CifNetForImageClassification( (resnet): CifNetModel( (embedder): CifNetEmbeddings( (embedder): CifNetConvLayer( (convolution): Conv2d(3, 16, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (pooler): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) ) (encoder): CifNetEncoder( (stages): ModuleList( (0): CifNetStage( (layers): Sequential( (0): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (1): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (2): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (3): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (4): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (5): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (6): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (7): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (8): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (9): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (10): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (11): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (12): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (13): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (14): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (15): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (16): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (17): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) ) ) (1): CifNetStage( (layers): Sequential( (0): CifNetBasicLayer( (shortcut): CifNetShortCut( (convolution): Conv2d(16, 32, kernel_size=(1, 1), stride=(2, 2), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (1): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (2): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (3): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (4): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (5): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (6): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (7): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (8): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (9): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (10): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (11): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (12): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (13): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (14): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (15): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (16): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (17): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) ) ) (2): CifNetStage( (layers): Sequential( (0): CifNetBasicLayer( (shortcut): CifNetShortCut( (convolution): Conv2d(32, 64, kernel_size=(1, 1), stride=(2, 2), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (1): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (2): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (3): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (4): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (5): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (6): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (7): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (8): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (9): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (10): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (11): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (12): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (13): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (14): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (15): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (16): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) (17): CifNetBasicLayer( (shortcut): Identity() (layer): Sequential( (0): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) (1): CifNetConvLayer( (convolution): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (normalization): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (activation): SiLU() ) ) ) ) ) ) ) (pooler): AdaptiveAvgPool2d(output_size=(1, 1)) ) (classifier): Sequential( (0): Flatten(start_dim=1, end_dim=-1) (1): Linear(in_features=64, out_features=10, bias=True) ) ) ---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [4, 16, 112, 112] 2,352 BatchNorm2d-2 [4, 16, 112, 112] 32 SiLU-3 [4, 16, 112, 112] 0 CifNetConvLayer-4 [4, 16, 112, 112] 0 MaxPool2d-5 [4, 16, 56, 56] 0 CifNetEmbeddings-6 [4, 16, 56, 56] 0 Conv2d-7 [4, 16, 56, 56] 2,304 BatchNorm2d-8 [4, 16, 56, 56] 32 SiLU-9 [4, 16, 56, 56] 0 CifNetConvLayer-10 [4, 16, 56, 56] 0 Conv2d-11 [4, 16, 56, 56] 2,304 BatchNorm2d-12 [4, 16, 56, 56] 32 SiLU-13 [4, 16, 56, 56] 0 CifNetConvLayer-14 [4, 16, 56, 56] 0 Identity-15 [4, 16, 56, 56] 0 CifNetBasicLayer-16 [4, 16, 56, 56] 0 Conv2d-17 [4, 16, 56, 56] 2,304 BatchNorm2d-18 [4, 16, 56, 56] 32 SiLU-19 [4, 16, 56, 56] 0 CifNetConvLayer-20 [4, 16, 56, 56] 0 Conv2d-21 [4, 16, 56, 56] 2,304 BatchNorm2d-22 [4, 16, 56, 56] 32 SiLU-23 [4, 16, 56, 56] 0 CifNetConvLayer-24 [4, 16, 56, 56] 0 Identity-25 [4, 16, 56, 56] 0 CifNetBasicLayer-26 [4, 16, 56, 56] 0 Conv2d-27 [4, 16, 56, 56] 2,304 BatchNorm2d-28 [4, 16, 56, 56] 