File size: 16,443 Bytes
0902bde 91322ed 0902bde 91322ed 0c8a4b2 91322ed 0c8a4b2 3f46fb4 91322ed e16b6d5 e7573d3 3f46fb4 e16b6d5 e7573d3 91322ed e7573d3 8754056 e7573d3 8754056 e7573d3 8754056 e7573d3 8754056 91322ed 8754056 91322ed 8754056 91322ed 8754056 91322ed 8754056 91322ed 8754056 91322ed 8754056 91322ed 8754056 91322ed 8754056 91322ed 8754056 91322ed 8754056 e16b6d5 0c8a4b2 e16b6d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
---
base_model: fblgit/zephyr-lora-dpo-b1
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: juanako-7b-v1
results: []
license: artistic-2.0
---
# juanako-7b-v1 (UNA: Uniform Neural Alignment)
This model uses uniform neural alignment (UNA) for the DPO training phases and is a fine-tuned version of [fblgit/zephyr-lora-dpo-b1](https://huggingface.co/fblgit/zephyr-lora-dpo-b1) on the HuggingFaceH4/ultrafeedback_binarized dataset.
**It is recommended to use the latest [Juanako Version](https://huggingface.co/fblgit/juanako-7b-UNA) which highly outperforms the v1**
It achieves the following results on the evaluation set:
- Loss: 0.4594
- Rewards/chosen: -1.1095
- Rewards/rejected: -2.3132
- Rewards/accuracies: 0.7964
- Rewards/margins: 1.2037
- Logps/rejected: -220.0052
- Logps/chosen: -217.5506
- Logits/rejected: -2.5535
- Logits/chosen: -2.7973
Followed [alignment-handbook](https://github.com/huggingface/alignment-handbook) to perform DPO (Phase 2) over Zephyr-SFT model.
**Please feel free to run more tests and commit the results. Also if you are interested to participate in [UNA's paper research or GPU sponsorship](mailto:[email protected]) to support UNA research, feel free to contact.**
Special thanks to [TheBloke](https://huggingface.co/TheBloke) for converting the model into multiple formats and overall his enormous contribution to the community.
Here are the models:
* [juanako-7B-v1-AWQ](https://huggingface.co/TheBloke/juanako-7B-v1-AWQ)
* [juanako-7B-v1-GPTQ](https://huggingface.co/TheBloke/juanako-7B-v1-GPTQ)
* [juanako-7B-v1-GGUF](https://huggingface.co/TheBloke/juanako-7B-v1-GGUF)
## Prompt and Inference Usage
```
# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="fblgit/juanako-7b-v1", torch_dtype=torch.float16, device_map="auto")
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who always responds in the style of a pirate",
},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!
```
## Model description
**It seems to outperforms the original Zephyr in most of the tasks.**
I trained Juanako with the same datasets and trainer from [alignment-handbook/zephyr-7b-sft-lora](https://huggingface.co/alignment-handbook/zephyr-7b-sft-lora)
* 1 epoch on DPO with transformers-UNA, the result is [fblgit/zephyr-lora-dpo-b1](https://huggingface.co/fblgit/zephyr-lora-dpo-b1) after merge using FastChat converter.
* finally 1 epoch on DPO with transformers-UNA to [fblgit/zephyr-lora-dpo-b1](https://huggingface.co/fblgit/zephyr-lora-dpo-b1).
Some other experiments were performed as well to test transformers-UNA capabilities on diverse scenarios and models.
**This is a complete version of the model, the result of converting LoRa's**
## Intended uses & limitations
Research purposes.
## Training and evaluation data
alignment-handbook DPO with UNA on top of the SFT lora.
