|
from transformers import PretrainedConfig, PreTrainedModel |
|
|
|
import inspect |
|
import math |
|
from dataclasses import dataclass |
|
from typing import Dict, List, Optional, Tuple, Union |
|
import json |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, DynamicCache |
|
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask |
|
from transformers.modeling_outputs import BaseModelOutput, ModelOutput |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_2_available, |
|
is_flash_attn_greater_or_equal_2_10, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
|
|
if is_flash_attn_2_available(): |
|
from flash_attn import flash_attn_func, flash_attn_varlen_func |
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input |
|
|
|
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) |
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
class Idefics2ConnectorConfig(PretrainedConfig): |
|
r""" |
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the perceiver block. |
|
resampler_n_latents (`int`, *optional*, defaults to 64): |
|
Number of latent embeddings to resample ("compress") the input sequence to (usually < 128). |
|
resampler_depth (`int`, *optional*, defaults to 3): |
|
Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (<= 3). |
|
resampler_n_heads (`int`, *optional*, defaults to 16): |
|
Number of heads in each Transformer block (for multi-headed self-attention). |
|
resampler_head_dim (`int`, *optional*, defaults to 96): |
|
Dimensionality of each head projection in the Transformer block. |
|
num_key_value_heads (`int`, *optional*, defaults to 4): |
|
Number of key-value heads in the perceiver attention block. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
""" |
|
_auto_class = 'AutoConfig' |
|
model_type = "Idefics2ConnectorConfig" |
|
|
|
def __init__( |
|
self, |
|
vision_hidden_size=1152, |
|
hidden_size=4096, |
|
hidden_act="silu", |
|
resampler_n_latents=64, |
|
resampler_depth=3, |
|
rms_norm_eps=1e-05, |
|
resampler_n_heads=16, |
|
resampler_head_dim=96, |
|
num_key_value_heads=4, |
|
attention_dropout=0.0, |
|
intermediate_size=14336, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
self.vision_hidden_size = vision_hidden_size |
|
self.hidden_size = hidden_size |
|
self.hidden_act = hidden_act |
|
self.resampler_n_latents = resampler_n_latents |
|
self.resampler_depth = resampler_depth |
|
self.rms_norm_eps = rms_norm_eps |
|
self.resampler_n_heads = resampler_n_heads |
|
self.num_key_value_heads = num_key_value_heads |
|
self.resampler_head_dim = resampler_head_dim |
|
self.attention_dropout = attention_dropout |
|
self.intermediate_size = intermediate_size |
|
if self.num_key_value_heads > self.resampler_n_heads: |
|
raise ValueError( |
|
f"num_key_value_heads={self.num_key_value_heads} must be less than or equal to" |
|
f" resampler_n_heads={self.resampler_n_heads}" |
|
) |
|
|
|
|
|
@classmethod |
|
def from_pretrained(cls, config_path, **kwargs) -> "PretrainedConfig": |
|
|
|
with open(config_path, "r", encoding="utf-8") as f: |
|
config_dict = json.load(f) |
|
cls = Idefics2ConnectorConfig( |
|
vision_hidden_size=config_dict['vision_hidden_size'], |
|
hidden_size=config_dict['hidden_size'], |
|
hidden_act="silu", |
|
resampler_n_latents=config_dict['resampler_n_latents'], |
|
resampler_depth=config_dict['resampler_depth'], |
|
rms_norm_eps=config_dict['rms_norm_eps'], |
|
intermediate_size = config_dict['intermediate_size'] |
|
) |
|
|
|
return cls |
|
|
|
|
|
def _get_unpad_data(attention_mask): |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
class Idefics2PerceiverAttention(nn.Module): |
|
def __init__(self, config, layer_idx: Optional[int] = None) -> None: |
|
"""Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`""" |
|
super().__init__() |
|
|
|
self.layer_idx = None |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.resampler_n_heads |
|
self.head_dim = config.resampler_head_dim |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.attention_dropout = config.attention_dropout |
|
|
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) |
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) |
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
|
|
self.is_causal = False |
|
|
|
def forward( |
|
self, |
|
latents: torch.Tensor, |
|
