Text Generation
Transformers
Safetensors
mistral
alignment-handbook
Generated from Trainer
text-generation-inference
Inference Endpoints
File size: 16,443 Bytes
0902bde
91322ed
 
 
 
 
 
 
 
 
 
0902bde
91322ed
0c8a4b2
91322ed
0c8a4b2
3f46fb4
 
 
91322ed
 
 
 
 
 
 
 
 
 
 
e16b6d5
e7573d3
3f46fb4
e16b6d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7573d3
91322ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7573d3
8754056
e7573d3
8754056
e7573d3
 
 
8754056
e7573d3
8754056
91322ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8754056
91322ed
8754056
 
 
 
 
 
 
 
 
 
 
 
 
91322ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8754056
91322ed
8754056
91322ed
 
 
8754056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91322ed
8754056
 
 
91322ed
8754056
 
 
 
 
 
 
91322ed
8754056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91322ed
8754056
91322ed
 
 
8754056
 
 
 
 
e16b6d5
 
0c8a4b2
e16b6d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
---
base_model: fblgit/zephyr-lora-dpo-b1
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: juanako-7b-v1
  results: []
license: artistic-2.0
---

# juanako-7b-v1 (UNA: Uniform Neural Alignment)

This model uses uniform neural alignment (UNA) for the DPO training phases and is a fine-tuned version of [fblgit/zephyr-lora-dpo-b1](https://huggingface.co/fblgit/zephyr-lora-dpo-b1) on the HuggingFaceH4/ultrafeedback_binarized dataset.

**It is recommended to use the latest [Juanako Version](https://huggingface.co/fblgit/juanako-7b-UNA) which highly outperforms the v1**

It achieves the following results on the evaluation set:
- Loss: 0.4594
- Rewards/chosen: -1.1095
- Rewards/rejected: -2.3132
- Rewards/accuracies: 0.7964
- Rewards/margins: 1.2037
- Logps/rejected: -220.0052
- Logps/chosen: -217.5506
- Logits/rejected: -2.5535
- Logits/chosen: -2.7973

Followed [alignment-handbook](https://github.com/huggingface/alignment-handbook) to perform DPO (Phase 2) over Zephyr-SFT model.

**Please feel free to run more tests and commit the results. Also if you are interested to participate in [UNA's paper research or GPU sponsorship](mailto:[email protected]) to support UNA research, feel free to contact.**

Special thanks to [TheBloke](https://huggingface.co/TheBloke) for converting the model into multiple formats and overall his enormous contribution to the community.
Here are the models:
* [juanako-7B-v1-AWQ](https://huggingface.co/TheBloke/juanako-7B-v1-AWQ)
* [juanako-7B-v1-GPTQ](https://huggingface.co/TheBloke/juanako-7B-v1-GPTQ)
* [juanako-7B-v1-GGUF](https://huggingface.co/TheBloke/juanako-7B-v1-GGUF)


## Prompt and Inference Usage
```
# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate

import torch
from transformers import pipeline

pipe = pipeline("text-generation", model="fblgit/juanako-7b-v1", torch_dtype=torch.float16, device_map="auto")

# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
    {
        "role": "system",
        "content": "You are a friendly chatbot who always responds in the style of a pirate",
    },
    {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!
```

## Model description

**It seems to outperforms the original Zephyr in most of the tasks.**

I trained Juanako with the same datasets and trainer from [alignment-handbook/zephyr-7b-sft-lora](https://huggingface.co/alignment-handbook/zephyr-7b-sft-lora) 
* 1 epoch on DPO with transformers-UNA, the result is [fblgit/zephyr-lora-dpo-b1](https://huggingface.co/fblgit/zephyr-lora-dpo-b1) after merge using FastChat converter.
* finally 1 epoch on DPO with transformers-UNA to [fblgit/zephyr-lora-dpo-b1](https://huggingface.co/fblgit/zephyr-lora-dpo-b1).

Some other experiments were performed as well to test transformers-UNA capabilities on diverse scenarios and models.

**This is a complete version of the model, the result of converting LoRa's**

## Intended uses & limitations

Research purposes.

## Training and evaluation data

alignment-handbook DPO with UNA on top of the SFT lora.

