Model save
Browse files
README.md
CHANGED
@@ -4,7 +4,7 @@ base_model: jonatasgrosman/wav2vec2-large-xlsr-53-english
|
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
-
-
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
- precision
|
@@ -17,24 +17,24 @@ model-index:
|
|
17 |
name: Audio Classification
|
18 |
type: audio-classification
|
19 |
dataset:
|
20 |
-
name:
|
21 |
-
type:
|
22 |
config: all
|
23 |
split: train
|
24 |
args: all
|
25 |
metrics:
|
26 |
- name: Accuracy
|
27 |
type: accuracy
|
28 |
-
value: 0.
|
29 |
- name: Precision
|
30 |
type: precision
|
31 |
-
value: 0.
|
32 |
- name: Recall
|
33 |
type: recall
|
34 |
-
value: 0.
|
35 |
- name: F1
|
36 |
type: f1
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -42,13 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
42 |
|
43 |
# wav2vec2-large-xlsr-53-english-finetuned-ravdess
|
44 |
|
45 |
-
This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss:
|
48 |
-
- Accuracy: 0.
|
49 |
-
- Precision: 0.
|
50 |
-
- Recall: 0.
|
51 |
-
- F1: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -76,16 +76,19 @@ The following hyperparameters were used during training:
|
|
76 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
77 |
- lr_scheduler_type: linear
|
78 |
- lr_scheduler_warmup_ratio: 0.1
|
79 |
-
- num_epochs:
|
80 |
- mixed_precision_training: Native AMP
|
81 |
|
82 |
### Training results
|
83 |
|
84 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
85 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
86 |
-
| 1.
|
87 |
-
| 1.
|
88 |
-
|
|
|
|
|
|
|
|
89 |
|
90 |
|
91 |
### Framework versions
|
|
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
+
- ravdess
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
- precision
|
|
|
17 |
name: Audio Classification
|
18 |
type: audio-classification
|
19 |
dataset:
|
20 |
+
name: ravdess
|
21 |
+
type: ravdess
|
22 |
config: all
|
23 |
split: train
|
24 |
args: all
|
25 |
metrics:
|
26 |
- name: Accuracy
|
27 |
type: accuracy
|
28 |
+
value: 0.8298611111111112
|
29 |
- name: Precision
|
30 |
type: precision
|
31 |
+
value: 0.8453025128787324
|
32 |
- name: Recall
|
33 |
type: recall
|
34 |
+
value: 0.8298611111111112
|
35 |
- name: F1
|
36 |
type: f1
|
37 |
+
value: 0.8329568451751053
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
42 |
|
43 |
# wav2vec2-large-xlsr-53-english-finetuned-ravdess
|
44 |
|
45 |
+
This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the ravdess dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.5624
|
48 |
+
- Accuracy: 0.8299
|
49 |
+
- Precision: 0.8453
|
50 |
+
- Recall: 0.8299
|
51 |
+
- F1: 0.8330
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
76 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
77 |
- lr_scheduler_type: linear
|
78 |
- lr_scheduler_warmup_ratio: 0.1
|
79 |
+
- num_epochs: 6
|
80 |
- mixed_precision_training: Native AMP
|
81 |
|
82 |
### Training results
|
83 |
|
84 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
85 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
86 |
+
| 1.9765 | 1.0 | 288 | 1.9102 | 0.3090 | 0.3203 | 0.3090 | 0.1941 |
|
87 |
+
| 1.4803 | 2.0 | 576 | 1.4590 | 0.5660 | 0.5493 | 0.5660 | 0.4811 |
|
88 |
+
| 1.1625 | 3.0 | 864 | 1.2308 | 0.6215 | 0.6299 | 0.6215 | 0.5936 |
|
89 |
+
| 0.8354 | 4.0 | 1152 | 0.7821 | 0.7222 | 0.7555 | 0.7222 | 0.6869 |
|
90 |
+
| 0.2066 | 5.0 | 1440 | 0.7910 | 0.7708 | 0.8373 | 0.7708 | 0.7881 |
|
91 |
+
| 0.6335 | 6.0 | 1728 | 0.5624 | 0.8299 | 0.8453 | 0.8299 | 0.8330 |
|
92 |
|
93 |
|
94 |
### Framework versions
|