firqaaa commited on
Commit
65528c0
1 Parent(s): 5b6b921

Add SetFit model

Browse files
Files changed (6) hide show
  1. 1_Pooling/config.json +1 -3
  2. README.md +476 -166
  3. config.json +1 -1
  4. config_setfit.json +2 -2
  5. model.safetensors +1 -1
  6. model_head.pkl +1 -1
1_Pooling/config.json CHANGED
@@ -3,7 +3,5 @@
3
  "pooling_mode_cls_token": false,
4
  "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
6
- "pooling_mode_mean_sqrt_len_tokens": false,
7
- "pooling_mode_weightedmean_tokens": false,
8
- "pooling_mode_lasttoken": false
9
  }
 
3
  "pooling_mode_cls_token": false,
4
  "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
 
 
7
  }
README.md CHANGED
@@ -32,7 +32,7 @@ model-index:
32
  split: test
33
  metrics:
34
  - type: accuracy
35
- value: 0.8
36
  name: Accuracy
37
  ---
38
 
@@ -64,17 +64,17 @@ The model has been trained using an efficient few-shot learning technique that i
64
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
65
 
66
  ### Model Labels
67
- | Label | Examples |
68
- |:--------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
69
- | positif | <ul><li>'benar-benar lucu'</li><li>'gulungan dari sebuah tong tong yang tersesat'</li><li>', mereka menemukan rute-rute baru melalui lingkungan yang sudah dikenal'</li></ul> |
70
- | negatif | <ul><li>'tidak menarik atau berbau tidak sedap'</li><li>"telah melakukan kesalahan nyaris fatal dengan menjadi apa yang orang Inggris sebut 'terlalu pintar setengah mati'."</li><li>'untuk roboh'</li></ul> |
71
 
72
  ## Evaluation
73
 
74
  ### Metrics
75
  | Label | Accuracy |
76
  |:--------|:---------|
77
- | **all** | 0.8 |
78
 
79
  ## Uses
80
 
@@ -126,12 +126,12 @@ preds = model("film yang cepat, lucu, dan sangat menghibur.")
126
  ### Training Set Metrics
127
  | Training set | Min | Median | Max |
128
  |:-------------|:----|:-------|:----|
129
- | Word count | 1 | 9.4825 | 51 |
130
 
131
  | Label | Training Sample Count |
132
  |:--------|:----------------------|
133
- | negatif | 200 |
134
- | positif | 200 |
135
 
136
  ### Training Hyperparameters
137
  - batch_size: (32, 32)
@@ -151,168 +151,478 @@ preds = model("film yang cepat, lucu, dan sangat menghibur.")
151
  - load_best_model_at_end: True
152
 
