File size: 2,837 Bytes
20080c1 349231c 20080c1 349231c 20080c1 349231c 20080c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: mit
base_model: cahya/bert-base-indonesian-NER
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: ner_fine_tuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ner_fine_tuned
This model is a fine-tuned version of [cahya/bert-base-indonesian-NER](https://huggingface.co/cahya/bert-base-indonesian-NER) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0080
- Precision: 0.6970
- Recall: 0.5349
- F1: 0.6053
- Accuracy: 0.8900
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 8 | 0.5649 | 0.625 | 0.4651 | 0.5333 | 0.8832 |
| No log | 2.0 | 16 | 0.6457 | 0.7857 | 0.5116 | 0.6197 | 0.9003 |
| No log | 3.0 | 24 | 0.7181 | 0.6471 | 0.5116 | 0.5714 | 0.8832 |
| No log | 4.0 | 32 | 0.8134 | 0.6970 | 0.5349 | 0.6053 | 0.8900 |
| No log | 5.0 | 40 | 0.8528 | 0.6667 | 0.5116 | 0.5789 | 0.8866 |
| No log | 6.0 | 48 | 0.8893 | 0.6667 | 0.5116 | 0.5789 | 0.8866 |
| No log | 7.0 | 56 | 0.9148 | 0.6667 | 0.5116 | 0.5789 | 0.8866 |
| No log | 8.0 | 64 | 0.9440 | 0.6667 | 0.5116 | 0.5789 | 0.8866 |
| No log | 9.0 | 72 | 0.9744 | 0.6970 | 0.5349 | 0.6053 | 0.8900 |
| No log | 10.0 | 80 | 0.9895 | 0.6765 | 0.5349 | 0.5974 | 0.8900 |
| No log | 11.0 | 88 | 0.9968 | 0.6970 | 0.5349 | 0.6053 | 0.8900 |
| No log | 12.0 | 96 | 1.0015 | 0.6970 | 0.5349 | 0.6053 | 0.8900 |
| No log | 13.0 | 104 | 1.0049 | 0.6970 | 0.5349 | 0.6053 | 0.8900 |
| No log | 14.0 | 112 | 1.0072 | 0.6970 | 0.5349 | 0.6053 | 0.8900 |
| No log | 15.0 | 120 | 1.0080 | 0.6970 | 0.5349 | 0.6053 | 0.8900 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|