### Evaluation lm-evaluation-harness

#### GSM8K 5-Shot
```
hf (pretrained=fblgit/juanako-7b-v1,load_in_4bit=False,dtype=float16), limit: None, num_fewshot: 5, batch_size: 4
```
|Tasks|Version|  Filter  |  Metric   |Value |   |Stderr|
|-----|-------|----------|-----------|-----:|---|-----:|
|gsm8k|Yaml   |get-answer|exact_match|0.4761|±  |0.0138|

#### 0-Shot Tests
```
hf (pretrained=fblgit/juanako-7b-v1,load_in_4bit=False,dtype=float16), limit: None, num_fewshot: 0, batch_size: 8
```
|       Tasks       |Version|Filter|  Metric   | Value |   |Stderr|
|-------------------|-------|------|-----------|------:|---|-----:|
|arc_challenge      |Yaml   |none  |acc        | 0.5691|±  |0.0145|
|                   |       |none  |acc_norm   | 0.6041|±  |0.0143|
|arc_easy           |Yaml   |none  |acc        | 0.8363|±  |0.0076|
|                   |       |none  |acc_norm   | 0.8161|±  |0.0079|
|hellaswag          |Yaml   |none  |acc        | 0.6554|±  |0.0047|
|                   |       |none  |acc_norm   | 0.8411|±  |0.0036|
|boolq              |Yaml   |none  |acc        | 0.8355|±  |0.0065|
|lambada            |N/A    |none  |perplexity | 3.3607|±  |0.1398|
|                   |       |none  |acc        | 0.7309|±  |0.0137|
|piqa               |Yaml   |none  |acc        | 0.8194|±  |0.0090|
|                   |       |none  |acc_norm   | 0.8335|±  |0.0087|
|sciq               |Yaml   |none  |acc        | 0.9480|±  |0.0070|
|                   |       |none  |acc_norm   | 0.8960|±  |0.0097|
|truthfulqa         |N/A    |none  |bleu_max   |26.0803|±  |0.6528|
| - truthfulqa_mc1  |Yaml   |none  |acc        | 0.4198|±  |0.0173|
| - truthfulqa_mc2  |Yaml   |none  |acc        | 0.5847|±  |0.0153|
|winogrande         |Yaml   |none  |acc        | 0.7609|±  |0.0120|

```
hf (pretrained=fblgit/juanako-7b-v1,load_in_4bit=False,dtype=float16), limit: None, num_fewshot: 25, batch_size: 1
```
|    Tasks    |Version|Filter| Metric |Value |   |Stderr|
|-------------|-------|------|--------|-----:|---|-----:|
|arc_challenge|Yaml   |none  |acc     |0.6058|±  |0.0143|
|             |       |none  |acc_norm|0.6485|±  |0.0140|

#### HellaSwag 10-Shot
```
hf (pretrained=fblgit/juanako-7b-v1,load_in_4bit=False,dtype=float16), limit: None, num_fewshot: 10, batch_size: 16
```
|  Tasks  |Version|Filter| Metric |Value |   |Stderr|
|---------|-------|------|--------|-----:|---|-----:|
|hellaswag|Yaml   |none  |acc     |0.6582|±  |0.0047|
|         |       |none  |acc_norm|0.8513|±  |0.0036|

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 12
- gradient_accumulation_steps: 16
- total_train_batch_size: 192
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.4966        | 0.15  | 50   | 0.4893          | -1.1759        | -2.2914          | 0.7485             | 1.1155          | -219.7872      | -218.2148    | -2.5450         | -2.7884       |
| 0.4522        | 0.31  | 100  | 0.4808          | -0.8099        | -1.8893          | 0.7784             | 1.0794          | -215.7659      | -214.5544    | -2.5644         | -2.8095       |
| 0.5048        | 0.46  | 150  | 0.4706          | -1.0526        | -2.1412          | 0.7725             | 1.0887          | -218.2852      | -216.9814    | -2.5638         | -2.8089       |
| 0.4853        | 0.62  | 200  | 0.4640          | -1.0787        | -2.2821          | 0.7725             | 1.2034          | -219.6941      | -217.2426    | -2.5460         | -2.7891       |
| 0.4639        | 0.77  | 250  | 0.4636          | -1.2348        | -2.4583          | 0.8084             | 1.2235          | -221.4559      | -218.8034    | -2.5533         | -2.7970       |
| 0.4634        | 0.93  | 300  | 0.4601          | -1.1370        | -2.3243          | 0.7964             | 1.1873          | -220.1163      | -217.8257    | -2.5540         | -2.7977       |
| -             | 1.00  | 300  | 0.4594          | -1.1095        | -2.3132          | 0.7964             | 1.2037          | -220.0052      | -217.5506    | -2.5535         | -2.7973       |

