |
|
166 |
+
| 0.0651 | 500 | 0.0447 | - |
|
167 |
+
| 0.0716 | 550 | 0.0472 | - |
|
168 |
+
| 0.0781 | 600 | 0.0361 | - |
|
169 |
+
| 0.0846 | 650 | 0.0016 | - |
|
170 |
+
| 0.0912 | 700 | 0.0013 | - |
|
171 |
+
| 0.0977 | 750 | 0.0011 | - |
|
172 |
+
| 0.1042 | 800 | 0.0006 | - |
|
173 |
+
| 0.1107 | 850 | 0.0009 | - |
|
174 |
+
| 0.1172 | 900 | 0.0006 | - |
|
175 |
+
| 0.1237 | 950 | 0.0004 | - |
|
176 |
+
| 0.1302 | 1000 | 0.0004 | - |
|
177 |
+
| 0.1367 | 1050 | 0.0005 | - |
|
178 |
+
| 0.1432 | 1100 | 0.0004 | - |
|
179 |
+
| 0.1498 | 1150 | 0.0002 | - |
|
180 |
+
| 0.1563 | 1200 | 0.0003 | - |
|
181 |
+
| 0.1628 | 1250 | 0.0004 | - |
|
182 |
+
| 0.1693 | 1300 | 0.0003 | - |
|
183 |
+
| 0.1758 | 1350 | 0.0001 | - |
|
184 |
+
| 0.1823 | 1400 | 0.0002 | - |
|
185 |
+
| 0.1888 | 1450 | 0.0003 | - |
|
186 |
+
| 0.1953 | 1500 | 0.0002 | - |
|
187 |
+
| 0.2018 | 1550 | 0.0002 | - |
|
188 |
+
| 0.2084 | 1600 | 0.0287 | - |
|
189 |
+
| 0.2149 | 1650 | 0.0003 | - |
|
190 |
+
| 0.2214 | 1700 | 0.0002 | - |
|
191 |
+
| 0.2279 | 1750 | 0.0002 | - |
|
192 |
+
| 0.2344 | 1800 | 0.0002 | - |
|
193 |
+
| 0.2409 | 1850 | 0.0004 | - |
|
194 |
+
| 0.2474 | 1900 | 0.0001 | - |
|
195 |
+
| 0.2539 | 1950 | 0.0001 | - |
|
196 |
+
| 0.2605 | 2000 | 0.0001 | - |
|
197 |
+
| 0.2670 | 2050 | 0.0001 | - |
|
198 |
+
| 0.2735 | 2100 | 0.0001 | - |
|
199 |
+
| 0.2800 | 2150 | 0.0001 | - |
|
200 |
+
| 0.2865 | 2200 | 0.0001 | - |
|
201 |
+
| 0.2930 | 2250 | 0.0003 | - |
|
202 |
+
| 0.2995 | 2300 | 0.0001 | - |
|
203 |
+
| 0.3060 | 2350 | 0.0002 | - |
|
204 |
+
| 0.3125 | 2400 | 0.0001 | - |
|
205 |
+
| 0.3191 | 2450 | 0.0 | - |
|
206 |
+
| 0.3256 | 2500 | 0.0001 | - |
|
207 |
+
| 0.3321 | 2550 | 0.0001 | - |
|
208 |
+
| 0.3386 | 2600 | 0.0001 | - |
|
209 |
+
| 0.3451 | 2650 | 0.0001 | - |
|
210 |
+
| 0.3516 | 2700 | 0.0003 | - |
|
211 |
+
| 0.3581 | 2750 | 0.0002 | - |
|
212 |
+
| 0.3646 | 2800 | 0.0003 | - |
|
213 |
+
| 0.3711 | 2850 | 0.0002 | - |
|
214 |
+
| 0.3777 | 2900 | 0.0002 | - |
|
215 |
+
| 0.3842 | 2950 | 0.0001 | - |
|
216 |
+
| 0.3907 | 3000 | 0.0001 | - |
|
217 |
+
| 0.3972 | 3050 | 0.0001 | - |
|
218 |
+
| 0.4037 | 3100 | 0.0001 | - |
|
219 |
+
| 0.4102 | 3150 | 0.0 | - |
|
220 |
+
| 0.4167 | 3200 | 0.0001 | - |
|
221 |
+
| 0.4232 | 3250 | 0.0 | - |
|
222 |
+
| 0.4297 | 3300 | 0.0001 | - |
|
223 |
+
| 0.4363 | 3350 | 0.0001 | - |
|
224 |
+