153
  ### Training Results
154
- | Epoch | Step | Training Loss | Validation Loss |
155
- |:-------:|:--------:|:-------------:|:---------------:|
156
- | 0.0004 | 1 | 0.3079 | - |
157
- | 0.0199 | 50 | 0.3644 | - |
158
- | 0.0398 | 100 | 0.2816 | - |
159
- | 0.0597 | 150 | 0.2254 | - |
160
- | 0.0796 | 200 | 0.1798 | - |
161
- | 0.0995 | 250 | 0.0478 | - |
162
- | 0.1194 | 300 | 0.0049 | - |
163
- | 0.1393 | 350 | 0.0016 | - |
164
- | 0.1592 | 400 | 0.0011 | - |
165
- | 0.1791 | 450 | 0.0005 | - |
166
- | 0.1990 | 500 | 0.0003 | - |
167
- | 0.2189 | 550 | 0.0004 | - |
168
- | 0.2388 | 600 | 0.0003 | - |
169
- | 0.2587 | 650 | 0.0003 | - |
170
- | 0.2786 | 700 | 0.0001 | - |
171
- | 0.2984 | 750 | 0.0002 | - |
172
- | 0.3183 | 800 | 0.0001 | - |
173
- | 0.3382 | 850 | 0.0001 | - |
174
- | 0.3581 | 900 | 0.0001 | - |
175
- | 0.3780 | 950 | 0.0001 | - |
176
- | 0.3979 | 1000 | 0.0001 | - |
177
- | 0.4178 | 1050 | 0.0001 | - |
178
- | 0.4377 | 1100 | 0.0001 | - |
179
- | 0.4576 | 1150 | 0.0001 | - |
180
- | 0.4775 | 1200 | 0.0001 | - |
181
- | 0.4974 | 1250 | 0.0001 | - |
182
- | 0.5173 | 1300 | 0.0001 | - |
183
- | 0.5372 | 1350 | 0.0001 | - |
184
- | 0.5571 | 1400 | 0.0001 | - |
185
- | 0.5770 | 1450 | 0.0001 | - |
186
- | 0.5969 | 1500 | 0.0001 | - |
187
- | 0.6168 | 1550 | 0.0001 | - |
188
- | 0.6367 | 1600 | 0.0001 | - |
189
- | 0.6566 | 1650 | 0.0001 | - |
190
- | 0.6765 | 1700 | 0.0002 | - |
191
- | 0.6964 | 1750 | 0.0001 | - |
192
- | 0.7163 | 1800 | 0.0001 | - |
193
- | 0.7362 | 1850 | 0.0001 | - |
194
- | 0.7561 | 1900 | 0.0001 | - |
195
- | 0.7760 | 1950 | 0.0001 | - |
196
- | 0.7959 | 2000 | 0.0001 | - |
197
- | 0.8158 | 2050 | 0.0001 | - |
198
- | 0.8357 | 2100 | 0.0001 | - |
199
- | 0.8556 | 2150 | 0.0001 | - |
200
- | 0.8754 | 2200 | 0.0001 | - |
201
- | 0.8953 | 2250 | 0.0 | - |
202
- | 0.9152 | 2300 | 0.0001 | - |
203
- | 0.9351 | 2350 | 0.0 | - |
204
- | 0.9550 | 2400 | 0.0 | - |
205
- | 0.9749 | 2450 | 0.0 | - |
206
- | 0.9948 | 2500 | 0.0 | - |
207
- | **1.0** | **2513** | **-** | **0.2622** |
208
- | 1.0147 | 2550 | 0.0 | - |
209
- | 1.0346 | 2600 | 0.0 | - |
210
- | 1.0545 | 2650 | 0.0 | - |
211
- | 1.0744 | 2700 | 0.0 | - |
212
- | 1.0943 | 2750 | 0.0 | - |
213
- | 1.1142 | 2800 | 0.0 | - |
214
- | 1.1341 | 2850 | 0.0 | - |
215
- | 1.1540 | 2900 | 0.0 | - |
216
- | 1.1739 | 2950 | 0.0 | - |
217
- | 1.1938 | 3000 | 0.0 | - |
218
- | 1.2137 | 3050 | 0.0 | - |
219
- | 1.2336 | 3100 | 0.0 | - |
220
- | 1.2535 | 3150 | 0.0 | - |
221
- | 1.2734 | 3200 | 0.0 | - |
222
- | 1.2933 | 3250 | 0.0 | - |
223
- | 1.3132 | 3300 | 0.0 | - |
224
- | 1.3331 | 3350 | 0.0 | - |
225
- | 1.3530 | 3400 | 0.0 | - |
226
- | 1.3729 | 3450 | 0.0 | - |
227
- | 1.3928 | 3500 | 0.0 | - |
228
- | 1.4127 | 3550 | 0.0 | - |
229
- | 1.4326 | 3600 | 0.0 | - |
230
- | 1.4524 | 3650 | 0.0 | - |
231
- | 1.4723 | 3700 | 0.0 | - |
232
- | 1.4922 | 3750 | 0.0 | - |
233
- | 1.5121 | 3800 | 0.0 | - |
234
- | 1.5320 | 3850 | 0.0 | - |
235
- | 1.5519 | 3900 | 0.0 | - |
236
- | 1.5718 | 3950 | 0.0 | - |
237
- | 1.5917 | 4000 | 0.0 | - |
238
- | 1.6116 | 4050 | 0.0 | - |
239
- | 1.6315 | 4100 | 0.0 | - |
240
- | 1.6514 | 4150 | 0.0 | - |
241
- | 1.6713 | 4200 | 0.0 | - |
242
- | 1.6912 | 4250 | 0.0 | - |
243
- | 1.7111 | 4300 | 0.0 | - |
244
- | 1.7310 | 4350 | 0.0 | - |
245
- | 1.7509 | 4400 | 0.0 | - |
246
- | 1.7708 | 4450 | 0.0 | - |
247
- | 1.7907 | 4500 | 0.0 | - |
248
- | 1.8106 | 4550 | 0.0 | - |
249
- | 1.8305 | 4600 | 0.0 | - |
250
- | 1.8504 | 4650 | 0.0 | - |
251
- | 1.8703 | 4700 | 0.0 | - |
252
- | 1.8902 | 4750 | 0.0 | - |
253
- | 1.9101 | 4800 | 0.0 | - |
254
- | 1.9300 | 4850 | 0.0 | - |
255
- | 1.9499 | 4900 | 0.0 | - |
256
- | 1.9698 | 4950 | 0.0 | - |
257
- | 1.9897 | 5000 | 0.0 | - |
258
- | 2.0 | 5026 | - | 0.269 |
259
- | 2.0096 | 5050 | 0.0 | - |
260
- | 2.0294 | 5100 | 0.0 | - |
261
- | 2.0493 | 5150 | 0.0 | - |
262
- | 2.0692 | 5200 | 0.0 | - |
263
- | 2.0891 | 5250 | 0.0 | - |
264
- | 2.1090 | 5300 | 0.0 | - |
265
- | 2.1289 | 5350 | 0.0 | - |
266
- | 2.1488 | 5400 | 0.0 | - |
267
- | 2.1687 | 5450 | 0.0 | - |
268
- | 2.1886 | 5500 | 0.0 | - |
269
- | 2.2085 | 5550 | 0.0 | - |
270
- | 2.2284 | 5600 | 0.0 | - |
271
- | 2.2483 | 5650 | 0.0 | - |
272
- | 2.2682 | 5700 | 0.0 | - |
273
- | 2.2881 | 5750 | 0.0 | - |
274
- | 2.3080 | 5800 | 0.0 | - |
275
- | 2.3279 | 5850 | 0.0 | - |
276
- | 2.3478 | 5900 | 0.0 | - |
277
- | 2.3677 | 5950 | 0.0 | - |
278
- | 2.3876 | 6000 | 0.0 | - |
279
- | 2.4075 | 6050 | 0.0 | - |
280
- | 2.4274 | 6100 | 0.0 | - |
281
- | 2.4473 | 6150 | 0.0 | - |
282
- | 2.4672 | 6200 | 0.0 | - |
283
- | 2.4871 | 6250 | 0.0 | - |
284
- | 2.5070 | 6300 | 0.0 | - |
285
- | 2.5269 | 6350 | 0.0 | - |
286
- | 2.5468 | 6400 | 0.0 | - |
287
- | 2.5667 | 6450 | 0.0 | - |
288
- | 2.5865 | 6500 | 0.0 | - |
289
- | 2.6064 | 6550 | 0.0 | - |
290
- | 2.6263 | 6600 | 0.0 | - |
291
- | 2.6462 | 6650 | 0.0 | - |
292
- | 2.6661 | 6700 | 0.0 | - |
293
- | 2.6860 | 6750 | 0.0 | - |
294
- | 2.7059 | 6800 | 0.0 | - |
295
- | 2.7258 | 6850 | 0.0 | - |
296
- | 2.7457 | 6900 | 0.0 | - |
297
- | 2.7656 | 6950 | 0.0 | - |
298
- | 2.7855 | 7000 | 0.0 | - |
299
- | 2.8054 | 7050 | 0.0 | - |
300
- | 2.8253 | 7100 | 0.0 | - |
301
- | 2.8452 | 7150 | 0.0 | - |
302
- | 2.8651 | 7200 | 0.0 | - |
303
- | 2.8850 | 7250 | 0.0 | - |
304
- | 2.9049 | 7300 | 0.0 | - |
305
- | 2.9248 | 7350 | 0.0 | - |
306
- | 2.9447 | 7400 | 0.0 | - |
307
- | 2.9646 | 7450 | 0.0 | - |
308
- | 2.9845 | 7500 | 0.0 | - |
309
- | 3.0 | 7539 | - | 0.2744 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310
 