### Framework versions

- Transformers 4.35.0-UNA
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1

## MMLU Results

#### 5-Shot
```
hf (pretrained=fblgit/juanako-7b-v1,load_in_4bit=False,dtype=float16), limit: None, num_fewshot: 5, batch_size: 1
```
|                 Tasks                 |Version|Filter|Metric|Value |   |Stderr|
|---------------------------------------|-------|------|------|-----:|---|-----:|
|mmlu                                   |N/A    |none  |acc   |0.6236|±  |0.1269|
| - humanities                          |N/A    |none  |acc   |0.5651|±  |0.1289|
|  - formal_logic                       |Yaml   |none  |acc   |0.4365|±  |0.0444|
|  - high_school_european_history       |Yaml   |none  |acc   |0.7636|±  |0.0332|
|  - high_school_us_history             |Yaml   |none  |acc   |0.8039|±  |0.0279|
|  - high_school_world_history          |Yaml   |none  |acc   |0.7848|±  |0.0268|
|  - international_law                  |Yaml   |none  |acc   |0.7686|±  |0.0385|
|  - jurisprudence                      |Yaml   |none  |acc   |0.7778|±  |0.0402|
|  - logical_fallacies                  |Yaml   |none  |acc   |0.7853|±  |0.0323|
|  - moral_disputes                     |Yaml   |none  |acc   |0.7168|±  |0.0243|
|  - moral_scenarios                    |Yaml   |none  |acc   |0.3207|±  |0.0156|
|  - philosophy                         |Yaml   |none  |acc   |0.7042|±  |0.0259|
|  - prehistory                         |Yaml   |none  |acc   |0.7593|±  |0.0238|
|  - professional_law                   |Yaml   |none  |acc   |0.4433|±  |0.0127|
|  - world_religions                    |Yaml   |none  |acc   |0.8363|±  |0.0284|
| - other                               |N/A    |none  |acc   |0.6987|±  |0.1048|
|  - business_ethics                    |Yaml   |none  |acc   |0.5800|±  |0.0496|
|  - clinical_knowledge                 |Yaml   |none  |acc   |0.7019|±  |0.0282|
|  - college_medicine                   |Yaml   |none  |acc   |0.6474|±  |0.0364|
|  - global_facts                       |Yaml   |none  |acc   |0.3900|±  |0.0490|
|  - human_aging                        |Yaml   |none  |acc   |0.6502|±  |0.0320|
|  - management                         |Yaml   |none  |acc   |0.7864|±  |0.0406|
|  - marketing                          |Yaml   |none  |acc   |0.8590|±  |0.0228|
|  - medical_genetics                   |Yaml   |none  |acc   |0.7400|±  |0.0441|
|  - miscellaneous                      |Yaml   |none  |acc   |0.8148|±  |0.0139|
|  - nutrition                          |Yaml   |none  |acc   |0.7418|±  |0.0251|
|  - professional_accounting            |Yaml   |none  |acc   |0.4929|±  |0.0298|
|  - professional_medicine              |Yaml   |none  |acc   |0.6618|±  |0.0287|
|  - virology                           |Yaml   |none  |acc   |0.5482|±  |0.0387|
| - social_sciences                     |N/A    |none  |acc   |0.7361|±  |0.0640|
|  - econometrics                       |Yaml   |none  |acc   |0.5000|±  |0.0470|
|  - high_school_geography              |Yaml   |none  |acc   |0.7727|±  |0.0299|
|  - high_school_government_and_politics|Yaml   |none  |acc   |0.8808|±  |0.0234|
|  - high_school_macroeconomics         |Yaml   |none  |acc   |0.6667|±  |0.0239|
|  - high_school_microeconomics         |Yaml   |none  |acc   |0.6597|±  |0.0308|
|  - high_school_psychology             |Yaml   |none  |acc   |0.8202|±  |0.0165|
|  - human_sexuality                    |Yaml   |none  |acc   |0.7939|±  |0.0355|
|  - professional_psychology            |Yaml   |none  |acc   |0.6716|±  |0.0190|
|  - public_relations                   |Yaml   |none  |acc   |0.6636|±  |0.0453|
|  - security_studies                   |Yaml   |none  |acc   |0.7551|±  |0.0275|
|  - sociology                          |Yaml   |none  |acc   |0.8209|±  |0.0271|
|  - us_foreign_policy                  |Yaml   |none  |acc   |0.8300|±  |0.0378|
| - stem                                |N/A    |none  |acc   |0.5268|±  |0.1263|
|  - abstract_algebra                   |Yaml   |none  |acc   |0.3200|±  |0.0469|
|  - anatomy                            |Yaml   |none  |acc   |0.6296|±  |0.0417|
|  - astronomy                          |Yaml   |none  |acc   |0.6645|±  |0.0384|
|  - college_biology                    |Yaml   |none  |acc   |0.7431|±  |0.0365|
|  - college_chemistry                  |Yaml   |none  |acc   |0.4800|±  |0.0502|
|  - college_computer_science           |Yaml   |none  |acc   |0.5200|±  |0.0502|
|  - college_mathematics                |Yaml   |none  |acc   |0.4200|±  |0.0496|
|  - college_physics                    |Yaml   |none  |acc   |0.4510|±  |0.0495|
|  - computer_security                  |Yaml   |none  |acc   |0.7800|±  |0.0416|
|  - conceptual_physics                 |Yaml   |none  |acc   |0.5489|±  |0.0325|
|  - electrical_engineering             |Yaml   |none  |acc   |0.5655|±  |0.0413|
|  - elementary_mathematics             |Yaml   |none  |acc   |0.3915|±  |0.0251|
|  - high_school_biology                |Yaml   |none  |acc   |0.7548|±  |0.0245|
|  - high_school_chemistry              |Yaml   |none  |acc   |0.5222|±  |0.0351|
|  - high_school_computer_science       |Yaml   |none  |acc   |0.6900|±  |0.0465|
|  - high_school_mathematics            |Yaml   |none  |acc   |0.3222|±  |0.0285|
|  - high_school_physics                |Yaml   |none  |acc   |0.3444|±  |0.0388|
|  - high_school_statistics             |Yaml   |none  |acc   |0.5139|±  |0.0341|
|  - machine_learning                   |Yaml   |none  |acc   |0.4643|±  |0.0473|