| 0.4428 | 3400 | 0.0001 | - |
|
225 |
+
| 0.4493 | 3450 | 0.0001 | - |
|
226 |
+
| 0.4558 | 3500 | 0.0001 | - |
|
227 |
+
| 0.4623 | 3550 | 0.0 | - |
|
228 |
+
| 0.4688 | 3600 | 0.0001 | - |
|
229 |
+
| 0.4753 | 3650 | 0.0001 | - |
|
230 |
+
| 0.4818 | 3700 | 0.0001 | - |
|
231 |
+
| 0.4883 | 3750 | 0.0 | - |
|
232 |
+
| 0.4949 | 3800 | 0.0001 | - |
|
233 |
+
| 0.5014 | 3850 | 0.0 | - |
|
234 |
+
| 0.5079 | 3900 | 0.0 | - |
|
235 |
+
| 0.5144 | 3950 | 0.0 | - |
|
236 |
+
| 0.5209 | 4000 | 0.0 | - |
|
237 |
+
| 0.5274 | 4050 | 0.0 | - |
|
238 |
+
| 0.5339 | 4100 | 0.0 | - |
|
239 |
+
| 0.5404 | 4150 | 0.0 | - |
|
240 |
+
| 0.5469 | 4200 | 0.0 | - |
|
241 |
+
| 0.5535 | 4250 | 0.0 | - |
|
242 |
+
| 0.5600 | 4300 | 0.0 | - |
|
243 |
+
| 0.5665 | 4350 | 0.0001 | - |
|
244 |
+
| 0.5730 | 4400 | 0.0 | - |
|
245 |
+
| 0.5795 | 4450 | 0.0 | - |
|
246 |
+
| 0.5860 | 4500 | 0.0 | - |
|
247 |
+
| 0.5925 | 4550 | 0.0 | - |
|
248 |
+
| 0.5990 | 4600 | 0.0 | - |
|
249 |
+
| 0.6055 | 4650 | 0.0 | - |
|
250 |
+
| 0.6121 | 4700 | 0.0 | - |
|
251 |
+
| 0.6186 | 4750 | 0.0 | - |
|
252 |
+
| 0.6251 | 4800 | 0.0 | - |
|
253 |
+
| 0.6316 | 4850 | 0.0001 | - |
|
254 |
+
| 0.6381 | 4900 | 0.0001 | - |
|
255 |
+
| 0.6446 | 4950 | 0.0086 | - |
|
256 |
+
| 0.6511 | 5000 | 0.0 | - |
|
257 |
+
| 0.6576 | 5050 | 0.0 | - |
|
258 |
+
| 0.6641 | 5100 | 0.0 | - |
|
259 |
+
| 0.6707 | 5150 | 0.0 | - |
|
260 |
+
| 0.6772 | 5200 | 0.0 | - |
|
261 |
+
| 0.6837 | 5250 | 0.0007 | - |
|
262 |
+
| 0.6902 | 5300 | 0.0 | - |
|
263 |
+
| 0.6967 | 5350 | 0.0001 | - |
|
264 |
+
| 0.7032 | 5400 | 0.0 | - |
|
265 |
+
| 0.7097 | 5450 | 0.0001 | - |
|
266 |
+
| 0.7162 | 5500 | 0.0 | - |
|
267 |
+
| 0.7228 | 5550 | 0.0 | - |
|
268 |
+
| 0.7293 | 5600 | 0.0 | - |
|
269 |
+
| 0.7358 | 5650 | 0.0 | - |
|
270 |
+
| 0.7423 | 5700 | 0.0003 | - |
|
271 |
+
| 0.7488 | 5750 | 0.0001 | - |
|
272 |
+
| 0.7553 | 5800 | 0.0 | - |
|
273 |
+
| 0.7618 | 5850 | 0.0 | - |
|
274 |
+
| 0.7683 | 5900 | 0.0 | - |
|
275 |
+
| 0.7748 | 5950 | 0.0 | - |
|
276 |
+
| 0.7814 | 6000 | 0.0 | - |
|
277 |
+
| 0.7879 | 6050 | 0.0 | - |
|
278 |
+
| 0.7944 | 6100 | 0.0 | - |
|
279 |
+
| 0.8009 | 6150 | 0.0 | - |
|
280 |
+
| 0.8074 | 6200 | 0.0 | - |
|
281 |
+
| 0.8139 | 6250 | 0.0 | - |
|
282 |
+
| 0.8204 | 6300 | 0.0 | - |
|
283 |
+
| 0.8269 | 6350 | 0.0 | - |
|
284 |
+
| 0.8334 | 6400 | 0.0 | - |
|
285 |
+