311
  * The bold row denotes the saved checkpoint.
312
  ### Framework Versions
313
  - Python: 3.10.13
314
  - SetFit: 1.0.3
315
- - Sentence Transformers: 2.3.1
316
  - Transformers: 4.36.2
317
  - PyTorch: 2.1.2+cu121
318
  - Datasets: 2.16.1
 
32
  split: test
33
  metrics:
34
  - type: accuracy
35
+ value: 0.82
36
  name: Accuracy
37
  ---
38
 
 
64
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
65
 
66
  ### Model Labels
67
+ | Label | Examples |
68
+ |:--------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
69
+ | positif | <ul><li>'Layak untuk kunjungan lain.'</li><li>'gulungan dari sebuah tong tong yang tersesat'</li><li>'adalah film yang hebat .'</li></ul> |
70
+ | negatif | <ul><li>'Anda berada di rumah menonton film itu daripada di bioskop menonton yang ini.'</li><li>'dengan banyak warna biru gelap dan merah muda yang serius'</li><li>'hal buruk'</li></ul> |
71
 
72
  ## Evaluation
73
 
74
  ### Metrics
75
  | Label | Accuracy |
76
  |:--------|:---------|
77
+ | **all** | 0.82 |
78
 
79
  ## Uses
80
 
 
126
  ### Training Set Metrics
127
  | Training set | Min | Median | Max |
128
  |:-------------|:----|:-------|:----|
129
+ | Word count | 1 | 9.4029 | 51 |
130
 
131
  | Label | Training Sample Count |
132
  |:--------|:----------------------|
133
+ | negatif | 350 |
134
+ | positif | 350 |
135
 
136
  ### Training Hyperparameters
137
  - batch_size: (32, 32)
 
