|
import math |
|
|
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
import torch |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.utils import BaseOutput |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput |
|
|
|
@dataclass |
|
class SdeVeOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's `step` function output. |
|
Args: |
|
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
prev_sample_mean (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Mean averaged `prev_sample` over previous timesteps. |
|
""" |
|
|
|
prev_sample: torch.FloatTensor |
|
prev_sample_mean: torch.FloatTensor |
|
|
|
|
|
class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
`ScoreSdeVeScheduler` is a variance exploding stochastic differential equation (SDE) scheduler. |
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic |
|
methods the library implements for all schedulers such as loading and saving. |
|
Args: |
|
num_train_timesteps (`int`, defaults to 1000): |
|
The number of diffusion steps to train the model. |
|
snr (`float`, defaults to 0.15): |
|
A coefficient weighting the step from the `model_output` sample (from the network) to the random noise. |
|
sigma_min (`float`, defaults to 0.01): |
|
The initial noise scale for the sigma sequence in the sampling procedure. The minimum sigma should mirror |
|
the distribution of the data. |
|
sigma_max (`float`, defaults to 1348.0): |
|
The maximum value used for the range of continuous timesteps passed into the model. |
|
sampling_eps (`float`, defaults to 1e-5): |
|
The end value of sampling where timesteps decrease progressively from 1 to epsilon. |
|
correct_steps (`int`, defaults to 1): |
|
The number of correction steps performed on a produced sample. |
|
""" |
|
|
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 2000, |
|
snr: float = 0.15, |
|
sigma_min: float = 0.01, |
|
sigma_max: float = 1348.0, |
|
sampling_eps: float = 1e-5, |
|
correct_steps: int = 1, |
|
): |
|
|
|
self.init_noise_sigma = sigma_max |
|
|
|
|
|
self.timesteps = None |
|
|
|
self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps) |
|
|
|
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor: |
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. |
|
Args: |
|
sample (`torch.FloatTensor`): |
|
The input sample. |
|
timestep (`int`, *optional*): |
|
The current timestep in the diffusion chain. |
|
Returns: |
|
`torch.FloatTensor`: |
|
A scaled input sample. |
|
""" |
|
return sample |
|
|
|
def set_timesteps( |
|
self, num_inference_steps: int, sampling_eps: float = None, device: Union[str, torch.device] = None |
|
): |
|
""" |
|
Sets the continuous timesteps used for the diffusion chain (to be run before inference). |
|
Args: |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. |
|
sampling_eps (`float`, *optional*): |
|
The final timestep value (overrides value given during scheduler instantiation). |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
""" |
|
sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps |
|
|
|
self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps, device=device) |
|
|
|
def set_sigmas( |
|
self, num_inference_steps: int, sigma_min: float = None, sigma_max: float = None, sampling_eps: float = None |
|
): |
|
""" |
|
Sets the noise scales used for the diffusion chain (to be run before inference). The sigmas control the weight |
|
of the `drift` and `diffusion` components of the sample update. |
|
Args: |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. |
|
sigma_min (`float`, optional): |
|
The initial noise scale value (overrides value given during scheduler instantiation). |
|
sigma_max (`float`, optional): |
|
The final noise scale value (overrides value given during scheduler instantiation). |
|
sampling_eps (`float`, optional): |
|
The final timestep value (overrides value given during scheduler instantiation). |
|
""" |
|
sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min |
|
sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max |
|
sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps |
|
if self.timesteps is None: |
|
self.set_timesteps(num_inference_steps, sampling_eps) |
|
|
|
self.sigmas = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) |
|
self.discrete_sigmas = torch.exp(torch.linspace(math.log(sigma_min), math.log(sigma_max), num_inference_steps)) |
|
self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) |
|
|
|
def get_adjacent_sigma(self, timesteps, t): |
|
return torch.where( |
|
timesteps == 0, |
|
torch.zeros_like(t.to(timesteps.device)), |
|
self.discrete_sigmas[timesteps - 1].to(timesteps.device), |
|
) |
|
|
|
def step_pred( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: int, |
|
sample: torch.FloatTensor, |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
) -> Union[SdeVeOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`int`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`. |
|
Returns: |
|
[`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_sde_ve.SdeVeOutput`] is returned, otherwise a tuple |
|
is returned where the first element is the sample tensor. |
|
""" |
|
if self.timesteps is None: |
|
raise ValueError( |
|
"`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
timestep = timestep * torch.ones( |
|
sample.shape[0], device=sample.device |
|
) |
|
timesteps = (timestep * (len(self.timesteps) - 1)).long() |
|
|
|
|
|
timesteps = timesteps.to(self.discrete_sigmas.device) |
|
|
|
sigma = self.discrete_sigmas[timesteps].to(sample.device) |
|
adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep).to(sample.device) |
|
drift = torch.zeros_like(sample) |
|
diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5 |
|
|
|
|
|
|
|
diffusion = diffusion.flatten() |
|
while len(diffusion.shape) < len(sample.shape): |
|
diffusion = diffusion.unsqueeze(-1) |
|
drift = drift - diffusion**2 * model_output |
|
|
|
|
|
noise = randn_tensor( |
|
sample.shape, layout=sample.layout, generator=generator, device=sample.device, dtype=sample.dtype |
|
) |
|
prev_sample_mean = sample - drift |
|
|
|
prev_sample = prev_sample_mean + diffusion * noise |
|
|
|
if not return_dict: |
|
return (prev_sample, prev_sample_mean) |
|
|
|
return SdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean) |
|
|
|
def step_correct( |
|
self, |
|
model_output: torch.FloatTensor, |
|
sample: torch.FloatTensor, |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
) -> Union[SchedulerOutput, Tuple]: |
|
""" |
|
Correct the predicted sample based on the `model_output` of the network. This is often run repeatedly after |
|
making the prediction for the previous timestep. |
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from learned diffusion model. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`. |
|
Returns: |
|
[`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_sde_ve.SdeVeOutput`] is returned, otherwise a tuple |
|
is returned where the first element is the sample tensor. |
|
""" |
|
if self.timesteps is None: |
|
raise ValueError( |
|
"`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
|
|
|
|
noise = randn_tensor(sample.shape, layout=sample.layout, generator=generator, device=sample.device).to(sample.device) |
|
|
|
|
|
grad_norm = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean() |
|
noise_norm = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() |
|
step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 |
|
step_size = step_size * torch.ones(sample.shape[0]).to(sample.device) |
|
|
|
|
|
|
|
step_size = step_size.flatten() |
|
while len(step_size.shape) < len(sample.shape): |
|
step_size = step_size.unsqueeze(-1) |
|
prev_sample_mean = sample + step_size * model_output |
|
prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5) * noise |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return SchedulerOutput(prev_sample=prev_sample) |
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.FloatTensor, |
|
noise: torch.FloatTensor, |
|
timesteps: torch.FloatTensor, |
|
) -> torch.FloatTensor: |
|
|
|
timesteps = timesteps.to(original_samples.device) |
|
sigmas = self.config.sigma_min * (self.config.sigma_max / self.config.sigma_min) ** timesteps |
|
noise = ( |
|
noise * sigmas[:, None, None, None] |
|
if noise is not None |
|
else torch.randn_like(original_samples) * sigmas[:, None, None, None] |
|
) |
|
noisy_samples = noise + original_samples |
|
return noisy_samples |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |