Create pipeline.py
Browse files- pipeline.py +211 -0
pipeline.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Union, List, Tuple, Callable
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from diffusers.utils.torch_utils import randn_tensor
|
5 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
6 |
+
|
7 |
+
class KarrasEDMConditionalPipeline(DiffusionPipeline):
|
8 |
+
r"""
|
9 |
+
Pipeline for unconditional or class-conditional image generation based on the EDM model from [1].
|
10 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
11 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
12 |
+
[1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
|
13 |
+
https://arxiv.org/abs/2206.00364
|
14 |
+
Args:
|
15 |
+
unet ([`UNet2DModel`]):
|
16 |
+
A `UNet2DModel` to denoise the encoded image latents.
|
17 |
+
scheduler ([`SchedulerMixin`]):
|
18 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Currently only
|
19 |
+
supports KarrasEDMScheduler.
|
20 |
+
"""
|
21 |
+
|
22 |
+
model_cpu_offload_seq = "unet"
|
23 |
+
|
24 |
+
def __init__(self, unet, scheduler) -> None:
|
25 |
+
super().__init__()
|
26 |
+
|
27 |
+
self.register_modules(
|
28 |
+
unet=unet,
|
29 |
+
scheduler=scheduler,
|
30 |
+
)
|
31 |
+
|
32 |
+
self.safety_checker = None
|
33 |
+
|
34 |
+
def prepare_latents(self, batch_size, num_channels, height, width, dtype, device, generator, latents=None):
|
35 |
+
shape = (batch_size, num_channels, height, width)
|
36 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
37 |
+
raise ValueError(
|
38 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
39 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
40 |
+
)
|
41 |
+
|
42 |
+
if latents is None:
|
43 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
44 |
+
else:
|
45 |
+
latents = latents.to(device=device, dtype=dtype)
|
46 |
+
|
47 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
48 |
+
latents = latents * self.scheduler.init_noise_sigma
|
49 |
+
return latents
|
50 |
+
|
51 |
+
# Follows diffusers.VaeImageProcessor.postprocess
|
52 |
+
def postprocess_image(self, sample: torch.FloatTensor, output_type: str = "pil"):
|
53 |
+
if output_type not in ["pt", "np", "pil"]:
|
54 |
+
raise ValueError(
|
55 |
+
f"output_type={output_type} is not supported. Make sure to choose one of ['pt', 'np', or 'pil']"
|
56 |
+
)
|
57 |
+
|
58 |
+
# Equivalent to diffusers.VaeImageProcessor.denormalize
|
59 |
+
sample = (sample / 2 + 0.5).clamp(0, 1)
|
60 |
+
if output_type == "pt":
|
61 |
+
return sample
|
62 |
+
|
63 |
+
# Equivalent to diffusers.VaeImageProcessor.pt_to_numpy
|
64 |
+
sample = sample.cpu().permute(0, 2, 3, 1).numpy()
|
65 |
+
if output_type == "np":
|
66 |
+
return sample
|
67 |
+
|
68 |
+
# Output_type must be 'pil'
|
69 |
+
sample = self.numpy_to_pil(sample)
|
70 |
+
return sample
|
71 |
+
|
72 |
+
def check_inputs(self, num_inference_steps, timesteps, latents, batch_size, img_size, callback_steps):
|
73 |
+
if num_inference_steps is None and timesteps is None:
|
74 |
+
raise ValueError("Exactly one of `num_inference_steps` or `timesteps` must be supplied.")
|
75 |
+
|
76 |
+
if num_inference_steps is not None and timesteps is not None:
|
77 |
+
logger.warning(
|
78 |
+
f"Both `num_inference_steps`: {num_inference_steps} and `timesteps`: {timesteps} are supplied;"
|
79 |
+
" `timesteps` will be used over `num_inference_steps`."
|
80 |
+
)
|
81 |
+
|
82 |
+
if latents is not None:
|
83 |
+
expected_shape = (batch_size, 3, img_size, img_size)
|
84 |
+
if latents.shape != expected_shape:
|
85 |
+
raise ValueError(f"The shape of latents is {latents.shape} but is expected to be {expected_shape}.")
|
86 |
+
|
87 |
+
if (callback_steps is None) or (
|
88 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
89 |
+
):
|
90 |
+
raise ValueError(
|
91 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
92 |
+
f" {type(callback_steps)}."
|
93 |
+
)
|
94 |
+
|
95 |
+
@torch.no_grad()
|
96 |
+
def __call__(
|
97 |
+
self,
|
98 |
+
batch_size: int = 1,
|
99 |
+
num_inference_steps: int = 1,
|
100 |
+
timesteps: List[int] = None,
|
101 |
+
class_labels: Optional[torch.Tensor] = None,
|
102 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
103 |
+
latents: Optional[torch.FloatTensor] = None,
|
104 |
+
output_type: Optional[str] = "pil",
|
105 |
+
return_dict: bool = True,
|
106 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
107 |
+
callback_steps: int = 1,
|
108 |
+
):
|
109 |
+
r"""
|
110 |
+
Args:
|
111 |
+
batch_size (`int`, *optional*, defaults to 1):
|
112 |
+
The number of images to generate.