32 SiLU-29 [4, 16, 56, 56] 0 CifNetConvLayer-30 [4, 16, 56, 56] 0 Conv2d-31 [4, 16, 56, 56] 2,304 BatchNorm2d-32 [4, 16, 56, 56] 32 SiLU-33 [4, 16, 56, 56] 0 CifNetConvLayer-34 [4, 16, 56, 56] 0 Identity-35 [4, 16, 56, 56] 0 CifNetBasicLayer-36 [4, 16, 56, 56] 0 Conv2d-37 [4, 16, 56, 56] 2,304 BatchNorm2d-38 [4, 16, 56, 56] 32 SiLU-39 [4, 16, 56, 56] 0 CifNetConvLayer-40 [4, 16, 56, 56] 0 Conv2d-41 [4, 16, 56, 56] 2,304 BatchNorm2d-42 [4, 16, 56, 56] 32 SiLU-43 [4, 16, 56, 56] 0 CifNetConvLayer-44 [4, 16, 56, 56] 0 Identity-45 [4, 16, 56, 56] 0 CifNetBasicLayer-46 [4, 16, 56, 56] 0 Conv2d-47 [4, 16, 56, 56] 2,304 BatchNorm2d-48 [4, 16, 56, 56] 32 SiLU-49 [4, 16, 56, 56] 0 CifNetConvLayer-50 [4, 16, 56, 56] 0 Conv2d-51 [4, 16, 56, 56] 2,304 BatchNorm2d-52 [4, 16, 56, 56] 32 SiLU-53 [4, 16, 56, 56] 0 CifNetConvLayer-54 [4, 16, 56, 56] 0 Identity-55 [4, 16, 56, 56] 0 CifNetBasicLayer-56 [4, 16, 56, 56] 0 Conv2d-57 [4, 16, 56, 56] 2,304 BatchNorm2d-58 [4, 16, 56, 56] 32 SiLU-59 [4, 16, 56, 56] 0 CifNetConvLayer-60 [4, 16, 56, 56] 0 Conv2d-61 [4, 16, 56, 56] 2,304 BatchNorm2d-62 [4, 16, 56, 56] 32 SiLU-63 [4, 16, 56, 56] 0 CifNetConvLayer-64 [4, 16, 56, 56] 0 Identity-65 [4, 16, 56, 56] 0 CifNetBasicLayer-66 [4, 16, 56, 56] 0 Conv2d-67 [4, 16, 56, 56] 2,304 BatchNorm2d-68 [4, 16, 56, 56] 32 SiLU-69 [4, 16, 56, 56] 0 CifNetConvLayer-70 [4, 16, 56, 56] 0 Conv2d-71 [4, 16, 56, 56] 2,304 BatchNorm2d-72 [4, 16, 56, 56] 32 SiLU-73 [4, 16, 56, 56] 0 CifNetConvLayer-74 [4, 16, 56, 56] 0 Identity-75 [4, 16, 56, 56] 0 CifNetBasicLayer-76 [4, 16, 56, 56] 0 Conv2d-77 [4, 16, 56, 56] 2,304 BatchNorm2d-78 [4, 16, 56, 56] 32 SiLU-79 [4, 16, 56, 56] 0 CifNetConvLayer-80 [4, 16, 56, 56] 0 Conv2d-81 [4, 16, 56, 56] 2,304 BatchNorm2d-82 [4, 16, 56, 56] 32 SiLU-83 [4, 16, 56, 56] 0 CifNetConvLayer-84 [4, 16, 56, 56] 0 Identity-85 [4, 16, 56, 56] 0 CifNetBasicLayer-86 [4, 16, 56, 56] 0 Conv2d-87 [4, 16, 56, 56] 2,304 BatchNorm2d-88 [4, 16, 56, 56] 32 SiLU-89 [4, 16, 56, 56] 0 CifNetConvLayer-90 [4, 16, 56, 56] 0 Conv2d-91 [4, 16, 56, 56] 2,304 BatchNorm2d-92 [4, 16, 56, 56] 32 SiLU-93 [4, 16, 56, 56] 0 CifNetConvLayer-94 [4, 16, 56, 56] 0 Identity-95 [4, 16, 56, 56] 0 CifNetBasicLayer-96 [4, 16, 56, 56] 0 Conv2d-97 [4, 16, 56, 56] 2,304 BatchNorm2d-98 [4, 16, 56, 56] 32 SiLU-99 [4, 16, 56, 56] 0 CifNetConvLayer-100 [4, 16, 56, 56] 0 Conv2d-101 [4, 16, 56, 56] 2,304 BatchNorm2d-102 [4, 16, 56, 56] 32 SiLU-103 [4, 16, 56, 56] 0 CifNetConvLayer-104 [4, 16, 56, 56] 0 Identity-105 [4, 16, 56, 56] 0 CifNetBasicLayer-106 [4, 16, 56, 56] 0 Conv2d-107 [4, 16, 56, 56] 2,304 