CifNetForImageClassification( (resnet): CifNetModel( (embedder): CifNetEmbeddings( (embedder): CifNetConvLayer( (convolution): Conv2d(3, 32, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (pooler): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) ) (encoder): CifNetEncoder( (stages): ModuleList( (0): CifNetStage( (layers): Sequential( (0): CifNetBasicLayer( (shortcut): CifNetShortCut( (convolution): Conv2d(32, 64, kernel_size=(1, 1), stride=(2, 2), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) ) ) (1): CifNetStage( (layers): Sequential( (0): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (1): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) ) ) (2): CifNetStage( (layers): Sequential( (0): CifNetBasicLayer( (shortcut): CifNetShortCut( (convolution): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False) (normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (1): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) ) ) (3): CifNetStage( (layers): Sequential( (0): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (1): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) ) ) ) ) (pooler): AdaptiveAvgPool2d(output_size=(1, 1)) ) (classifier): Sequential( (0): Flatten(start_dim=1, end_dim=-1) (1): Linear(in_features=128, out_features=10, bias=True) ) ) ---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [4, 32, 112, 112] 4,704 BatchNorm2d-2 [4, 32, 112, 112] 64 SiLU-3 [4, 32, 112, 112] 0 CifNetConvLayer-4 [4, 32, 112, 112] 0 MaxPool2d-5 [4, 32, 56, 56] 0 CifNetEmbeddings-6 [4, 32, 56, 56] 0 Conv2d-7 [4, 64, 28, 28] 18,432 BatchNorm2d-8 [4, 64, 28, 28] 128 SiLU-9 [4, 64, 28, 28] 0 CifNetConvLayer-10 [4, 64, 28, 28] 0 Conv2d-11 [4, 64, 28, 28] 36,864 BatchNorm2d-12 [4, 64, 28, 28] 128 SiLU-13 [4, 64, 28, 28] 0 CifNetConvLayer-14 [4, 64, 28, 28] 0 Conv2d-15 [4, 64, 28, 28] 2,048 BatchNorm2d-16 [4, 64, 28, 28] 128 CifNetShortCut-17 [4, 64, 28, 28] 0 CifNetBasicLayer-18 [4, 64, 28, 28] 0 CifNetStage-19 [4, 64, 28, 28] 0 Conv2d-20 [4, 64, 28, 28] 36,864 BatchNorm2d-21 [4, 64, 28, 28] 128 SiLU-22 [4, 64, 28, 28] 0 CifNetConvLayer-23 [4, 64, 28, 28] 0 Conv2d-24 [4, 64, 28, 28] 36,864 BatchNorm2d-25 [4, 64, 28, 28] 128 SiLU-26 [4, 64, 28, 28] 0 CifNetConvLayer-27 [4, 64, 28, 28] 0 Identity-28 [4, 64, 28, 28] 0 CifNetBasicLayer-29 [4, 64, 28, 28] 0 Conv2d-30 [4, 64, 28, 28] 36,864 BatchNorm2d-31 [4, 64, 28, 28] 128 SiLU-32 [4, 64, 28, 28] 0 CifNetConvLayer-33 [4, 64, 28, 28] 0 Conv2d-34 [4, 64, 28, 28] 36,864 BatchNorm2d-35 [4, 64, 28, 28] 128 SiLU-36 [4, 64, 28, 28] 0 CifNetConvLayer-37 [4, 64, 28, 28] 0 Identity-38 [4, 64, 28, 28] 0 CifNetBasicLayer-39 [4, 64, 28, 28] 0 CifNetStage-40 [4, 64, 28, 28] 0 Conv2d-41 [4, 128, 14, 14] 73,728 BatchNorm2d-42 [4, 128, 14, 14] 256 SiLU-43 [4, 128, 14, 14] 0 CifNetConvLayer-44 [4, 128, 14, 14] 0 Conv2d-45 [4, 128, 14, 14] 147,456 BatchNorm2d-46 [4, 128, 14, 14] 256 SiLU-47 [4, 128, 14, 14] 0 CifNetConvLayer-48 [4, 128, 14, 14] 0 Conv2d-49 [4, 128, 14, 14] 8,192 BatchNorm2d-50 [4, 128, 14, 14] 256 CifNetShortCut-51 [4, 128, 14, 14] 0 CifNetBasicLayer-52 [4, 128, 14, 14] 0 Conv2d-53 [4, 128, 14, 14] 147,456 BatchNorm2d-54 [4, 128, 14, 14] 256 SiLU-55 [4, 128, 14, 14] 0 CifNetConvLayer-56 [4, 128, 14, 14] 0 Conv2d-57 [4, 128, 14, 14] 147,456 BatchNorm2d-58 [4, 128, 14, 14] 256 SiLU-59 [4, 128, 14, 14] 0 CifNetConvLayer-60 [4, 128, 14, 14] 0 Identity-61 [4, 128, 14, 14] 0 CifNetBasicLayer-62 [4, 128, 14, 14] 0 CifNetStage-63 [4, 128, 14, 14] 0 Conv2d-64 [4, 128, 14, 14] 147,456 BatchNorm2d-65 [4, 128, 14, 14] 256 SiLU-66 [4, 128, 14, 14] 0 CifNetConvLayer-67 [4, 128, 14, 14] 0 Conv2d-68 [4, 128, 14, 14] 147,456 BatchNorm2d-69 [4, 128, 14, 14] 256 SiLU-70 [4, 128, 14, 14] 0 CifNetConvLayer-71 [4, 128, 14, 14] 0 Identity-72 [4, 128, 14, 14] 0 CifNetBasicLayer-73 [4, 128, 14, 14] 0 Conv2d-74 [4, 128, 14, 14] 147,456 BatchNorm2d-75 [4, 128, 14, 14] 256 SiLU-76 [4, 128, 14, 14] 0 CifNetConvLayer-77 [4, 128, 14, 14] 0 Conv2d-78 [4, 128, 14, 14] 147,456 BatchNorm2d-79 [4, 128, 14, 14] 256 SiLU-80 [4, 128, 14, 14] 0 CifNetConvLayer-81 [4, 128, 14, 14] 0 Identity-82 [4, 128, 14, 14] 0 CifNetBasicLayer-83 [4, 128, 14, 14] 0 CifNetStage-84 [4, 128, 14, 14] 0 CifNetEncoder-85 [[-1, 128, 14, 14]] 0 AdaptiveAvgPool2d-86 [4, 128, 1, 1] 0 CifNetModel-87 [[-1, 128, 14, 14], [-1, 128, 1, 1]] 0 Flatten-88 [4, 128] 0 Linear-89 [4, 10] 1,290 ================================================================ Total params: 1,328,170 Trainable params: 1,328,170 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 2.30 Forward/backward pass size (MB): 165.19 Params size (MB): 5.07 Estimated Total Size (MB): 172.56 ----------------------------------------------------------------