context: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
""" |
|
Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension! |
|
|
|
Args: |
|
latents (`torch.Tensor`): Tensor of shape [bsz, n_latents, embed_dim] representing fixed length latents to compress to. |
|
context (`torch.Tensor`): Tensor of shape [bsz, seq, embed_dim] representing long-form context to resample. |
|
attention_mask (`torch.Tensor`, *optional*): Tensor of shape [bsz, 1, seq, n_latents] representing attention mask. |
|
position_ids (`torch.LongTensor`, *optional*): Tensor of shape [bsz, seq] representing position indices of each input token. |
|
past_key_value (`Tuple[torch.Tensor]`, *optional*): Tuple of tensors containing cached key and value states. |
|
output_attentions (`bool`, *optional*, defaults to `False`): Whether to return attention weights. |
|
use_cache (`bool`, *optional*, defaults to `False`): Whether to use past_key_value for caching. |
|
""" |
|
bsz, q_len, _ = latents.size() |
|
kv_seq_len = q_len + context.size()[1] |
|
|
|
hidden_states = torch.concat([context, latents], dim=-2) |
|
|
|
query_states = self.q_proj(latents) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, kv_seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, kv_seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
past_key_value = getattr(self, "past_key_value", past_key_value) |
|
|
|
if past_key_value is not None: |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx) |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
|
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class Idefics2PerceiverFlashAttention2(Idefics2PerceiverAttention): |
|
""" |
|
Idefics2 flash attention module. This module inherits from `Idefics2PerceiverAttention` as the weights of the module stays |
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of |
|
flash attention and deal with padding tokens in case the input contains any of them. |
|
""" |
|
|
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() |
|
|
|
|
|
def forward( |
|
self, |
|
latents: torch.Tensor, |
|
context: torch.Tensor, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
bsz, q_len, _ = latents.size() |
|
kv_seq_len = q_len + context.size()[1] |
|
|
|
|
|
|
|
query_states = self.q_proj(latents) |
|
key_states = self.k_proj(torch.cat([context, latents], dim=-2)) |
|
value_states = self.v_proj(torch.cat([context, latents], dim=-2)) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, kv_seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, kv_seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
|
|
if past_key_value is not None: |
|
|
|
if hasattr(self.config, "sliding_window") and kv_seq_len > self.config.sliding_window: |
|
slicing_tokens = kv_seq_len - self.config.sliding_window |
|
|
|
past_key = past_key_value[0] |
|
past_value = past_key_value[1] |
|
|
|
past_key = past_key[:, :, slicing_tokens:, :].contiguous() |
|
past_value = past_value[:, :, slicing_tokens:, :].contiguous() |
|
|
|
if past_key.shape[-2] != self.config.sliding_window - 1: |
|
raise ValueError( |
|
"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1," |
|
f" head_dim`), got {past_key.shape}" |
|
) |
|
|
|
past_key_value = (past_key, past_value) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask[:, slicing_tokens:] |
|
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
dropout_rate = 0.0 if not self.training else self.attention_dropout |
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
attn_output = self._flash_attention_forward( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
q_len, |
|
dropout=dropout_rate, |
|
use_sliding_windows=False, |
|
) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
def _flash_attention_forward( |
|
self, |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
query_length, |
|
dropout=0.0, |
|
softmax_scale=None, |
|
use_sliding_windows=False, |
|
): |
|
""" |
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token |
|
first unpad the input, then computes the attention scores and pad the final attention scores. |
|
|
|
Args: |
|
query_states (`torch.Tensor`): |
|
Input query states to be passed to Flash Attention API |
|
key_states (`torch.Tensor`): |
|
Input key states to be passed to Flash Attention API |
|
value_states (`torch.Tensor`): |
|
Input value states to be passed to Flash Attention API |