BatchNorm2d-108 [4, 16, 56, 56] 32 SiLU-109 [4, 16, 56, 56] 0 CifNetConvLayer-110 [4, 16, 56, 56] 0 Conv2d-111 [4, 16, 56, 56] 2,304 BatchNorm2d-112 [4, 16, 56, 56] 32 SiLU-113 [4, 16, 56, 56] 0 CifNetConvLayer-114 [4, 16, 56, 56] 0 Identity-115 [4, 16, 56, 56] 0 CifNetBasicLayer-116 [4, 16, 56, 56] 0 Conv2d-117 [4, 16, 56, 56] 2,304 BatchNorm2d-118 [4, 16, 56, 56] 32 SiLU-119 [4, 16, 56, 56] 0 CifNetConvLayer-120 [4, 16, 56, 56] 0 Conv2d-121 [4, 16, 56, 56] 2,304 BatchNorm2d-122 [4, 16, 56, 56] 32 SiLU-123 [4, 16, 56, 56] 0 CifNetConvLayer-124 [4, 16, 56, 56] 0 Identity-125 [4, 16, 56, 56] 0 CifNetBasicLayer-126 [4, 16, 56, 56] 0 Conv2d-127 [4, 16, 56, 56] 2,304 BatchNorm2d-128 [4, 16, 56, 56] 32 SiLU-129 [4, 16, 56, 56] 0 CifNetConvLayer-130 [4, 16, 56, 56] 0 Conv2d-131 [4, 16, 56, 56] 2,304 BatchNorm2d-132 [4, 16, 56, 56] 32 SiLU-133 [4, 16, 56, 56] 0 CifNetConvLayer-134 [4, 16, 56, 56] 0 Identity-135 [4, 16, 56, 56] 0 CifNetBasicLayer-136 [4, 16, 56, 56] 0 Conv2d-137 [4, 16, 56, 56] 2,304 BatchNorm2d-138 [4, 16, 56, 56] 32 SiLU-139 [4, 16, 56, 56] 0 CifNetConvLayer-140 [4, 16, 56, 56] 0 Conv2d-141 [4, 16, 56, 56] 2,304 BatchNorm2d-142 [4, 16, 56, 56] 32 SiLU-143 [4, 16, 56, 56] 0 CifNetConvLayer-144 [4, 16, 56, 56] 0 Identity-145 [4, 16, 56, 56] 0 CifNetBasicLayer-146 [4, 16, 56, 56] 0 Conv2d-147 [4, 16, 56, 56] 2,304 BatchNorm2d-148 [4, 16, 56, 56] 32 SiLU-149 [4, 16, 56, 56] 0 CifNetConvLayer-150 [4, 16, 56, 56] 0 Conv2d-151 [4, 16, 56, 56] 2,304 BatchNorm2d-152 [4, 16, 56, 56] 32 SiLU-153 [4, 16, 56, 56] 0 CifNetConvLayer-154 [4, 16, 56, 56] 0 Identity-155 [4, 16, 56, 56] 0 CifNetBasicLayer-156 [4, 16, 56, 56] 0 Conv2d-157 [4, 16, 56, 56] 2,304 BatchNorm2d-158 [4, 16, 56, 56] 32 SiLU-159 [4, 16, 56, 56] 0 CifNetConvLayer-160 [4, 16, 56, 56] 0 Conv2d-161 [4, 16, 56, 56] 2,304 BatchNorm2d-162 [4, 16, 56, 56] 32 SiLU-163 [4, 16, 56, 56] 0 CifNetConvLayer-164 [4, 16, 56, 56] 0 Identity-165 [4, 16, 56, 56] 0 CifNetBasicLayer-166 [4, 16, 56, 56] 0 Conv2d-167 [4, 16, 56, 56] 2,304 BatchNorm2d-168 [4, 16, 56, 56] 32 SiLU-169 [4, 16, 56, 56] 0 CifNetConvLayer-170 [4, 16, 56, 56] 0 Conv2d-171 [4, 16, 56, 56] 2,304 BatchNorm2d-172 [4, 16, 56, 56] 32 SiLU-173 [4, 16, 56, 56] 0 CifNetConvLayer-174 [4, 16, 56, 56] 0 Identity-175 [4, 16, 56, 56] 0 CifNetBasicLayer-176 [4, 16, 56, 56] 0 Conv2d-177 [4, 16, 56, 56] 2,304 BatchNorm2d-178 [4, 16, 56, 56] 32 SiLU-179 [4, 16, 56, 56] 0 CifNetConvLayer-180 [4, 16, 56, 56] 0 Conv2d-181 [4, 16, 56, 56] 2,304 BatchNorm2d-182 [4, 16, 56, 56] 32 SiLU-183 [4, 16, 56, 56] 0 CifNetConvLayer-184 [4, 16, 56, 