151
  - load_best_model_at_end: True
152
 
153
  ### Training Results
154
+ | Epoch | Step | Training Loss | Validation Loss |
155
+ |:-------:|:---------:|:-------------:|:---------------:|
156
+ | 0.0001 | 1 | 0.3328 | - |
157
+ | 0.0065 | 50 | 0.4117 | - |
158
+ | 0.0130 | 100 | 0.2903 | - |
159
+ | 0.0195 | 150 | 0.3104 | - |
160
+ | 0.0260 | 200 | 0.2411 | - |
161
+ | 0.0326 | 250 | 0.2341 | - |
162
+ | 0.0391 | 300 | 0.2144 | - |
163
+ | 0.0456 | 350 | 0.1785 | - |
164
+ | 0.0521 | 400 | 0.1649 | - |
165
+ | 0.0586 | 450 | 0.037 | - |
166
+ | 0.0651 | 500 | 0.0447 | - |
167
+ | 0.0716 | 550 | 0.0472 | - |
168
+ | 0.0781 | 600 | 0.0361 | - |
169
+ | 0.0846 | 650 | 0.0016 | - |
170
+ | 0.0912 | 700 | 0.0013 | - |
171
+ | 0.0977 | 750 | 0.0011 | - |
172
+ | 0.1042 | 800 | 0.0006 | - |
173
+ | 0.1107 | 850 | 0.0009 | - |
174
+ | 0.1172 | 900 | 0.0006 | - |
175
+ | 0.1237 | 950 | 0.0004 | - |
176
+ | 0.1302 | 1000 | 0.0004 | - |
177
+ | 0.1367 | 1050 | 0.0005 | - |
178
+ | 0.1432 | 1100 | 0.0004 | - |
179
+ | 0.1498 | 1150 | 0.0002 | - |
180
+ | 0.1563 | 1200 | 0.0003 | - |
181
+ | 0.1628 | 1250 | 0.0004 | - |
182
+ | 0.1693 | 1300 | 0.0003 | - |
183
+ | 0.1758 | 1350 | 0.0001 | - |
184
+ | 0.1823 | 1400 | 0.0002 | - |
185
+ | 0.1888 | 1450 | 0.0003 | - |
186
+ | 0.1953 | 1500 | 0.0002 | - |
187
+ | 0.2018 | 1550 | 0.0002 | - |
188
+ | 0.2084 | 1600 | 0.0287 | - |
189
+ | 0.2149 | 1650 | 0.0003 | - |
190
+ | 0.2214 | 1700 | 0.0002 | - |
191
+ | 0.2279 | 1750 | 0.0002 | - |
192
+ | 0.2344 | 1800 | 0.0002 | - |
193
+ | 0.2409 | 1850 | 0.0004 | - |
194
+ | 0.2474 | 1900 | 0.0001 | - |
195
+ | 0.2539 | 1950 | 0.0001 | - |
196
+ | 0.2605 | 2000 | 0.0001 | - |
197
+ | 0.2670 | 2050 | 0.0001 | - |
198
+ | 0.2735 | 2100 | 0.0001 | - |
199
+ | 0.2800 | 2150 | 0.0001 | - |
200
+ | 0.2865 | 2200 | 0.0001 | - |
201
+ | 0.2930 | 2250 | 0.0003 | - |
202
+ | 0.2995 | 2300 | 0.0001 | - |
203
+ | 0.3060 | 2350 | 0.0002 | - |
204
+ | 0.3125 | 2400 | 0.0001 | - |
205
+ | 0.3191 | 2450 | 0.0 | - |
206
+ | 0.3256 | 2500 | 0.0001 | - |
207
+ | 0.3321 | 2550 | 0.0001 | - |
208
+ | 0.3386 | 2600 | 0.0001 | - |
209
+ | 0.3451 | 2650 | 0.0001 | - |
210
+ | 0.3516 | 2700 | 0.0003 | - |
211
+ | 0.3581 | 2750 | 0.0002 | - |
212
+ | 0.3646 | 2800 | 0.0003 | - |
213
+ | 0.3711 | 2850 | 0.0002 | - |
214
+ | 0.3777 | 2900 | 0.0002 | - |
215
+ | 0.3842 | 2950 | 0.0001 | - |
216
+ | 0.3907 | 3000 | 0.0001 | - |
217
+ | 0.3972 | 3050 | 0.0001 | - |
218
+ | 0.4037 | 3100 | 0.0001 | - |
219
+ | 0.4102 | 3150 | 0.0 | - |
220
+ | 0.4167 | 3200 | 0.0001 | - |
221
+ | 0.4232 | 3250 | 0.0 | - |
222
+ | 0.4297 | 3300 | 0.0001 | - |
223
+ | 0.4363 | 3350 | 0.0001 | - |
224
+ | 0.4428 | 3400 | 0.0001 | - |
225
+ | 0.4493 | 3450 | 0.0001 | - |
226
+ | 0.4558 | 3500 | 0.0001 | - |
227
+ | 0.4623 | 3550 | 0.0 | - |
228
+ | 0.4688 | 3600 | 0.0001 | - |
229
+ | 0.4753 | 3650 | 0.0001 | - |
230
+ | 0.4818 | 3700 | 0.0001 | - |
231
+ | 0.4883 | 3750 | 0.0 | - |
232
+ | 0.4949 | 3800 | 0.0001 | - |
233
+ | 0.5014 | 3850 | 0.0 | - |
234
+ | 0.5079 | 3900 | 0.0 | - |
235
+ | 0.5144 | 3950 | 0.0 | - |
236
+ | 0.5209 | 4000 | 0.0 | - |
237
+ | 0.5274 | 4050 | 0.0 | - |
238
+ | 0.5339 | 4100 | 0.0 | - |
239
+ | 0.5404 | 4150 | 0.0 | - |
240
+ | 0.5469 | 4200 | 0.0 | - |
241
+ | 0.5535 | 4250 | 0.0 | - |
242
+ | 0.5600 | 4300 | 0.0 | - |
243
+ | 0.5665 | 4350 | 0.0001 | - |
244
+ | 0.5730 | 4400 | 0.0 | - |
245
+ | 0.5795 | 4450 | 0.0 | - |
246
+ | 0.5860 | 4500 | 0.0 | - |
247
+ | 0.5925 | 4550 | 0.0 | - |
248
+ | 0.5990 | 4600 | 0.0 | - |
249
+ | 0.6055 | 4650 | 0.0 | - |
250
+ | 0.6121 | 4700 | 0.0 | - |
251
+ | 0.6186 | 4750 | 0.0 | - |
252
+ | 0.6251 | 4800 | 0.0 | - |
253
+ | 0.6316 | 4850 | 0.0001 | - |
254
+ | 0.6381 | 4900 | 0.0001 | - |
255
+ | 0.6446 | 4950 | 0.0086 | - |
256
+ | 0.6511 | 5000 | 0.0 | - |
257
+ | 0.6576 | 5050 | 0.0 | - |
258
+ | 0.6641 | 5100 | 0.0 | - |
259
+ | 0.6707 | 5150 | 0.0 | - |
260
+ | 0.6772 | 5200 | 0.0 | - |
261
+ | 0.6837 | 5250 | 0.0007 | - |
262
+ | 0.6902 | 5300 | 0.0 | - |
263
+ | 0.6967 | 5350 | 0.0001 | - |
264
+ | 0.7032 | 5400 | 0.0 | - |
265