| 0.8400 | 6450 | 0.0 | - |
|
286 |
+
| 0.8465 | 6500 | 0.0 | - |
|
287 |
+
| 0.8530 | 6550 | 0.0 | - |
|
288 |
+
| 0.8595 | 6600 | 0.0 | - |
|
289 |
+
| 0.8660 | 6650 | 0.0 | - |
|
290 |
+
| 0.8725 | 6700 | 0.0 | - |
|
291 |
+
| 0.8790 | 6750 | 0.0 | - |
|
292 |
+
| 0.8855 | 6800 | 0.0 | - |
|
293 |
+
| 0.8920 | 6850 | 0.0 | - |
|
294 |
+
| 0.8986 | 6900 | 0.0 | - |
|
295 |
+
| 0.9051 | 6950 | 0.0 | - |
|
296 |
+
| 0.9116 | 7000 | 0.0 | - |
|
297 |
+
| 0.9181 | 7050 | 0.0 | - |
|
298 |
+
| 0.9246 | 7100 | 0.0 | - |
|
299 |
+
| 0.9311 | 7150 | 0.0 | - |
|
300 |
+
| 0.9376 | 7200 | 0.0 | - |
|
301 |
+
| 0.9441 | 7250 | 0.0 | - |
|
302 |
+
| 0.9506 | 7300 | 0.0 | - |
|
303 |
+
| 0.9572 | 7350 | 0.0 | - |
|
304 |
+
| 0.9637 | 7400 | 0.0 | - |
|
305 |
+
| 0.9702 | 7450 | 0.0 | - |
|
306 |
+
| 0.9767 | 7500 | 0.0 | - |
|
307 |
+
| 0.9832 | 7550 | 0.0 | - |
|
308 |
+
| 0.9897 | 7600 | 0.0 | - |
|
309 |
+
| 0.9962 | 7650 | 0.0 | - |
|
310 |
+
| 1.0 | 7679 | - | 0.2894 |
|
311 |
+
| 1.0027 | 7700 | 0.0 | - |
|
312 |
+
| 1.0092 | 7750 | 0.0 | - |
|
313 |
+
| 1.0158 | 7800 | 0.0 | - |
|
314 |
+
| 1.0223 | 7850 | 0.0 | - |
|
315 |
+
| 1.0288 | 7900 | 0.0 | - |
|
316 |
+
| 1.0353 | 7950 | 0.0 | - |
|
317 |
+
| 1.0418 | 8000 | 0.0 | - |
|
318 |
+
| 1.0483 | 8050 | 0.0 | - |
|
319 |
+
| 1.0548 | 8100 | 0.0 | - |
|
320 |
+
| 1.0613 | 8150 | 0.0 | - |
|
321 |
+
| 1.0678 | 8200 | 0.0 | - |
|
322 |
+
| 1.0744 | 8250 | 0.0 | - |
|
323 |
+
| 1.0809 | 8300 | 0.0 | - |
|
324 |
+
| 1.0874 | 8350 | 0.0 | - |
|
325 |
+
| 1.0939 | 8400 | 0.0 | - |
|
326 |
+
| 1.1004 | 8450 | 0.0 | - |
|
327 |
+
| 1.1069 | 8500 | 0.0 | - |
|
328 |
+
| 1.1134 | 8550 | 0.0 | - |
|
329 |
+
| 1.1199 | 8600 | 0.0 | - |
|
330 |
+
| 1.1264 | 8650 | 0.0 | - |
|
331 |
+
| 1.1330 | 8700 | 0.0 | - |
|
332 |
+
| 1.1395 | 8750 | 0.0 | - |
|
333 |
+
| 1.1460 | 8800 | 0.0 | - |
|
334 |
+
| 1.1525 | 8850 | 0.0 | - |
|
335 |
+
| 1.1590 | 8900 | 0.0 | - |
|
336 |
+
| 1.1655 | 8950 | 0.0 | - |
|
337 |
+
| 1.1720 | 9000 | 0.0 | - |
|
338 |
+
| 1.1785 | 9050 | 0.0 | - |
|
339 |
+
| 1.1851 | 9100 | 0.0 | - |
|
340 |
+
| 1.1916 | 9150 | 0.0 | - |
|
341 |
+
| 1.1981 | 9200 | 0.0 | - |
|
342 |
+
| 1.2046 | 9250 | 0.0 | - |
|
343 |
+
| 1.2111 | 9300 | 0.0 | - |
|
344 |
+
| 1.2176 | 9350 | 0.0 | - |
|
345 |
+
| 1.2241 | 9400 | 0.0 | - |
|
346 |
+
| 1.2306 | 9450 | 0.0 | - |
|
347 |
+
| 1.2371 | 9500 | 0.0 | - |
|