### Evaluation lm-evaluation-harness
#### GSM8K 5-Shot
```
hf (pretrained=fblgit/juanako-7b-v1,load_in_4bit=False,dtype=float16), limit: None, num_fewshot: 5, batch_size: 4
```
|Tasks|Version| Filter | Metric |Value | |Stderr|
|-----|-------|----------|-----------|-----:|---|-----:|
|gsm8k|Yaml |get-answer|exact_match|0.4761|± |0.0138|
#### 0-Shot Tests
```
hf (pretrained=fblgit/juanako-7b-v1,load_in_4bit=False,dtype=float16), limit: None, num_fewshot: 0, batch_size: 8
```
| Tasks |Version|Filter| Metric | Value | |Stderr|
|-------------------|-------|------|-----------|------:|---|-----:|
|arc_challenge |Yaml |none |acc | 0.5691|± |0.0145|
| | |none |acc_norm | 0.6041|± |0.0143|
|arc_easy |Yaml |none |acc | 0.8363|± |0.0076|
| | |none |acc_norm | 0.8161|± |0.0079|
|hellaswag |Yaml |none |acc | 0.6554|± |0.0047|
| | |none |acc_norm | 0.8411|± |0.0036|
|boolq |Yaml |none |acc | 0.8355|± |0.0065|
|lambada |N/A |none |perplexity | 3.3607|± |0.1398|
| | |none |acc | 0.7309|± |0.0137|
|piqa |Yaml |none |acc | 0.8194|± |0.0090|
| | |none |acc_norm | 0.8335|± |0.0087|
|sciq |Yaml |none |acc | 0.9480|± |0.0070|
| | |none |acc_norm | 0.8960|± |0.0097|
|truthfulqa |N/A |none |bleu_max |26.0803|± |0.6528|
| - truthfulqa_mc1 |Yaml |none |acc | 0.4198|± |0.0173|
| - truthfulqa_mc2 |Yaml |none |acc | 0.5847|± |0.0153|
|winogrande |Yaml |none |acc | 0.7609|± |0.0120|
```
hf (pretrained=fblgit/juanako-7b-v1,load_in_4bit=False,dtype=float16), limit: None, num_fewshot: 25, batch_size: 1
```
| Tasks |Version|Filter| Metric |Value | |Stderr|
|-------------|-------|------|--------|-----:|---|-----:|
|arc_challenge|Yaml |none |acc |0.6058|± |0.0143|
| | |none |acc_norm|0.6485|± |0.0140|
#### HellaSwag 10-Shot
```
hf (pretrained=fblgit/juanako-7b-v1,load_in_4bit=False,dtype=float16), limit: None, num_fewshot: 10, batch_size: 16
```
| Tasks |Version|Filter| Metric |Value | |Stderr|
|---------|-------|------|--------|-----:|---|-----:|
|hellaswag|Yaml |none |acc |0.6582|± |0.0047|
| | |none |acc_norm|0.8513|± |0.0036|
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 12
- gradient_accumulation_steps: 16
- total_train_batch_size: 192
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.4966 | 0.15 | 50 | 0.4893 | -1.1759 | -2.2914 | 0.7485 | 1.1155 | -219.7872 | -218.2148 | -2.5450 | -2.7884 |
| 0.4522 | 0.31 | 100 | 0.4808 | -0.8099 | -1.8893 | 0.7784 | 1.0794 | -215.7659 | -214.5544 | -2.5644 | -2.8095 |
| 0.5048 | 0.46 | 150 | 0.4706 | -1.0526 | -2.1412 | 0.7725 | 1.0887 | -218.2852 | -216.9814 | -2.5638 | -2.8089 |
| 0.4853 | 0.62 | 200 | 0.4640 | -1.0787 | -2.2821 | 0.7725 | 1.2034 | -219.6941 | -217.2426 | -2.5460 | -2.7891 |
| 0.4639 | 0.77 | 250 | 0.4636 | -1.2348 | -2.4583 | 0.8084 | 1.2235 | -221.4559 | -218.8034 | -2.5533 | -2.7970 |
| 0.4634 | 0.93 | 300 | 0.4601 | -1.1370 | -2.3243 | 0.7964 | 1.1873 | -220.1163 | -217.8257 | -2.5540 | -2.7977 |
| - | 1.00 | 300 | 0.4594 | -1.1095 | -2.3132 | 0.7964 | 1.2037 | -220.0052 | -217.5506 | -2.5535 | -2.7973 |
### Framework versions
- Transformers 4.35.0-UNA
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1
## MMLU Results
#### 5-Shot
```
hf (pretrained=fblgit/juanako-7b-v1,load_in_4bit=False,dtype=float16), limit: None, num_fewshot: 5, batch_size: 1
```
| Tasks |Version|Filter|Metric|Value | |Stderr|
|---------------------------------------|-------|------|------|-----:|---|-----:|
|mmlu |N/A |none |acc |0.6236|± |0.1269|
| - humanities |N/A |none |acc |0.5651|± |0.1289|
| - formal_logic |Yaml |none |acc |0.4365|± |0.0444|
| - high_school_european_history |Yaml |none |acc |0.7636|± |0.0332|
| - high_school_us_history |Yaml |none |acc |0.8039|± |0.0279|
| - high_school_world_history |Yaml |none |acc |0.7848|± |0.0268|
| - international_law |Yaml |none |acc |0.7686|± |0.0385|
| - jurisprudence |Yaml |none |acc |0.7778|± |0.0402|
| - logical_fallacies |Yaml |none |acc |0.7853|± |0.0323|
| - moral_disputes |Yaml |none |acc |0.7168|± |0.0243|
| - moral_scenarios |Yaml |none |acc |0.3207|± |0.0156|
| - philosophy |Yaml |none |acc |0.7042|± |0.0259|
| - prehistory |Yaml |none |acc |0.7593|± |0.0238|
| - professional_law |Yaml |none |acc |0.4433|± |0.0127|
| - world_religions |Yaml |none |acc |0.8363|± |0.0284|