+ | 0.7097 | 5450 | 0.0001 | - |
266
+ | 0.7162 | 5500 | 0.0 | - |
267
+ | 0.7228 | 5550 | 0.0 | - |
268
+ | 0.7293 | 5600 | 0.0 | - |
269
+ | 0.7358 | 5650 | 0.0 | - |
270
+ | 0.7423 | 5700 | 0.0003 | - |
271
+ | 0.7488 | 5750 | 0.0001 | - |
272
+ | 0.7553 | 5800 | 0.0 | - |
273
+ | 0.7618 | 5850 | 0.0 | - |
274
+ | 0.7683 | 5900 | 0.0 | - |
275
+ | 0.7748 | 5950 | 0.0 | - |
276
+ | 0.7814 | 6000 | 0.0 | - |
277
+ | 0.7879 | 6050 | 0.0 | - |
278
+ | 0.7944 | 6100 | 0.0 | - |
279
+ | 0.8009 | 6150 | 0.0 | - |
280
+ | 0.8074 | 6200 | 0.0 | - |
281
+ | 0.8139 | 6250 | 0.0 | - |
282
+ | 0.8204 | 6300 | 0.0 | - |
283
+ | 0.8269 | 6350 | 0.0 | - |
284
+ | 0.8334 | 6400 | 0.0 | - |
285
+ | 0.8400 | 6450 | 0.0 | - |
286
+ | 0.8465 | 6500 | 0.0 | - |
287
+ | 0.8530 | 6550 | 0.0 | - |
288
+ | 0.8595 | 6600 | 0.0 | - |
289
+ | 0.8660 | 6650 | 0.0 | - |
290
+ | 0.8725 | 6700 | 0.0 | - |
291
+ | 0.8790 | 6750 | 0.0 | - |
292
+ | 0.8855 | 6800 | 0.0 | - |
293
+ | 0.8920 | 6850 | 0.0 | - |
294
+ | 0.8986 | 6900 | 0.0 | - |
295
+ | 0.9051 | 6950 | 0.0 | - |
296
+ | 0.9116 | 7000 | 0.0 | - |
297
+ | 0.9181 | 7050 | 0.0 | - |
298
+ | 0.9246 | 7100 | 0.0 | - |
299
+ | 0.9311 | 7150 | 0.0 | - |
300
+ | 0.9376 | 7200 | 0.0 | - |
301
+ | 0.9441 | 7250 | 0.0 | - |
302
+ | 0.9506 | 7300 | 0.0 | - |
303
+ | 0.9572 | 7350 | 0.0 | - |
304
+ | 0.9637 | 7400 | 0.0 | - |
305
+ | 0.9702 | 7450 | 0.0 | - |
306
+ | 0.9767 | 7500 | 0.0 | - |
307
+ | 0.9832 | 7550 | 0.0 | - |
308
+ | 0.9897 | 7600 | 0.0 | - |
309
+ | 0.9962 | 7650 | 0.0 | - |
310
+ | 1.0 | 7679 | - | 0.2894 |
311
+ | 1.0027 | 7700 | 0.0 | - |
312
+ | 1.0092 | 7750 | 0.0 | - |
313
+ | 1.0158 | 7800 | 0.0 | - |
314
+ | 1.0223 | 7850 | 0.0 | - |
315
+ | 1.0288 | 7900 | 0.0 | - |
316
+ | 1.0353 | 7950 | 0.0 | - |
317
+ | 1.0418 | 8000 | 0.0 | - |
318
+ | 1.0483 | 8050 | 0.0 | - |
319
+ | 1.0548 | 8100 | 0.0 | - |
320
+ | 1.0613 | 8150 | 0.0 | - |
321
+ | 1.0678 | 8200 | 0.0 | - |
322
+ | 1.0744 | 8250 | 0.0 | - |
323
+ | 1.0809 | 8300 | 0.0 | - |
324
+ | 1.0874 | 8350 | 0.0 | - |
325
+ | 1.0939 | 8400 | 0.0 | - |
326
+ | 1.1004 | 8450 | 0.0 | - |
327
+ | 1.1069 | 8500 | 0.0 | - |
328
+ | 1.1134 | 8550 | 0.0 | - |
329
+ | 1.1199 | 8600 | 0.0 | - |
330
+ | 1.1264 | 8650 | 0.0 | - |
331
+ | 1.1330 | 8700 | 0.0 | - |
332
+ | 1.1395 | 8750 | 0.0 | - |
333
+ | 1.1460 | 8800 | 0.0 | - |
334
+ | 1.1525 | 8850 | 0.0 | - |
335
+ | 1.1590 | 8900 | 0.0 | - |
336
+ | 1.1655 | 8950 | 0.0 | - |
337
+ | 1.1720 | 9000 | 0.0 | - |
338
+ | 1.1785 | 9050 | 0.0 | - |
339
+ | 1.1851 | 9100 | 0.0 | - |
340
+ | 1.1916 | 9150 | 0.0 | - |
341
+ | 1.1981 | 9200 | 0.0 | - |
342
+ | 1.2046 | 9250 | 0.0 | - |
343
+ | 1.2111 | 9300 | 0.0 | - |
344
+ | 1.2176 | 9350 | 0.0 | - |
345
+ | 1.2241 | 9400 | 0.0 | - |
346
+ | 1.2306 | 9450 | 0.0 | - |
347
+ | 1.2371 | 9500 | 0.0 | - |
348
+ | 1.2437 | 9550 | 0.0 | - |
349
+ | 1.2502 | 9600 | 0.0 | - |
350
+ | 1.2567 | 9650 | 0.0 | - |
351
+ | 1.2632 | 9700 | 0.0 | - |
352
+ | 1.2697 | 9750 | 0.0 | - |
353
+ | 1.2762 | 9800 | 0.0 | - |
354
+ | 1.2827 | 9850 | 0.0 | - |
355
+ | 1.2892 | 9900 | 0.0 | - |
356
+ | 1.2957 | 9950 | 0.0 | - |
357
+ | 1.3023 | 10000 | 0.0 | - |
358
+ | 1.3088 | 10050 | 0.0 | - |
359
+ | 1.3153 | 10100 | 0.0 | - |
360
+ | 1.3218 | 10150 | 0.0 | - |
361
+ | 1.3283 | 10200 | 0.0 | - |
362
+ | 1.3348 | 10250 | 0.0 | - |
363
+ | 1.3413 | 10300 | 0.0 | - |
364
+ | 1.3478 | 10350 | 0.0 | - |
365
+ | 1.3543 | 10400 | 0.0 | - |
366
+ | 1.3609 | 10450 | 0.0 | - |
367
+ | 1.3674 | 10500 | 0.0 | - |
368
+ | 1.3739 | 10550 | 0.0 | - |
369
+ | 1.3804 | 10600 | 0.0 | - |
370
+ | 1.3869 | 10650 | 0.0 | - |
371
+ | 1.3934 | 10700 | 0.0 | - |
372
+ | 1.3999 | 10750 | 0.0 | - |
373
+ | 1.4064 | 10800 | 0.0 | - |
374
+ | 1.4129 | 10850 | 0.0 | - |
375
+ | 1.4195 | 10900 | 0.0 | - |
376
+ | 1.4260 | 10950 | 0.0 | - |
377
+ | 1.4325 | 11000 | 0.0 | - |
378
+ | 1.4390 | 11050 | 0.0 | - |
379
+ | 1.4455 | 11100 | 0.0 | - |
380
+ | 1.4520 | 11150 | 0.0 | - |
381
+ | 1.4585 | 11200 | 0.0 | - |
382
+ | 1.4650 | 11250 | 0.0 | - |
383
+ | 1.4715 | 11300 | 0.0 | - |
384
+ | 1.4781 | 11350 | 0.0 | - |
385
