File size: 5,467 Bytes
3814677 242c70c 3814677 242c70c 3814677 3cc3764 3814677 0672005 3814677 0421abc 3814677 064ed12 242c70c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
---
license: apache-2.0
tags:
- merge
- mergekit
- mistral
- SanjiWatsuki/Silicon-Maid-7B
- senseable/WestLake-7B-v2
base_model:
- SanjiWatsuki/Silicon-Maid-7B
- senseable/WestLake-7B-v2
model-index:
- name: RolePlayLake-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 70.56
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.42
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.55
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 64.38
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.27
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.05
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/RolePlayLake-7B
name: Open LLM Leaderboard
---
# RolePlayLake-7B
RolePlayLake-7B is a merge of the following models :
* [SanjiWatsuki/Silicon-Maid-7B](https://huggingface.co/SanjiWatsuki/Silicon-Maid-7B)
* [senseable/WestLake-7B-v2](https://huggingface.co/senseable/WestLake-7B-v2)
`In my current testing RolePlayLake is Better than Silicon_Maid in RP and More Uncensored Than WestLake`
`I would try to only merge Uncensored Models with Baising towards Chat rather than Instruct `
## 🧩 Configuration
```yaml
slices:
- sources:
- model: SanjiWatsuki/Silicon-Maid-7B
layer_range: [0, 32]
- model: senseable/WestLake-7B-v2
layer_range: [0, 32]
merge_method: slerp
base_model: senseable/WestLake-7B-v2
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "fhai50032/RolePlayLake-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# Why I Merged WestLake and Silicon Maid
Merged WestLake and Silicon Maid for a unique blend:
1. **EQ-Bench Dominance:** WestLake's 79.75 EQ-Bench score. (Maybe Contaminated)
2. **Charm and Role-Play:** Silicon's explicit charm and WestLake's role-play prowess.
3. **Config Synergy:** Supports lots of prompt format out of the gate and has a very nice synergy
Result: RolePlayLake-7B, a linguistic fusion with EQ-Bench supremacy and captivating role-play potential.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fhai50032__RolePlayLake-7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |72.54|
|AI2 Reasoning Challenge (25-Shot)|70.56|
|HellaSwag (10-Shot) |87.42|
|MMLU (5-Shot) |64.55|
|TruthfulQA (0-shot) |64.38|
|Winogrande (5-shot) |83.27|
|GSM8k (5-shot) |65.05|
|