| - other |N/A |none |acc |0.6987|± |0.1048|
| - business_ethics |Yaml |none |acc |0.5800|± |0.0496|
| - clinical_knowledge |Yaml |none |acc |0.7019|± |0.0282|
| - college_medicine |Yaml |none |acc |0.6474|± |0.0364|
| - global_facts |Yaml |none |acc |0.3900|± |0.0490|
| - human_aging |Yaml |none |acc |0.6502|± |0.0320|
| - management |Yaml |none |acc |0.7864|± |0.0406|
| - marketing |Yaml |none |acc |0.8590|± |0.0228|
| - medical_genetics |Yaml |none |acc |0.7400|± |0.0441|
| - miscellaneous |Yaml |none |acc |0.8148|± |0.0139|
| - nutrition |Yaml |none |acc |0.7418|± |0.0251|
| - professional_accounting |Yaml |none |acc |0.4929|± |0.0298|
| - professional_medicine |Yaml |none |acc |0.6618|± |0.0287|
| - virology |Yaml |none |acc |0.5482|± |0.0387|
| - social_sciences |N/A |none |acc |0.7361|± |0.0640|
| - econometrics |Yaml |none |acc |0.5000|± |0.0470|
| - high_school_geography |Yaml |none |acc |0.7727|± |0.0299|
| - high_school_government_and_politics|Yaml |none |acc |0.8808|± |0.0234|
| - high_school_macroeconomics |Yaml |none |acc |0.6667|± |0.0239|
| - high_school_microeconomics |Yaml |none |acc |0.6597|± |0.0308|
| - high_school_psychology |Yaml |none |acc |0.8202|± |0.0165|
| - human_sexuality |Yaml |none |acc |0.7939|± |0.0355|
| - professional_psychology |Yaml |none |acc |0.6716|± |0.0190|
| - public_relations |Yaml |none |acc |0.6636|± |0.0453|
| - security_studies |Yaml |none |acc |0.7551|± |0.0275|
| - sociology |Yaml |none |acc |0.8209|± |0.0271|
| - us_foreign_policy |Yaml |none |acc |0.8300|± |0.0378|
| - stem |N/A |none |acc |0.5268|± |0.1263|
| - abstract_algebra |Yaml |none |acc |0.3200|± |0.0469|
| - anatomy |Yaml |none |acc |0.6296|± |0.0417|
| - astronomy |Yaml |none |acc |0.6645|± |0.0384|
| - college_biology |Yaml |none |acc |0.7431|± |0.0365|
| - college_chemistry |Yaml |none |acc |0.4800|± |0.0502|
| - college_computer_science |Yaml |none |acc |0.5200|± |0.0502|
| - college_mathematics |Yaml |none |acc |0.4200|± |0.0496|
| - college_physics |Yaml |none |acc |0.4510|± |0.0495|
| - computer_security |Yaml |none |acc |0.7800|± |0.0416|
| - conceptual_physics |Yaml |none |acc |0.5489|± |0.0325|
| - electrical_engineering |Yaml |none |acc |0.5655|± |0.0413|
| - elementary_mathematics |Yaml |none |acc |0.3915|± |0.0251|
| - high_school_biology |Yaml |none |acc |0.7548|± |0.0245|
| - high_school_chemistry |Yaml |none |acc |0.5222|± |0.0351|
| - high_school_computer_science |Yaml |none |acc |0.6900|± |0.0465|
| - high_school_mathematics |Yaml |none |acc |0.3222|± |0.0285|
| - high_school_physics |Yaml |none |acc |0.3444|± |0.0388|
| - high_school_statistics |Yaml |none |acc |0.5139|± |0.0341|
| - machine_learning |Yaml |none |acc |0.4643|± |0.0473|
| Groups |Version|Filter|Metric|Value | |Stderr|
|------------------|-------|------|------|-----:|---|-----:|
|mmlu |N/A |none |acc |0.6236|± |0.1269|
| - humanities |N/A |none |acc |0.5651|± |0.1289|
| - other |N/A |none |acc |0.6987|± |0.1048|
| - social_sciences|N/A |none |acc |0.7361|± |0.0640|
| - stem |N/A |none |acc |0.5268|± |0.1263|
### Citations
Please feel free to raise a PR if there is any missing citation.
@misc{tunstall2023zephyr,
title={Zephyr: Direct Distillation of LM Alignment},
author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf},
year={2023},
eprint={2310.16944},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@software{eval-harness,
author = {Gao, Leo and
Tow, Jonathan and
Biderman, Stella and
Black, Sid and
DiPofi, Anthony and
Foster, Charles and
Golding, Laurence and
Hsu, Jeffrey and
McDonell, Kyle and
Muennighoff, Niklas and
Phang, Jason and
Reynolds, Laria and
Tang, Eric and
Thite, Anish and
Wang, Ben and
Wang, Kevin and
Zou, Andy},
title = {A framework for few-shot language model evaluation},
month = sep,
year = 2021,
publisher = {Zenodo},
version = {v0.0.1},
doi = {10.5281/zenodo.5371628},
url = {https://doi.org/10.5281/zenodo.5371628}
}
@misc{rafailov2023direct,
title={Direct Preference Optimization: Your Language Model is Secretly a Reward Model},
author={Rafael Rafailov and Archit Sharma and Eric Mitchell and Stefano Ermon and Christopher D. Manning and Chelsea Finn},
year={2023},
eprint={2305.18290},
archivePrefix={arXiv},
} |