excalibur12
commited on
Commit
•
986d56f
1
Parent(s):
efbc11b
End of training
Browse files
README.md
CHANGED
@@ -1,199 +1,92 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
###
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/wav2vec2-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: k2e-20s_asr-scr_w2v2-base_002
|
8 |
+
results: []
|
9 |
---
|
10 |
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# k2e-20s_asr-scr_w2v2-base_002
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 1.4632
|
19 |
+
- Per: 0.1621
|
20 |
+
- Pcc: 0.5775
|
21 |
+
- Ctc Loss: 0.5292
|
22 |
+
- Mse Loss: 0.9318
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 1e-05
|
42 |
+
- train_batch_size: 16
|
43 |
+
- eval_batch_size: 1
|
44 |
+
- seed: 2222
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 2235
|
48 |
+
- training_steps: 22350
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Per | Pcc | Ctc Loss | Mse Loss |
|
54 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:--------:|:--------:|
|
55 |
+
| 43.3938 | 1.0 | 745 | 18.4290 | 0.9890 | 0.1462 | 6.2276 | 12.2287 |
|
56 |
+
| 9.2178 | 2.0 | 1490 | 4.8023 | 0.9890 | 0.4671 | 3.8571 | 0.9719 |
|
57 |
+
| 4.753 | 3.0 | 2235 | 4.7789 | 0.9890 | 0.5587 | 3.7983 | 1.0460 |
|
58 |
+
| 4.5085 | 4.01 | 2980 | 4.4859 | 0.9890 | 0.5896 | 3.6917 | 0.8937 |
|
59 |
+
| 4.2649 | 5.01 | 3725 | 4.2852 | 0.9890 | 0.6067 | 3.6166 | 0.7981 |
|
60 |
+
| 4.0688 | 6.01 | 4470 | 4.2684 | 0.9632 | 0.6001 | 3.5490 | 0.8725 |
|
61 |
+
| 3.9012 | 7.01 | 5215 | 4.3288 | 0.9628 | 0.5973 | 3.5020 | 0.9987 |
|
62 |
+
| 3.6391 | 8.01 | 5960 | 4.2077 | 0.9430 | 0.5765 | 3.1575 | 1.2098 |
|
63 |
+
| 3.0582 | 9.01 | 6705 | 3.4214 | 0.7155 | 0.5656 | 2.3835 | 1.1480 |
|
64 |
+
| 2.3307 | 10.01 | 7450 | 2.4659 | 0.4524 | 0.5672 | 1.6378 | 0.8917 |
|
65 |
+
| 1.7509 | 11.01 | 8195 | 2.3288 | 0.3189 | 0.5824 | 1.1749 | 1.1589 |
|
66 |
+
| 1.3679 | 12.02 | 8940 | 2.0410 | 0.2541 | 0.5669 | 0.9275 | 1.0986 |
|
67 |
+
| 1.1463 | 13.02 | 9685 | 1.8387 | 0.2238 | 0.5714 | 0.8029 | 1.0158 |
|
68 |
+
| 1.013 | 14.02 | 10430 | 1.6558 | 0.2068 | 0.5635 | 0.7253 | 0.9141 |
|
69 |
+
| 0.912 | 15.02 | 11175 | 1.6381 | 0.1992 | 0.5530 | 0.6788 | 0.9381 |
|
70 |
+
| 0.8321 | 16.02 | 11920 | 1.8336 | 0.1908 | 0.5660 | 0.6407 | 1.1459 |
|
71 |
+
| 0.7676 | 17.02 | 12665 | 1.6002 | 0.1819 | 0.5851 | 0.6197 | 0.9574 |
|
72 |
+
| 0.7186 | 18.02 | 13410 | 1.6110 | 0.1807 | 0.5562 | 0.5981 | 0.9870 |
|
73 |
+
| 0.6707 | 19.03 | 14155 | 1.6138 | 0.1748 | 0.5735 | 0.5827 | 1.0041 |
|
74 |
+
| 0.6362 | 20.03 | 14900 | 1.5090 | 0.1729 | 0.5706 | 0.5688 | 0.9264 |
|
75 |
+
| 0.6016 | 21.03 | 15645 | 1.5540 | 0.1698 | 0.5742 | 0.5619 | 0.9732 |
|
76 |
+
| 0.5724 | 22.03 | 16390 | 1.5076 | 0.1686 | 0.5846 | 0.5517 | 0.9435 |
|
77 |
+
| 0.5434 | 23.03 | 17135 | 1.4442 | 0.1676 | 0.5753 | 0.5443 | 0.8970 |
|
78 |
+
| 0.5272 | 24.03 | 17880 | 1.4617 | 0.1656 | 0.5699 | 0.5409 | 0.9165 |
|
79 |
+
| 0.5119 | 25.03 | 18625 | 1.4886 | 0.1642 | 0.5654 | 0.5400 | 0.9414 |
|
80 |
+
| 0.4963 | 26.03 | 19370 | 1.4959 | 0.1644 | 0.5751 | 0.5342 | 0.9534 |
|
81 |
+
| 0.4882 | 27.04 | 20115 | 1.4686 | 0.1634 | 0.5711 | 0.5320 | 0.9329 |
|
82 |
+
| 0.4697 | 28.04 | 20860 | 1.4663 | 0.1627 | 0.5730 | 0.5302 | 0.9330 |
|
83 |
+
| 0.4604 | 29.04 | 21605 | 1.4417 | 0.1623 | 0.5782 | 0.5293 | 0.9134 |
|
84 |
+
| 0.4536 | 30.04 | 22350 | 1.4632 | 0.1621 | 0.5775 | 0.5292 | 0.9318 |
|
85 |
+
|
86 |
+
|
87 |
+
### Framework versions
|
88 |
+
|
89 |
+
- Transformers 4.38.1
|
90 |
+
- Pytorch 2.0.1
|
91 |
+
- Datasets 2.16.1
|
92 |
+
- Tokenizers 0.15.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
events.out.tfevents.1719354131.oem-WS-C621E-SAGE-Series.4147427.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:367f617e48ad27680bd0c378034654c0fcd5b4e1bd172d2998f4d97125efb6d7
|
3 |
+
size 27300
|