|
113 |
+
class_labels (`torch.Tensor` or `List[int]` or `int`, *optional*):
|
114 |
+
Optional class labels for conditioning class-conditional consistency models. Not used if the model is
|
115 |
+
not class-conditional.
|
116 |
+
num_inference_steps (`int`, *optional*, defaults to 1):
|
117 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
118 |
+
expense of slower inference.
|
119 |
+
timesteps (`List[int]`, *optional*):
|
120 |
+
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
|
121 |
+
timesteps are used. Must be in descending order.
|
122 |
+
generator (`torch.Generator`, *optional*):
|
123 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
124 |
+
generation deterministic.
|
125 |
+
latents (`torch.FloatTensor`, *optional*):
|
126 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
127 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
128 |
+
tensor is generated by sampling using the supplied random `generator`.
|
129 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
130 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
131 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
132 |
+
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
|
133 |
+
callback (`Callable`, *optional*):
|
134 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
135 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
136 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
137 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
138 |
+
every step.
|
139 |
+
Examples:
|
140 |
+
Returns:
|
141 |
+
[`~pipelines.ImagePipelineOutput`] or `tuple`:
|
142 |
+
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
|
143 |
+
returned where the first element is a list with the generated images.
|
144 |
+
"""
|
145 |
+
# 0. Prepare call parameters
|
146 |
+
img_size = self.unet.config.sample_size
|
147 |
+
device = self._execution_device
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
# 2. Prepare image latents
|
152 |
+
# Sample image latents x_0 ~ N(0, sigma_0^2 * I)
|
153 |
+
sample = self.prepare_latents(
|
154 |
+
batch_size=batch_size,
|
155 |
+
num_channels=self.unet.config.in_channels,
|
156 |
+
height=img_size,
|
157 |
+
width=img_size,
|
158 |
+
dtype=self.unet.dtype,
|
159 |
+
device=device,
|
160 |
+
generator=generator,
|
161 |
+
latents=latents,
|
162 |
+
)
|
163 |
+
|
164 |
+
# 4. Prepare timesteps
|
165 |
+
if timesteps is not None:
|
166 |
+
self.scheduler.set_timesteps(timesteps=timesteps, device=device)
|
167 |
+
timesteps = self.scheduler.timesteps
|
168 |
+
num_inference_steps = len(timesteps)
|
169 |
+
else:
|
170 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
171 |
+
timesteps = self.scheduler.timesteps
|
172 |
+
|
173 |
+
# 5. Denoising loop
|
174 |
+
# Implements the "EDM" column in Table 1 of the EDM paper
|
175 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
176 |
+
|
177 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
178 |
+
for i, t in enumerate(timesteps):
|
179 |
+
# 1. Add noise (if necessary) and precondition the input sample.
|
180 |
+
scaled_sample = self.scheduler.scale_model_input(sample, t)
|
181 |
+
|
182 |
+
if self.scheduler.step_index is None:
|
183 |
+
self.scheduler._init_step_index(t)
|
184 |
+
|
185 |
+
sigma = self.scheduler.sigmas[self.scheduler.step_index]
|
186 |
+
|
187 |
+
sigma_input = self.scheduler.precondition_noise(sigma)
|
188 |
+
|
189 |
+
# 2. Evaluate neural network at higher noise level (sample_hat, sigma_hat).
|
190 |
+
model_output = self.unet(scaled_sample, sigma_input.squeeze(), class_labels, return_dict=False)[0]
|
191 |
+
|
192 |
+
# 3. Apply output preconditioning on model_output to get denoiser output
|
193 |
+
# 4. Take either a first order (Euler) step or second order (Heun) step
|
194 |
+
sample = self.scheduler.step(model_output, t, sample).prev_sample
|
195 |
+
|
196 |
+
# call the callback, if provided
|
197 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
198 |
+
progress_bar.update()
|
199 |
+
if callback is not None and i % callback_steps == 0:
|
200 |
+
callback(i, t, latents)
|
201 |
+
|
202 |
+
# 6. Post-process image sample
|
203 |
+
image = self.postprocess_image(sample, output_type=output_type)
|
204 |
+
|
205 |
+
# Offload all models
|
206 |
+
self.maybe_free_model_hooks()
|
207 |
+
|
208 |
+
if not return_dict:
|
209 |
+
return (image,)
|
210 |
+
|
211 |
+
return ImagePipelineOutput(images=image)
|