348 |
+
| 1.2437 | 9550 | 0.0 | - |
|
349 |
+
| 1.2502 | 9600 | 0.0 | - |
|
350 |
+
| 1.2567 | 9650 | 0.0 | - |
|
351 |
+
| 1.2632 | 9700 | 0.0 | - |
|
352 |
+
| 1.2697 | 9750 | 0.0 | - |
|
353 |
+
| 1.2762 | 9800 | 0.0 | - |
|
354 |
+
| 1.2827 | 9850 | 0.0 | - |
|
355 |
+
| 1.2892 | 9900 | 0.0 | - |
|
356 |
+
| 1.2957 | 9950 | 0.0 | - |
|
357 |
+
| 1.3023 | 10000 | 0.0 | - |
|
358 |
+
| 1.3088 | 10050 | 0.0 | - |
|
359 |
+
| 1.3153 | 10100 | 0.0 | - |
|
360 |
+
| 1.3218 | 10150 | 0.0 | - |
|
361 |
+
| 1.3283 | 10200 | 0.0 | - |
|
362 |
+
| 1.3348 | 10250 | 0.0 | - |
|
363 |
+
| 1.3413 | 10300 | 0.0 | - |
|
364 |
+
| 1.3478 | 10350 | 0.0 | - |
|
365 |
+
| 1.3543 | 10400 | 0.0 | - |
|
366 |
+
| 1.3609 | 10450 | 0.0 | - |
|
367 |
+
| 1.3674 | 10500 | 0.0 | - |
|
368 |
+
| 1.3739 | 10550 | 0.0 | - |
|
369 |
+
| 1.3804 | 10600 | 0.0 | - |
|
370 |
+
| 1.3869 | 10650 | 0.0 | - |
|
371 |
+
| 1.3934 | 10700 | 0.0 | - |
|
372 |
+
| 1.3999 | 10750 | 0.0 | - |
|
373 |
+
| 1.4064 | 10800 | 0.0 | - |
|
374 |
+
| 1.4129 | 10850 | 0.0 | - |
|
375 |
+
| 1.4195 | 10900 | 0.0 | - |
|
376 |
+
| 1.4260 | 10950 | 0.0 | - |
|
377 |
+
| 1.4325 | 11000 | 0.0 | - |
|
378 |
+
| 1.4390 | 11050 | 0.0 | - |
|
379 |
+
| 1.4455 | 11100 | 0.0 | - |
|
380 |
+
| 1.4520 | 11150 | 0.0 | - |
|
381 |
+
| 1.4585 | 11200 | 0.0 | - |
|
382 |
+
| 1.4650 | 11250 | 0.0 | - |
|
383 |
+
| 1.4715 | 11300 | 0.0 | - |
|
384 |
+
| 1.4781 | 11350 | 0.0 | - |
|
385 |
+
| 1.4846 | 11400 | 0.0 | - |
|
386 |
+
| 1.4911 | 11450 | 0.0 | - |
|
387 |
+
| 1.4976 | 11500 | 0.0 | - |
|
388 |
+
| 1.5041 | 11550 | 0.0 | - |
|
389 |
+
| 1.5106 | 11600 | 0.0 | - |
|
390 |
+
| 1.5171 | 11650 | 0.0 | - |
|
391 |
+
| 1.5236 | 11700 | 0.0 | - |
|
392 |
+
| 1.5301 | 11750 | 0.0 | - |
|
393 |
+
| 1.5367 | 11800 | 0.0 | - |
|
394 |
+
| 1.5432 | 11850 | 0.0 | - |
|
395 |
+
| 1.5497 | 11900 | 0.0 | - |
|
396 |
+
| 1.5562 | 11950 | 0.0 | - |
|
397 |
+
| 1.5627 | 12000 | 0.0 | - |
|
398 |
+
| 1.5692 | 12050 | 0.0 | - |
|
399 |
+
| 1.5757 | 12100 | 0.0 | - |
|
400 |
+
| 1.5822 | 12150 | 0.0 | - |
|
401 |
+
| 1.5887 | 12200 | 0.0 | - |
|
402 |
+
| 1.5953 | 12250 | 0.0 | - |
|
403 |
+
| 1.6018 | 12300 | 0.0 | - |
|
404 |
+
| 1.6083 | 12350 | 0.0 | - |
|
405 |
+
| 1.6148 | 12400 | 0.0 | - |
|
406 |
+
| 1.6213 | 12450 | 0.0 | - |
|
407 |
+
| 1.6278 | 12500 | 0.0 | - |
|
408 |
+
| 1.6343 | 12550 | 0.0 | - |
|
409 |
