firdho26 commited on
Commit
40c0eda
1 Parent(s): 6405fcf

Model save

Browse files
Files changed (1) hide show
  1. README.md +20 -17
README.md CHANGED
@@ -4,7 +4,7 @@ base_model: jonatasgrosman/wav2vec2-large-xlsr-53-english
4
  tags:
5
  - generated_from_trainer
6
  datasets:
7
- - narad/ravdess
8
  metrics:
9
  - accuracy
10
  - precision
@@ -17,24 +17,24 @@ model-index:
17
  name: Audio Classification
18
  type: audio-classification
19
  dataset:
20
- name: RAVDESS
21
- type: narad/ravdess
22
  config: all
23
  split: train
24
  args: all
25
  metrics:
26
  - name: Accuracy
27
  type: accuracy
28
- value: 0.7152777777777778
29
  - name: Precision
30
  type: precision
31
- value: 0.7360657858765911
32
  - name: Recall
33
  type: recall
34
- value: 0.7152777777777778
35
  - name: F1
36
  type: f1
37
- value: 0.6891900402765098
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -42,13 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
42
 
43
  # wav2vec2-large-xlsr-53-english-finetuned-ravdess
44
 
45
- This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the RAVDESS dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 1.0013
48
- - Accuracy: 0.7153
49
- - Precision: 0.7361
50
- - Recall: 0.7153
51
- - F1: 0.6892
52
 
53
  ## Model description
54
 
@@ -76,16 +76,19 @@ The following hyperparameters were used during training:
76
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
77
  - lr_scheduler_type: linear
78
  - lr_scheduler_warmup_ratio: 0.1
79
- - num_epochs: 3
80
  - mixed_precision_training: Native AMP
81
 
82
  ### Training results
83
 
84
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
85
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
86
- | 1.9323 | 1.0 | 288 | 1.9023 | 0.2917 | 0.4800 | 0.2917 | 0.2042 |
87
- | 1.4114 | 2.0 | 576 | 1.2845 | 0.6111 | 0.7423 | 0.6111 | 0.5283 |
88
- | 0.938 | 3.0 | 864 | 1.0013 | 0.7153 | 0.7361 | 0.7153 | 0.6892 |
 
 
 
89
 
90
 
91
  ### Framework versions
 
4
  tags:
5
  - generated_from_trainer
6
  datasets:
7
+ - ravdess
8
  metrics:
9
  - accuracy
10
  - precision
 
17
  name: Audio Classification
18
  type: audio-classification
19
  dataset:
20
+ name: ravdess
21
+ type: ravdess
22
  config: all
23
  split: train
24
  args: all
25
  metrics:
26
  - name: Accuracy
27
  type: accuracy
28
+ value: 0.8298611111111112
29
  - name: Precision
30
  type: precision
31
+ value: 0.8453025128787324
32
  - name: Recall
33
  type: recall
34
+ value: 0.8298611111111112
35
  - name: F1
36
  type: f1
37
+ value: 0.8329568451751053
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
42
 
43
  # wav2vec2-large-xlsr-53-english-finetuned-ravdess
44
 
45
+ This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the ravdess dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.5624
48
+ - Accuracy: 0.8299
49
+ - Precision: 0.8453
50
+ - Recall: 0.8299
51
+ - F1: 0.8330
52
 
53
  ## Model description
54
 
 
76
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
77
  - lr_scheduler_type: linear
78
  - lr_scheduler_warmup_ratio: 0.1
79
+ - num_epochs: 6
80
  - mixed_precision_training: Native AMP
81
 
82
  ### Training results
83
 
84
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
85
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
86
+ | 1.9765 | 1.0 | 288 | 1.9102 | 0.3090 | 0.3203 | 0.3090 | 0.1941 |
87
+ | 1.4803 | 2.0 | 576 | 1.4590 | 0.5660 | 0.5493 | 0.5660 | 0.4811 |
88
+ | 1.1625 | 3.0 | 864 | 1.2308 | 0.6215 | 0.6299 | 0.6215 | 0.5936 |
89
+ | 0.8354 | 4.0 | 1152 | 0.7821 | 0.7222 | 0.7555 | 0.7222 | 0.6869 |
90
+ | 0.2066 | 5.0 | 1440 | 0.7910 | 0.7708 | 0.8373 | 0.7708 | 0.7881 |
91
+ | 0.6335 | 6.0 | 1728 | 0.5624 | 0.8299 | 0.8453 | 0.8299 | 0.8330 |
92
 
93
 
94
  ### Framework versions