|
attention_mask (`torch.Tensor`): |
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the |
|
position of padding tokens and 1 for the position of non-padding tokens. |
|
dropout (`float`): |
|
Attention dropout |
|
softmax_scale (`float`, *optional*): |
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) |
|
use_sliding_windows (`bool`, *optional*): |
|
Whether to activate sliding window attention. |
|
""" |
|
if not self._flash_attn_uses_top_left_mask: |
|
causal = self.is_causal |
|
else: |
|
|
|
causal = self.is_causal and query_length != 1 |
|
|
|
|
|
if attention_mask is not None: |
|
batch_size = query_states.shape[0] |
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( |
|
query_states, key_states, value_states, attention_mask, query_length |
|
) |
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
if not use_sliding_windows: |
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
else: |
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
window_size=(self.config.sliding_window, self.config.sliding_window), |
|
) |
|
|
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) |
|
else: |
|
if not use_sliding_windows: |
|
attn_output = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
else: |
|
attn_output = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
window_size=(self.config.sliding_window, self.config.sliding_window), |
|
) |
|
|
|
return attn_output |
|
|
|
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): |
|
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape |
|
|
|
|
|
|
|
if kv_seq_len != attention_mask.shape[-1]: |
|
attention_mask_num_tokens = attention_mask.shape[-1] |
|
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] |
|
|
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) |
|
|
|
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) |
|
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) |
|
|
|
if query_length == kv_seq_len: |
|
query_layer = index_first_axis( |
|
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k |
|
) |
|
cu_seqlens_q = cu_seqlens_k |
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
indices_q = indices_k |
|
elif query_length == 1: |
|
max_seqlen_in_batch_q = 1 |
|
cu_seqlens_q = torch.arange( |
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
) |
|
indices_q = cu_seqlens_q[:-1] |
|
query_layer = query_layer.squeeze(1) |
|
else: |
|
|
|
attention_mask = attention_mask[:, -query_length:] |
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) |
|
|
|
return ( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
indices_q, |
|
(cu_seqlens_q, cu_seqlens_k), |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
) |
|
|
|
IDEFICS2_PERCEIVER_ATTENTION_CLASSES = { |
|
"eager": Idefics2PerceiverAttention, |
|
"flash_attention_2": Idefics2PerceiverFlashAttention2, |
|
} |
|
|
|
|
|
class Idefics2MLP(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
intermediate_size: int, |
|
output_size: int, |
|
hidden_act: str, |
|
): |
|
super().__init__() |
|
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(intermediate_size, output_size, bias=False) |
|
self.act_fn = ACT2FN[hidden_act] |
|
|
|
def forward(self, x): |
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
|
|
class Idefics2RMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
Idefics2RMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
class Idefics2PerceiverLayer(nn.Module): |
|
def __init__(self, config, layer_idx: int): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.n_latents = config.resampler_n_latents |
|
self.depth = config.resampler_depth |
|
self.rms_norm_eps = config.rms_norm_eps |
|
|
|
self.input_latents_norm = Idefics2RMSNorm(self.hidden_size, eps=self.rms_norm_eps) |
|
self.input_context_norm = Idefics2RMSNorm(self.hidden_size, eps=self.rms_norm_eps) |
|
self.self_attn = IDEFICS2_PERCEIVER_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx) |
|
self.post_attention_layernorm = Idefics2RMSNorm(self.hidden_size, eps=self.rms_norm_eps) |
|
self.mlp = Idefics2MLP( |
|
hidden_size=config.hidden_size, |
|
intermediate_size=config.hidden_size * 4, |
|
output_size=config.hidden_size, |
|
hidden_act=config.hidden_act, |
|
) |
|
|
|
def forward( |
|
self, |
|
latents: torch.Tensor, |
|
context: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