+
| 1.6408 | 12600 | 0.0 | - |
|
410 |
+
| 1.6473 | 12650 | 0.0 | - |
|
411 |
+
| 1.6539 | 12700 | 0.0 | - |
|
412 |
+
| 1.6604 | 12750 | 0.0 | - |
|
413 |
+
| 1.6669 | 12800 | 0.0 | - |
|
414 |
+
| 1.6734 | 12850 | 0.0 | - |
|
415 |
+
| 1.6799 | 12900 | 0.0 | - |
|
416 |
+
| 1.6864 | 12950 | 0.0 | - |
|
417 |
+
| 1.6929 | 13000 | 0.0 | - |
|
418 |
+
| 1.6994 | 13050 | 0.0 | - |
|
419 |
+
| 1.7060 | 13100 | 0.0 | - |
|
420 |
+
| 1.7125 | 13150 | 0.0 | - |
|
421 |
+
| 1.7190 | 13200 | 0.0 | - |
|
422 |
+
| 1.7255 | 13250 | 0.0 | - |
|
423 |
+
| 1.7320 | 13300 | 0.0 | - |
|
424 |
+
| 1.7385 | 13350 | 0.0 | - |
|
425 |
+
| 1.7450 | 13400 | 0.0 | - |
|
426 |
+
| 1.7515 | 13450 | 0.0 | - |
|
427 |
+
| 1.7580 | 13500 | 0.0 | - |
|
428 |
+
| 1.7646 | 13550 | 0.0 | - |
|
429 |
+
| 1.7711 | 13600 | 0.0 | - |
|
430 |
+
| 1.7776 | 13650 | 0.0 | - |
|
431 |
+
| 1.7841 | 13700 | 0.0 | - |
|
432 |
+
| 1.7906 | 13750 | 0.0 | - |
|
433 |
+
| 1.7971 | 13800 | 0.0 | - |
|
434 |
+
| 1.8036 | 13850 | 0.0 | - |
|
435 |
+
| 1.8101 | 13900 | 0.0 | - |
|
436 |
+
| 1.8166 | 13950 | 0.0 | - |
|
437 |
+
| 1.8232 | 14000 | 0.0 | - |
|
438 |
+
| 1.8297 | 14050 | 0.0 | - |
|
439 |
+
| 1.8362 | 14100 | 0.0 | - |
|
440 |
+
| 1.8427 | 14150 | 0.0 | - |
|
441 |
+
| 1.8492 | 14200 | 0.0 | - |
|
442 |
+
| 1.8557 | 14250 | 0.0 | - |
|
443 |
+
| 1.8622 | 14300 | 0.0 | - |
|
444 |
+
| 1.8687 | 14350 | 0.0 | - |
|
445 |
+
| 1.8752 | 14400 | 0.0 | - |
|
446 |
+
| 1.8818 | 14450 | 0.0 | - |
|
447 |
+
| 1.8883 | 14500 | 0.0 | - |
|
448 |
+
| 1.8948 | 14550 | 0.0 | - |
|
449 |
+
| 1.9013 | 14600 | 0.0 | - |
|
450 |
+
| 1.9078 | 14650 | 0.0 | - |
|
451 |
+
| 1.9143 | 14700 | 0.0 | - |
|
452 |
+
| 1.9208 | 14750 | 0.0 | - |
|
453 |
+
| 1.9273 | 14800 | 0.0 | - |
|
454 |
+
| 1.9338 | 14850 | 0.0 | - |
|
455 |
+
| 1.9404 | 14900 | 0.0 | - |
|
456 |
+
| 1.9469 | 14950 | 0.0 | - |
|
457 |
+
| 1.9534 | 15000 | 0.0 | - |
|
458 |
+
| 1.9599 | 15050 | 0.0 | - |
|
459 |
+
| 1.9664 | 15100 | 0.0 | - |
|
460 |
+
| 1.9729 | 15150 | 0.0 | - |
|
461 |
+
| 1.9794 | 15200 | 0.0 | - |
|
462 |
+
| 1.9859 | 15250 | 0.0 | - |
|
463 |
+
| 1.9924 | 15300 | 0.0 | - |
|
464 |
+
| 1.9990 | 15350 | 0.0 | - |
|
465 |
+
| 2.0 | 15358 | - | 0.2831 |
|
466 |
+
| 2.0055 | 15400 | 0.0 | - |
|
467 |
+
| 2.0120 | 15450 | 0.0 | - |
|
468 |
+
| 2.0185 | 15500 | 0.0 | - |
|
469 |
+
| 2.0250 | 15550 | 0.0 | - |
|