+ | 1.4846 | 11400 | 0.0 | - |
386
+ | 1.4911 | 11450 | 0.0 | - |
387
+ | 1.4976 | 11500 | 0.0 | - |
388
+ | 1.5041 | 11550 | 0.0 | - |
389
+ | 1.5106 | 11600 | 0.0 | - |
390
+ | 1.5171 | 11650 | 0.0 | - |
391
+ | 1.5236 | 11700 | 0.0 | - |
392
+ | 1.5301 | 11750 | 0.0 | - |
393
+ | 1.5367 | 11800 | 0.0 | - |
394
+ | 1.5432 | 11850 | 0.0 | - |
395
+ | 1.5497 | 11900 | 0.0 | - |
396
+ | 1.5562 | 11950 | 0.0 | - |
397
+ | 1.5627 | 12000 | 0.0 | - |
398
+ | 1.5692 | 12050 | 0.0 | - |
399
+ | 1.5757 | 12100 | 0.0 | - |
400
+ | 1.5822 | 12150 | 0.0 | - |
401
+ | 1.5887 | 12200 | 0.0 | - |
402
+ | 1.5953 | 12250 | 0.0 | - |
403
+ | 1.6018 | 12300 | 0.0 | - |
404
+ | 1.6083 | 12350 | 0.0 | - |
405
+ | 1.6148 | 12400 | 0.0 | - |
406
+ | 1.6213 | 12450 | 0.0 | - |
407
+ | 1.6278 | 12500 | 0.0 | - |
408
+ | 1.6343 | 12550 | 0.0 | - |
409
+ | 1.6408 | 12600 | 0.0 | - |
410
+ | 1.6473 | 12650 | 0.0 | - |
411
+ | 1.6539 | 12700 | 0.0 | - |
412
+ | 1.6604 | 12750 | 0.0 | - |
413
+ | 1.6669 | 12800 | 0.0 | - |
414
+ | 1.6734 | 12850 | 0.0 | - |
415
+ | 1.6799 | 12900 | 0.0 | - |
416
+ | 1.6864 | 12950 | 0.0 | - |
417
+ | 1.6929 | 13000 | 0.0 | - |
418
+ | 1.6994 | 13050 | 0.0 | - |
419
+ | 1.7060 | 13100 | 0.0 | - |
420
+ | 1.7125 | 13150 | 0.0 | - |
421
+ | 1.7190 | 13200 | 0.0 | - |
422
+ | 1.7255 | 13250 | 0.0 | - |
423
+ | 1.7320 | 13300 | 0.0 | - |
424
+ | 1.7385 | 13350 | 0.0 | - |
425
+ | 1.7450 | 13400 | 0.0 | - |
426
+ | 1.7515 | 13450 | 0.0 | - |
427
+ | 1.7580 | 13500 | 0.0 | - |
428
+ | 1.7646 | 13550 | 0.0 | - |
429
+ | 1.7711 | 13600 | 0.0 | - |
430
+ | 1.7776 | 13650 | 0.0 | - |
431
+ | 1.7841 | 13700 | 0.0 | - |
432
+ | 1.7906 | 13750 | 0.0 | - |
433
+ | 1.7971 | 13800 | 0.0 | - |
434
+ | 1.8036 | 13850 | 0.0 | - |
435
+ | 1.8101 | 13900 | 0.0 | - |
436
+ | 1.8166 | 13950 | 0.0 | - |
437
+ | 1.8232 | 14000 | 0.0 | - |
438
+ | 1.8297 | 14050 | 0.0 | - |
439
+ | 1.8362 | 14100 | 0.0 | - |
440
+ | 1.8427 | 14150 | 0.0 | - |
441
+ | 1.8492 | 14200 | 0.0 | - |
442
+ | 1.8557 | 14250 | 0.0 | - |
443
+ | 1.8622 | 14300 | 0.0 | - |
444
+ | 1.8687 | 14350 | 0.0 | - |
445
+ | 1.8752 | 14400 | 0.0 | - |
446
+ | 1.8818 | 14450 | 0.0 | - |
447
+ | 1.8883 | 14500 | 0.0 | - |
448
+ | 1.8948 | 14550 | 0.0 | - |
449
+ | 1.9013 | 14600 | 0.0 | - |
450
+ | 1.9078 | 14650 | 0.0 | - |
451
+ | 1.9143 | 14700 | 0.0 | - |
452
+ | 1.9208 | 14750 | 0.0 | - |
453
+ | 1.9273 | 14800 | 0.0 | - |
454
+ | 1.9338 | 14850 | 0.0 | - |
455
+ | 1.9404 | 14900 | 0.0 | - |
456
+ | 1.9469 | 14950 | 0.0 | - |
457
+ | 1.9534 | 15000 | 0.0 | - |
458
+ | 1.9599 | 15050 | 0.0 | - |
459
+ | 1.9664 | 15100 | 0.0 | - |
460
+ | 1.9729 | 15150 | 0.0 | - |
461
+ | 1.9794 | 15200 | 0.0 | - |
462
+ | 1.9859 | 15250 | 0.0 | - |
463
+ | 1.9924 | 15300 | 0.0 | - |
464
+ | 1.9990 | 15350 | 0.0 | - |
465
+ | 2.0 | 15358 | - | 0.2831 |
466
+ | 2.0055 | 15400 | 0.0 | - |
467
+ | 2.0120 | 15450 | 0.0 | - |
468
+ | 2.0185 | 15500 | 0.0 | - |
469
+ | 2.0250 | 15550 | 0.0 | - |
470
+ | 2.0315 | 15600 | 0.0 | - |
471
+ | 2.0380 | 15650 | 0.0 | - |
472
+ | 2.0445 | 15700 | 0.0 | - |
473
+ | 2.0510 | 15750 | 0.0 | - |
474
+ | 2.0576 | 15800 | 0.0 | - |
475
+ | 2.0641 | 15850 | 0.0 | - |
476
+ | 2.0706 | 15900 | 0.0 | - |
477
+ | 2.0771 | 15950 | 0.0 | - |
478
+ | 2.0836 | 16000 | 0.0 | - |
479
+ | 2.0901 | 16050 | 0.0 | - |
480
+ | 2.0966 | 16100 | 0.0 | - |
481
+ | 2.1031 | 16150 | 0.0 | - |
482
+ | 2.1096 | 16200 | 0.0 | - |
483
+ | 2.1162 | 16250 | 0.0 | - |
484
+ | 2.1227 | 16300 | 0.0 | - |
485
+ | 2.1292 | 16350 | 0.0 | - |
486
+ | 2.1357 | 16400 | 0.0 | - |
487
+ | 2.1422 | 16450 | 0.0 | - |
488
+ | 2.1487 | 16500 | 0.0 | - |
489
+ | 2.1552 | 16550 | 0.0 | - |
490
+ | 2.1617 | 16600 | 0.0 | - |
491
+ | 2.1683 | 16650 | 0.0 | - |
492
+ | 2.1748 | 16700 | 0.0 | - |
493
+ | 2.1813 | 16750 | 0.0 | - |
494
+ | 2.1878 | 16800 | 0.0 | - |
495
+ | 2.1943 | 16850 | 0.0 | - |
496
+ | 2.2008 | 16900 | 0.0 | - |
497
+ | 2.2073 | 16950 | 0.0 | - |
498
+ | 2.2138 | 17000 | 0.0 | - |
499
+ | 2.2203 | 17050 | 0.0 | - |
500
+ | 2.2269 | 17100 | 0.0 | - |
501
+ | 2.2334 | 17150 | 0.0 | - |
502
+ | 2.2399 | 17200 | 0.0 | - |