|      Groups      |Version|Filter|Metric|Value |   |Stderr|
|------------------|-------|------|------|-----:|---|-----:|
|mmlu              |N/A    |none  |acc   |0.6236|±  |0.1269|
| - humanities     |N/A    |none  |acc   |0.5651|±  |0.1289|
| - other          |N/A    |none  |acc   |0.6987|±  |0.1048|
| - social_sciences|N/A    |none  |acc   |0.7361|±  |0.0640|
| - stem           |N/A    |none  |acc   |0.5268|±  |0.1263|

### Citations
Please feel free to raise a PR if there is any missing citation.

@misc{tunstall2023zephyr,
      title={Zephyr: Direct Distillation of LM Alignment}, 
      author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf},
      year={2023},
      eprint={2310.16944},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
@software{eval-harness,
  author       = {Gao, Leo and
                  Tow, Jonathan and
                  Biderman, Stella and
                  Black, Sid and
                  DiPofi, Anthony and
                  Foster, Charles and
                  Golding, Laurence and
                  Hsu, Jeffrey and
                  McDonell, Kyle and
                  Muennighoff, Niklas and
                  Phang, Jason and
                  Reynolds, Laria and
                  Tang, Eric and
                  Thite, Anish and
                  Wang, Ben and
                  Wang, Kevin and
                  Zou, Andy},
  title        = {A framework for few-shot language model evaluation},
  month        = sep,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {v0.0.1},
  doi          = {10.5281/zenodo.5371628},
  url          = {https://doi.org/10.5281/zenodo.5371628}
}
@misc{rafailov2023direct,
    title={Direct Preference Optimization: Your Language Model is Secretly a Reward Model}, 
    author={Rafael Rafailov and Archit Sharma and Eric Mitchell and Stefano Ermon and Christopher D. Manning and Chelsea Finn},
    year={2023},
    eprint={2305.18290},
    archivePrefix={arXiv},
}