470 |
+
| 2.0315 | 15600 | 0.0 | - |
|
471 |
+
| 2.0380 | 15650 | 0.0 | - |
|
472 |
+
| 2.0445 | 15700 | 0.0 | - |
|
473 |
+
| 2.0510 | 15750 | 0.0 | - |
|
474 |
+
| 2.0576 | 15800 | 0.0 | - |
|
475 |
+
| 2.0641 | 15850 | 0.0 | - |
|
476 |
+
| 2.0706 | 15900 | 0.0 | - |
|
477 |
+
| 2.0771 | 15950 | 0.0 | - |
|
478 |
+
| 2.0836 | 16000 | 0.0 | - |
|
479 |
+
| 2.0901 | 16050 | 0.0 | - |
|
480 |
+
| 2.0966 | 16100 | 0.0 | - |
|
481 |
+
| 2.1031 | 16150 | 0.0 | - |
|
482 |
+
| 2.1096 | 16200 | 0.0 | - |
|
483 |
+
| 2.1162 | 16250 | 0.0 | - |
|
484 |
+
| 2.1227 | 16300 | 0.0 | - |
|
485 |
+
| 2.1292 | 16350 | 0.0 | - |
|
486 |
+
| 2.1357 | 16400 | 0.0 | - |
|
487 |
+
| 2.1422 | 16450 | 0.0 | - |
|
488 |
+
| 2.1487 | 16500 | 0.0 | - |
|
489 |
+
| 2.1552 | 16550 | 0.0 | - |
|
490 |
+
| 2.1617 | 16600 | 0.0 | - |
|
491 |
+
| 2.1683 | 16650 | 0.0 | - |
|
492 |
+
| 2.1748 | 16700 | 0.0 | - |
|
493 |
+
| 2.1813 | 16750 | 0.0 | - |
|
494 |
+
| 2.1878 | 16800 | 0.0 | - |
|
495 |
+
| 2.1943 | 16850 | 0.0 | - |
|
496 |
+
| 2.2008 | 16900 | 0.0 | - |
|
497 |
+
| 2.2073 | 16950 | 0.0 | - |
|
498 |
+
| 2.2138 | 17000 | 0.0 | - |
|
499 |
+
| 2.2203 | 17050 | 0.0 | - |
|
500 |
+
| 2.2269 | 17100 | 0.0 | - |
|
501 |
+
| 2.2334 | 17150 | 0.0 | - |
|
502 |
+
| 2.2399 | 17200 | 0.0 | - |
|
503 |
+
| 2.2464 | 17250 | 0.0 | - |
|
504 |
+
| 2.2529 | 17300 | 0.0 | - |
|
505 |
+
| 2.2594 | 17350 | 0.0 | - |
|
506 |
+
| 2.2659 | 17400 | 0.0 | - |
|
507 |
+
| 2.2724 | 17450 | 0.0 | - |
|
508 |
+
| 2.2789 | 17500 | 0.0 | - |
|
509 |
+
| 2.2855 | 17550 | 0.0 | - |
|
510 |
+
| 2.2920 | 17600 | 0.0 | - |
|
511 |
+
| 2.2985 | 17650 | 0.0 | - |
|
512 |
+
| 2.3050 | 17700 | 0.0 | - |
|
513 |
+
| 2.3115 | 17750 | 0.0 | - |
|
514 |
+
| 2.3180 | 17800 | 0.0 | - |
|
515 |
+
| 2.3245 | 17850 | 0.0 | - |
|
516 |
+
| 2.3310 | 17900 | 0.0 | - |
|
517 |
+
| 2.3375 | 17950 | 0.0 | - |
|
518 |
+
| 2.3441 | 18000 | 0.0 | - |
|
519 |
+
| 2.3506 | 18050 | 0.0 | - |
|
520 |
+
| 2.3571 | 18100 | 0.0 | - |
|
521 |
+
| 2.3636 | 18150 | 0.0 | - |
|
522 |
+
| 2.3701 | 18200 | 0.0 | - |
|
523 |
+
| 2.3766 | 18250 | 0.0 | - |
|
524 |
+
| 2.3831 | 18300 | 0.0 | - |
|
525 |
+
| 2.3896 | 18350 | 0.0 | - |
|
526 |
+
| 2.3961 | 18400 | 0.0 | - |
|
527 |
+
| 2.4027 | 18450 | 0.0 | - |
|
528 |
+
| 2.4092 | 18500 | 0.0 | - |
|
529 |
+
| 2.4157 | 18550 | 0.0 | - |
|
530 |
+
| 2.4222 | 18600 | 0.0 | - |