503
+ | 2.2464 | 17250 | 0.0 | - |
504
+ | 2.2529 | 17300 | 0.0 | - |
505
+ | 2.2594 | 17350 | 0.0 | - |
506
+ | 2.2659 | 17400 | 0.0 | - |
507
+ | 2.2724 | 17450 | 0.0 | - |
508
+ | 2.2789 | 17500 | 0.0 | - |
509
+ | 2.2855 | 17550 | 0.0 | - |
510
+ | 2.2920 | 17600 | 0.0 | - |
511
+ | 2.2985 | 17650 | 0.0 | - |
512
+ | 2.3050 | 17700 | 0.0 | - |
513
+ | 2.3115 | 17750 | 0.0 | - |
514
+ | 2.3180 | 17800 | 0.0 | - |
515
+ | 2.3245 | 17850 | 0.0 | - |
516
+ | 2.3310 | 17900 | 0.0 | - |
517
+ | 2.3375 | 17950 | 0.0 | - |
518
+ | 2.3441 | 18000 | 0.0 | - |
519
+ | 2.3506 | 18050 | 0.0 | - |
520
+ | 2.3571 | 18100 | 0.0 | - |
521
+ | 2.3636 | 18150 | 0.0 | - |
522
+ | 2.3701 | 18200 | 0.0 | - |
523
+ | 2.3766 | 18250 | 0.0 | - |
524
+ | 2.3831 | 18300 | 0.0 | - |
525
+ | 2.3896 | 18350 | 0.0 | - |
526
+ | 2.3961 | 18400 | 0.0 | - |
527
+ | 2.4027 | 18450 | 0.0 | - |
528
+ | 2.4092 | 18500 | 0.0 | - |
529
+ | 2.4157 | 18550 | 0.0 | - |
530
+ | 2.4222 | 18600 | 0.0 | - |
531
+ | 2.4287 | 18650 | 0.0 | - |
532
+ | 2.4352 | 18700 | 0.0 | - |
533
+ | 2.4417 | 18750 | 0.0 | - |
534
+ | 2.4482 | 18800 | 0.0 | - |
535
+ | 2.4547 | 18850 | 0.0 | - |
536
+ | 2.4613 | 18900 | 0.0 | - |
537
+ | 2.4678 | 18950 | 0.0 | - |
538
+ | 2.4743 | 19000 | 0.0 | - |
539
+ | 2.4808 | 19050 | 0.0 | - |
540
+ | 2.4873 | 19100 | 0.0 | - |
541
+ | 2.4938 | 19150 | 0.0 | - |
542
+ | 2.5003 | 19200 | 0.0 | - |
543
+ | 2.5068 | 19250 | 0.0 | - |
544
+ | 2.5133 | 19300 | 0.0 | - |
545
+ | 2.5199 | 19350 | 0.0 | - |
546
+ | 2.5264 | 19400 | 0.0 | - |
547
+ | 2.5329 | 19450 | 0.0 | - |
548
+ | 2.5394 | 19500 | 0.0 | - |
549
+ | 2.5459 | 19550 | 0.0 | - |
550
+ | 2.5524 | 19600 | 0.0 | - |
551
+ | 2.5589 | 19650 | 0.0 | - |
552
+ | 2.5654 | 19700 | 0.0 | - |
553
+ | 2.5719 | 19750 | 0.0 | - |
554
+ | 2.5785 | 19800 | 0.0 | - |
555
+ | 2.5850 | 19850 | 0.0 | - |
556
+ | 2.5915 | 19900 | 0.0 | - |
557
+ | 2.5980 | 19950 | 0.0 | - |
558
+ | 2.6045 | 20000 | 0.0 | - |
559
+ | 2.6110 | 20050 | 0.0 | - |
560
+ | 2.6175 | 20100 | 0.0 | - |
561
+ | 2.6240 | 20150 | 0.0 | - |
562
+ | 2.6306 | 20200 | 0.0 | - |
563
+ | 2.6371 | 20250 | 0.0 | - |
564
+ | 2.6436 | 20300 | 0.0 | - |
565
+ | 2.6501 | 20350 | 0.0 | - |
566
+ | 2.6566 | 20400 | 0.0 | - |
567
+ | 2.6631 | 20450 | 0.0 | - |
568
+ | 2.6696 | 20500 | 0.0 | - |
569
+ | 2.6761 | 20550 | 0.0 | - |
570
+ | 2.6826 | 20600 | 0.0 | - |
571
+ | 2.6892 | 20650 | 0.0 | - |
572
+ | 2.6957 | 20700 | 0.0 | - |
573
+ | 2.7022 | 20750 | 0.0 | - |
574
+ | 2.7087 | 20800 | 0.0 | - |
575
+ | 2.7152 | 20850 | 0.0 | - |
576
+ | 2.7217 | 20900 | 0.0 | - |
577
+ | 2.7282 | 20950 | 0.0 | - |
578
+ | 2.7347 | 21000 | 0.0 | - |
579
+ | 2.7412 | 21050 | 0.0 | - |
580
+ | 2.7478 | 21100 | 0.0 | - |
581
+ | 2.7543 | 21150 | 0.0 | - |
582
+ | 2.7608 | 21200 | 0.0 | - |
583
+ | 2.7673 | 21250 | 0.0 | - |
584
+ | 2.7738 | 21300 | 0.0 | - |
585
+ | 2.7803 | 21350 | 0.0 | - |
586
+ | 2.7868 | 21400 | 0.0 | - |
587
+ | 2.7933 | 21450 | 0.0 | - |
588
+ | 2.7998 | 21500 | 0.0 | - |
589
+ | 2.8064 | 21550 | 0.0 | - |
590
+ | 2.8129 | 21600 | 0.0 | - |
591
+ | 2.8194 | 21650 | 0.0 | - |
592
+ | 2.8259 | 21700 | 0.0 | - |
593
+ | 2.8324 | 21750 | 0.0 | - |
594
+ | 2.8389 | 21800 | 0.0 | - |
595
+ | 2.8454 | 21850 | 0.0 | - |
596
+ | 2.8519 | 21900 | 0.0 | - |
597
+ | 2.8584 | 21950 | 0.0 | - |
598
+ | 2.8650 | 22000 | 0.0 | - |
599
+ | 2.8715 | 22050 | 0.0 | - |
600
+ | 2.8780 | 22100 | 0.0 | - |
601
+ | 2.8845 | 22150 | 0.0 | - |
602
+ | 2.8910 | 22200 | 0.0 | - |
603
+ | 2.8975 | 22250 | 0.0 | - |
604
+ | 2.9040 | 22300 | 0.0 | - |
605
+ | 2.9105 | 22350 | 0.0 | - |
606
+ | 2.9170 | 22400 | 0.0 | - |
607
+ | 2.9236 | 22450 | 0.0 | - |
608
+ | 2.9301 | 22500 | 0.0 | - |
609
+ | 2.9366 | 22550 | 0.0 | - |
610
+ | 2.9431 | 22600 | 0.0 | - |
611
+ | 2.9496 | 22650 | 0.0 | - |
612
+ | 2.9561 | 22700 | 0.0 | - |
613
+ | 2.9626 | 22750 | 0.0 | - |
614
+ | 2.9691 | 22800 | 0.0 | - |
615
+ | 2.9756 | 22850 | 0.0 | - |
616
+ | 2.9822 | 22900 | 0.0 | - |
617
+ | 2.9887 | 22950 | 0.0 | - |
618
+ | 2.9952 | 23000 | 0.0 | - |
619
+ | **3.0** | **23037** | **-** | **0.2771** |
620
 