latents (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
context (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, sequence_length)` where padding elements are indicated by 0. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
""" |
|
residual = latents |
|
|
|
latents = self.input_latents_norm(latents) |
|
context = self.input_context_norm(context) |
|
|
|
latents, self_attn_weights, present_key_value = self.self_attn( |
|
latents=latents, |
|
context=context, |
|
attention_mask=attention_mask, |
|
) |
|
latents = residual + latents |
|
residual = latents |
|
|
|
latents = self.post_attention_layernorm(latents) |
|
latents = self.mlp(latents) |
|
latents = residual + latents |
|
|
|
outputs = (latents,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
class Idefics2Qformer(nn.Module): |
|
|
|
def __init__(self, config) -> None: |
|
""" |
|
Instantiates a Perceiver Resampler that operates over a sequence of embeddings (say from a ResNet or ViT or |
|
MAE) of a given dimension, performs `depth` blocks of cross-attention with a fixed `n_latents` inputs, then |
|
returns a Tensor of shape [bsz, n_latents, embed_dim]. The Resampler acts as a form of learned pooling and |
|
is derived from [Perceiver: General Perception with Iterative Attention](https://arxiv.org/abs/2103.03206). |
|
""" |
|
super().__init__() |
|
config._attn_implementation = "flash_attention_2" |
|
self._use_flash_attention_2 = True |
|
|
|
self.hidden_size = config.hidden_size |
|
self.hidden_act = config.hidden_act |
|
self.n_latents = config.resampler_n_latents |
|
self.depth = config.resampler_depth |
|
self.rms_norm_eps = config.rms_norm_eps |
|
|
|
|
|
self.latents = nn.Parameter(torch.ones(self.n_latents, self.hidden_size)) |
|
|
|
self.layers = nn.ModuleList([Idefics2PerceiverLayer(config, idx) for idx in range(self.depth)]) |
|
self.norm = Idefics2RMSNorm(self.hidden_size, eps=self.rms_norm_eps) |
|
|
|
|
|
|
|
|
|
def forward( |
|
self, |
|
context: torch.Tensor, |
|
attention_mask, |
|
) -> torch.Tensor: |
|
|
|
latents = self.latents.unsqueeze(0).expand((context.shape[0], *self.latents.size())) |
|
|
|
latent_attention_mask = torch.ones( |
|
(attention_mask.size(0), latents.size(1)), dtype=attention_mask.dtype, device=attention_mask.device |
|
) |
|
attention_mask = torch.cat([attention_mask, latent_attention_mask], dim=-1) |
|
attention_mask = ( |
|
_prepare_4d_attention_mask(attention_mask, latents.dtype, tgt_len=self.n_latents) |
|
if not self._use_flash_attention_2 |
|
else attention_mask |
|
) |
|
|
|
compressed_context = latents |
|
|
|
for perceiver_layer in self.layers: |
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
perceiver_layer.__call__, |
|
compressed_context, |
|
context, |
|
attention_mask, |
|
None, |
|
None, |
|
False, |
|
False, |
|
use_reentrant=True) |
|
compressed_context = layer_outputs[0] |
|
|
|
|
|
compressed_context = self.norm(compressed_context) |
|
|
|
return compressed_context |
|
|
|
class Idefics2Connector(PreTrainedModel): |
|
_auto_class = 'AutoModel' |
|
config_class = Idefics2ConnectorConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.modality_projection = Idefics2MLP( |
|
hidden_size=config.vision_hidden_size, |
|
intermediate_size=config.intermediate_size, |
|
output_size=config.hidden_size, |
|
hidden_act=config.hidden_act, |
|
) |
|
self.perceiver_resampler = Idefics2Qformer(config) |
|
self.config = config |
|
|
|
def forward(self, image_hidden_states, attention_mask): |
|
image_hidden_states = self.modality_projection(image_hidden_states) |
|
image_hidden_states = self.perceiver_resampler(context=image_hidden_states, attention_mask=attention_mask) |
|
|
|
vision_hidden_size = image_hidden_states.shape[-1] |
|
num_image = image_hidden_states.shape[0] |
|
reshaped_image_hidden_states = image_hidden_states.view(num_image, -1, vision_hidden_size) |
|
|
|
return reshaped_image_hidden_states |
|
|
|
@classmethod |
|
def from_pretrained(self, config_path): |
|
config = Idefics2ConnectorConfig.from_pretrained(f'{config_path}/config.json') |
|
cls = Idefics2Connector(config=config) |
|
|
|
state_dict = torch.load(f'{config_path}/connector.pth', map_location='cpu') |
|
ret = cls.load_state_dict(state_dict, strict=False) |
|
print("Loading idefics2 Connector from : {}".format(config_path)) |
|
return cls |
|
|