|
531 |
+
| 2.4287 | 18650 | 0.0 | - |
|
532 |
+
| 2.4352 | 18700 | 0.0 | - |
|
533 |
+
| 2.4417 | 18750 | 0.0 | - |
|
534 |
+
| 2.4482 | 18800 | 0.0 | - |
|
535 |
+
| 2.4547 | 18850 | 0.0 | - |
|
536 |
+
| 2.4613 | 18900 | 0.0 | - |
|
537 |
+
| 2.4678 | 18950 | 0.0 | - |
|
538 |
+
| 2.4743 | 19000 | 0.0 | - |
|
539 |
+
| 2.4808 | 19050 | 0.0 | - |
|
540 |
+
| 2.4873 | 19100 | 0.0 | - |
|
541 |
+
| 2.4938 | 19150 | 0.0 | - |
|
542 |
+
| 2.5003 | 19200 | 0.0 | - |
|
543 |
+
| 2.5068 | 19250 | 0.0 | - |
|
544 |
+
| 2.5133 | 19300 | 0.0 | - |
|
545 |
+
| 2.5199 | 19350 | 0.0 | - |
|
546 |
+
| 2.5264 | 19400 | 0.0 | - |
|
547 |
+
| 2.5329 | 19450 | 0.0 | - |
|
548 |
+
| 2.5394 | 19500 | 0.0 | - |
|
549 |
+
| 2.5459 | 19550 | 0.0 | - |
|
550 |
+
| 2.5524 | 19600 | 0.0 | - |
|
551 |
+
| 2.5589 | 19650 | 0.0 | - |
|
552 |
+
| 2.5654 | 19700 | 0.0 | - |
|
553 |
+
| 2.5719 | 19750 | 0.0 | - |
|
554 |
+
| 2.5785 | 19800 | 0.0 | - |
|
555 |
+
| 2.5850 | 19850 | 0.0 | - |
|
556 |
+
| 2.5915 | 19900 | 0.0 | - |
|
557 |
+
| 2.5980 | 19950 | 0.0 | - |
|
558 |
+
| 2.6045 | 20000 | 0.0 | - |
|
559 |
+
| 2.6110 | 20050 | 0.0 | - |
|
560 |
+
| 2.6175 | 20100 | 0.0 | - |
|
561 |
+
| 2.6240 | 20150 | 0.0 | - |
|
562 |
+
| 2.6306 | 20200 | 0.0 | - |
|
563 |
+
| 2.6371 | 20250 | 0.0 | - |
|
564 |
+
| 2.6436 | 20300 | 0.0 | - |
|
565 |
+
| 2.6501 | 20350 | 0.0 | - |
|
566 |
+
| 2.6566 | 20400 | 0.0 | - |
|
567 |
+
| 2.6631 | 20450 | 0.0 | - |
|
568 |
+
| 2.6696 | 20500 | 0.0 | - |
|
569 |
+
| 2.6761 | 20550 | 0.0 | - |
|
570 |
+
| 2.6826 | 20600 | 0.0 | - |
|
571 |
+
| 2.6892 | 20650 | 0.0 | - |
|
572 |
+
| 2.6957 | 20700 | 0.0 | - |
|
573 |
+
| 2.7022 | 20750 | 0.0 | - |
|
574 |
+
| 2.7087 | 20800 | 0.0 | - |
|
575 |
+
| 2.7152 | 20850 | 0.0 | - |
|
576 |
+
| 2.7217 | 20900 | 0.0 | - |
|
577 |
+
| 2.7282 | 20950 | 0.0 | - |
|
578 |
+
| 2.7347 | 21000 | 0.0 | - |
|
579 |
+
| 2.7412 | 21050 | 0.0 | - |
|
580 |
+
| 2.7478 | 21100 | 0.0 | - |
|
581 |
+
| 2.7543 | 21150 | 0.0 | - |
|
582 |
+
| 2.7608 | 21200 | 0.0 | - |
|
583 |
+
| 2.7673 | 21250 | 0.0 | - |
|
584 |
+
| 2.7738 | 21300 | 0.0 | - |
|
585 |
+
| 2.7803 | 21350 | 0.0 | - |
|
586 |
+
| 2.7868 | 21400 | 0.0 | - |
|
587 |
+
| 2.7933 | 21450 | 0.0 | - |
|
588 |
+
| 2.7998 | 21500 | 0.0 | - |
|
589 |
+
| 2.8064 | 21550 | 0.0 | - |
|
590 |
+
| 2.8129 | 21600 | 0.0 | - |
|
591 |
+
| 2.8194 | 21650 | 0.0 | - |