621
  * The bold row denotes the saved checkpoint.
622
  ### Framework Versions
623
  - Python: 3.10.13
624
  - SetFit: 1.0.3
625
+ - Sentence Transformers: 2.2.2
626
  - Transformers: 4.36.2
627
  - PyTorch: 2.1.2+cu121
628
  - Datasets: 2.16.1
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "checkpoints/step_2513",
3
  "_num_labels": 5,
4
  "architectures": [
5
  "BertModel"
 
1
  {
2
+ "_name_or_path": "checkpoints/step_23037/",
3
  "_num_labels": 5,
4
  "architectures": [
5
  "BertModel"
config_setfit.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
- "normalize_embeddings": false,
3
  "labels": [
4
  "negatif",
5
  "positif"
6
- ]
 
7
  }
 
1
  {
 
2
  "labels": [
3
  "negatif",
4
  "positif"
5
+ ],
6
+ "normalize_embeddings": false
7
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bb81841a3a0dfecdbb74385dc05e0fed6932f1699222526da8ca5032772027fb
3
  size 497787752
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa5b094ab735099c009bfbcf4d9d6a0a09c735094935459a6dee8ea155413137
3
  size 497787752
model_head.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ca049b0e4f2810394d6834eacf3146812a69af8b872de15691f3cea54e1383c7
3
  size 7007
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87016aa55ca63ded7dad00862fd5d201b15015307ce84a652da3dc12895295fe
3
  size 7007