|
592 |
+
| 2.8259 | 21700 | 0.0 | - |
|
593 |
+
| 2.8324 | 21750 | 0.0 | - |
|
594 |
+
| 2.8389 | 21800 | 0.0 | - |
|
595 |
+
| 2.8454 | 21850 | 0.0 | - |
|
596 |
+
| 2.8519 | 21900 | 0.0 | - |
|
597 |
+
| 2.8584 | 21950 | 0.0 | - |
|
598 |
+
| 2.8650 | 22000 | 0.0 | - |
|
599 |
+
| 2.8715 | 22050 | 0.0 | - |
|
600 |
+
| 2.8780 | 22100 | 0.0 | - |
|
601 |
+
| 2.8845 | 22150 | 0.0 | - |
|
602 |
+
| 2.8910 | 22200 | 0.0 | - |
|
603 |
+
| 2.8975 | 22250 | 0.0 | - |
|
604 |
+
| 2.9040 | 22300 | 0.0 | - |
|
605 |
+
| 2.9105 | 22350 | 0.0 | - |
|
606 |
+
| 2.9170 | 22400 | 0.0 | - |
|
607 |
+
| 2.9236 | 22450 | 0.0 | - |
|
608 |
+
| 2.9301 | 22500 | 0.0 | - |
|
609 |
+
| 2.9366 | 22550 | 0.0 | - |
|
610 |
+
| 2.9431 | 22600 | 0.0 | - |
|
611 |
+
| 2.9496 | 22650 | 0.0 | - |
|
612 |
+
| 2.9561 | 22700 | 0.0 | - |
|
613 |
+
| 2.9626 | 22750 | 0.0 | - |
|
614 |
+
| 2.9691 | 22800 | 0.0 | - |
|
615 |
+
| 2.9756 | 22850 | 0.0 | - |
|
616 |
+
| 2.9822 | 22900 | 0.0 | - |
|
617 |
+
| 2.9887 | 22950 | 0.0 | - |
|
618 |
+
| 2.9952 | 23000 | 0.0 | - |
|
619 |
+
| **3.0** | **23037** | **-** | **0.2771** |
|
620 |
|
621 |
* The bold row denotes the saved checkpoint.
|
622 |
### Framework Versions
|
623 |
- Python: 3.10.13
|
624 |
- SetFit: 1.0.3
|
625 |
+
- Sentence Transformers: 2.2.2
|
626 |
- Transformers: 4.36.2
|
627 |
- PyTorch: 2.1.2+cu121
|
628 |
- Datasets: 2.16.1
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "checkpoints/
|
3 |
"_num_labels": 5,
|
4 |
"architectures": [
|
5 |
"BertModel"
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "checkpoints/step_23037/",
|
3 |
"_num_labels": 5,
|
4 |
"architectures": [
|
5 |
"BertModel"
|
config_setfit.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
-
"normalize_embeddings": false,
|
3 |
"labels": [
|
4 |
"negatif",
|
5 |
"positif"
|
6 |
-
]
|
|
|
7 |
}
|
|
|
1 |
{
|
|
|
2 |
"labels": [
|
3 |
"negatif",
|
4 |
"positif"
|
5 |
+
],
|
6 |
+
"normalize_embeddings": false
|
7 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 497787752
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa5b094ab735099c009bfbcf4d9d6a0a09c735094935459a6dee8ea155413137
|
3 |
size 497787752
|
model_head.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 7007
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87016aa55ca63ded7dad00862fd5d201b15015307ce84a652da3dc12895295fe
|
3 |
size 7007
|