56] 0 Identity-185 [4, 16, 56, 56] 0 CifNetBasicLayer-186 [4, 16, 56, 56] 0 CifNetStage-187 [4, 16, 56, 56] 0 Conv2d-188 [4, 32, 28, 28] 4,608 BatchNorm2d-189 [4, 32, 28, 28] 64 SiLU-190 [4, 32, 28, 28] 0 CifNetConvLayer-191 [4, 32, 28, 28] 0 Conv2d-192 [4, 32, 28, 28] 9,216 BatchNorm2d-193 [4, 32, 28, 28] 64 SiLU-194 [4, 32, 28, 28] 0 CifNetConvLayer-195 [4, 32, 28, 28] 0 Conv2d-196 [4, 32, 28, 28] 512 BatchNorm2d-197 [4, 32, 28, 28] 64 CifNetShortCut-198 [4, 32, 28, 28] 0 CifNetBasicLayer-199 [4, 32, 28, 28] 0 Conv2d-200 [4, 32, 28, 28] 9,216 BatchNorm2d-201 [4, 32, 28, 28] 64 SiLU-202 [4, 32, 28, 28] 0 CifNetConvLayer-203 [4, 32, 28, 28] 0 Conv2d-204 [4, 32, 28, 28] 9,216 BatchNorm2d-205 [4, 32, 28, 28] 64 SiLU-206 [4, 32, 28, 28] 0 CifNetConvLayer-207 [4, 32, 28, 28] 0 Identity-208 [4, 32, 28, 28] 0 CifNetBasicLayer-209 [4, 32, 28, 28] 0 Conv2d-210 [4, 32, 28, 28] 9,216 BatchNorm2d-211 [4, 32, 28, 28] 64 SiLU-212 [4, 32, 28, 28] 0 CifNetConvLayer-213 [4, 32, 28, 28] 0 Conv2d-214 [4, 32, 28, 28] 9,216 BatchNorm2d-215 [4, 32, 28, 28] 64 SiLU-216 [4, 32, 28, 28] 0 CifNetConvLayer-217 [4, 32, 28, 28] 0 Identity-218 [4, 32, 28, 28] 0 CifNetBasicLayer-219 [4, 32, 28, 28] 0 Conv2d-220 [4, 32, 28, 28] 9,216 BatchNorm2d-221 [4, 32, 28, 28] 64 SiLU-222 [4, 32, 28, 28] 0 CifNetConvLayer-223 [4, 32, 28, 28] 0 Conv2d-224 [4, 32, 28, 28] 9,216 BatchNorm2d-225 [4, 32, 28, 28] 64 SiLU-226 [4, 32, 28, 28] 0 CifNetConvLayer-227 [4, 32, 28, 28] 0 Identity-228 [4, 32, 28, 28] 0 CifNetBasicLayer-229 [4, 32, 28, 28] 0 Conv2d-230 [4, 32, 28, 28] 9,216 BatchNorm2d-231 [4, 32, 28, 28] 64 SiLU-232 [4, 32, 28, 28] 0 CifNetConvLayer-233 [4, 32, 28, 28] 0 Conv2d-234 [4, 32, 28, 28] 9,216 BatchNorm2d-235 [4, 32, 28, 28] 64 SiLU-236 [4, 32, 28, 28] 0 CifNetConvLayer-237 [4, 32, 28, 28] 0 Identity-238 [4, 32, 28, 28] 0 CifNetBasicLayer-239 [4, 32, 28, 28] 0 Conv2d-240 [4, 32, 28, 28] 9,216 BatchNorm2d-241 [4, 32, 28, 28] 64 SiLU-242 [4, 32, 28, 28] 0 CifNetConvLayer-243 [4, 32, 28, 28] 0 Conv2d-244 [4, 32, 28, 28] 9,216 BatchNorm2d-245 [4, 32, 28, 28] 64 SiLU-246 [4, 32, 28, 28] 0 CifNetConvLayer-247 [4, 32, 28, 28] 0 Identity-248 [4, 32, 28, 28] 0 CifNetBasicLayer-249 [4, 32, 28, 28] 0 Conv2d-250 [4, 32, 28, 28] 9,216 BatchNorm2d-251 [4, 32, 28, 28] 64 SiLU-252 [4, 32, 28, 28] 0 CifNetConvLayer-253 [4, 32, 28, 28] 0 Conv2d-254 [4, 32, 28, 28] 9,216 BatchNorm2d-255 [4, 32, 28, 28] 64 SiLU-256 [4, 32, 28, 28] 0 CifNetConvLayer-257 [4, 32, 28, 28] 0 Identity-258 [4, 32, 28, 28] 0 CifNetBasicLayer-259 [4, 32, 28, 28] 0 Conv2d-260 [4, 32, 28, 28] 9,216 BatchNorm2d-261 [4, 32, 28, 28] 64 SiLU-262 [4, 32, 28, 28] 0 CifNetConvLayer-263 [4, 32, 28, 28] 0 Conv2d-264 [4, 32, 28, 28] 9,216 BatchNorm2d-265 [4, 32, 28, 28] 64 SiLU-266 [4, 32, 28, 28] 0 CifNetConvLayer-267 [4, 32, 28, 28] 0 Identity-268 [4, 32, 28, 28] 0 CifNetBasicLayer-269 [4, 32, 28, 28] 0 Conv2d-270 [4, 32, 28, 28] 9,216 BatchNorm2d-271 [4, 32, 28, 28] 64 SiLU-272 [4, 32, 28, 28] 0 CifNetConvLayer-273 [4, 32, 28, 28] 0 Conv2d-274 [4, 32, 28, 28] 9,216 BatchNorm2d-275 [4, 32, 28, 28] 64 SiLU-276 [4, 32, 28, 28] 0 CifNetConvLayer-277 [4, 32, 28, 28] 0 Identity-278 [4, 32, 28, 28] 0 CifNetBasicLayer-279 [4, 32, 28, 28] 0 Conv2d-280 [4, 32, 28, 28] 9,216 BatchNorm2d-281 [4, 32, 28, 28] 64 SiLU-282 [4, 32, 28, 28] 0 CifNetConvLayer-283 [4, 32, 28, 28] 0 Conv2d-284 [4, 32, 28, 28] 9,216 BatchNorm2d-285 [4, 32, 28, 28] 64 SiLU-286 [4, 32, 28, 28] 0 CifNetConvLayer-287 [4, 32, 28, 28] 0 Identity-288 [4, 32, 28, 28] 0 CifNetBasicLayer-289 [4, 32, 28, 28] 0 Conv2d-290 [4, 32, 28, 28] 9,216 BatchNorm2d-291 [4, 32, 28, 28] 64 SiLU-292 [4, 32, 28, 28] 0 CifNetConvLayer-293 [4, 32, 28, 28] 0 Conv2d-294 [4, 32, 28, 28] 9,216 BatchNorm2d-295 [4, 32, 28, 28] 64 SiLU-296 [4, 32, 28, 28] 0 CifNetConvLayer-297 [4, 32, 28, 28] 0 Identity-298 [4, 32, 28, 28] 0 CifNetBasicLayer-299 [4, 32, 28, 28] 0 Conv2d-300 [4, 32, 28, 28] 9,216 BatchNorm2d-301 [4, 32, 28, 28] 64 SiLU-302 [4, 32, 28, 28] 0 CifNetConvLayer-303 [4, 32, 28, 28] 0 Conv2d-304 [4, 32, 28, 28] 9,216 BatchNorm2d-305 [4, 32, 28, 28] 64 SiLU-306 [4, 32, 28, 28] 0 CifNetConvLayer-307 [4, 32, 28, 28] 0 Identity-308 [4, 32, 28, 28] 0 CifNetBasicLayer-309 [4, 32, 28, 28] 0 Conv2d-310 [4, 32, 28, 28] 9,216 BatchNorm2d-311 [4, 32, 28, 28] 64 SiLU-312 [4, 32, 28, 28] 0 CifNetConvLayer-313 [4, 32, 28, 28] 0 Conv2d-314 [4, 32, 28, 28] 9,216 BatchNorm2d-315 [4, 32, 28, 28] 64 SiLU-316 [4, 32, 28, 28] 0 CifNetConvLayer-317 [4, 32, 28, 28] 0 Identity-318 [4, 32, 28, 28] 0 CifNetBasicLayer-319 [4, 32, 28, 28] 0 Conv2d-320 [4, 32, 28, 28] 9,216 BatchNorm2d-321 [4, 32, 28, 28] 64 SiLU-322 [4, 32, 28, 28] 0 CifNetConvLayer-323 [4, 32, 28, 28] 0 Conv2d-324 [4, 32, 28, 28] 9,216 BatchNorm2d-325 [4, 32, 28, 28] 64 SiLU-326 [4, 32, 28, 28] 0 CifNetConvLayer-327 [4, 32, 28, 28] 0 Identity-328 [4, 32, 28, 28] 0 CifNetBasicLayer-329 [4, 32, 28, 28] 0 Conv2d-330 [4, 32, 28, 28] 9,216 BatchNorm2d-331 [4, 32, 28, 28] 64 SiLU-332 [4, 32, 28, 28] 0 CifNetConvLayer-333 [4, 32, 28, 28] 0 Conv2d-334 [4, 32, 28, 28] 9,216 BatchNorm2d-335 [4, 32, 28, 28] 64 SiLU-336 [4, 32, 28, 28] 0 CifNetConvLayer-337 [4, 32, 28, 28] 0 Identity-338 [4, 32, 28, 28] 0 CifNetBasicLayer-339 [4, 32, 28, 28] 0 Conv2d-340 [4, 32, 28, 28] 9,216 BatchNorm2d-341 [4, 32, 28, 28] 64 SiLU-342 [4, 32, 28, 28] 0 CifNetConvLayer-343 [4, 32, 28, 28] 0 Conv2d-344 [4, 32, 28, 28] 9,216 BatchNorm2d-345 [4, 32, 28, 28] 64 SiLU-346 [4, 32, 28, 28] 0 CifNetConvLayer-347 [4, 32, 28, 28] 0 Identity-348 [4, 32, 28, 28] 0 CifNetBasicLayer-349 [4, 32, 28, 28] 0 Conv2d-350 [4, 32, 28, 28] 9,216 BatchNorm2d-351 [4, 32, 28, 28] 64 SiLU-352 [4, 32, 28, 28] 0 CifNetConvLayer-353 [4, 32, 28, 28] 0 Conv2d-354 [4, 32, 28, 28] 9,216 BatchNorm2d-355 [4, 32, 28, 28] 64 SiLU-356 [4, 32, 28, 28] 0 CifNetConvLayer-357 [4, 32, 28, 28] 0 Identity-358 [4, 32, 28, 28] 0 CifNetBasicLayer-359 [4, 32, 28, 28] 0 Conv2d-360 [4, 32, 28, 28] 9,216 BatchNorm2d-361 [4, 32, 28, 28] 64 SiLU-362 [4, 32, 28, 28] 0 CifNetConvLayer-363 [4, 32, 28, 28] 0 Conv2d-364 [4, 32, 28, 28] 9,216 BatchNorm2d-365 [4, 32, 28, 28] 64 SiLU-366 [4, 32, 28, 28] 0 CifNetConvLayer-367 [4, 32, 28, 28] 0 Identity-368 [4, 32, 28, 28] 0 CifNetBasicLayer-369 [4, 32, 28, 28] 0 CifNetStage-370 [4, 32, 28, 28] 0 Conv2d-371 [4, 64, 14, 14] 18,432 BatchNorm2d-372 [4, 64, 14, 14] 128 SiLU-373 [4, 64, 14, 14] 0 CifNetConvLayer-374 [4, 64, 14, 14] 0 Conv2d-375 [4, 64, 14, 14] 36,864 BatchNorm2d-376 [4, 64, 14, 14] 128 SiLU-377 [4, 64, 14, 14] 0 CifNetConvLayer-378 [4, 64, 14, 14] 0 Conv2d-379 [4, 64, 14, 14] 2,048 BatchNorm2d-380 [4, 64, 14, 14] 128 CifNetShortCut-381 [4, 64, 14, 14] 0 CifNetBasicLayer-382 [4, 64, 14, 14] 0 Conv2d-383 [4, 64, 14, 14] 36,864 BatchNorm2d-384 [4, 64, 14, 14] 128 SiLU-385 [4, 64, 14, 14] 0 CifNetConvLayer-386 [4, 64, 14, 14] 0 Conv2d-387 [4, 64, 14, 14] 36,864 BatchNorm2d-388 [4, 64, 14, 14] 128 SiLU-389 [4, 64, 14, 14] 0 CifNetConvLayer-390 [4, 64, 14, 14] 0 Identity-391 [4, 64, 14, 14] 0 CifNetBasicLayer-392 [4, 64, 14, 14] 0 Conv2d-393 [4, 64, 14, 14] 36,864 BatchNorm2d-394 [4, 64, 14, 14] 128 SiLU-395 [4, 64, 14, 14] 0 CifNetConvLayer-396 [4, 64, 14, 14] 0 Conv2d-397 [4, 64, 14, 14] 36,864 BatchNorm2d-398 [4, 64, 14, 14] 128 SiLU-399 [4, 64, 14, 14] 0 CifNetConvLayer-400 [4, 64, 14, 14] 0 Identity-401 [4, 64, 14, 14] 0 CifNetBasicLayer-402 [4, 64, 14, 14] 0 Conv2d-403 [4, 64, 14, 14] 36,864 BatchNorm2d-404 [4, 64, 14, 14] 128 SiLU-405 [4, 64, 14, 14] 0 CifNetConvLayer-406 [4, 64, 14, 14] 0 Conv2d-407 [4, 64, 14, 14] 36,864 BatchNorm2d-408 [4, 64, 14, 14] 128 SiLU-409 [4, 64, 14, 14] 0 CifNetConvLayer-410 [4, 64, 14, 14] 0 Identity-411 [4, 64, 14, 14] 0 CifNetBasicLayer-412 [4, 64, 14, 14] 0 Conv2d-413 [4, 64, 14, 14] 36,864 BatchNorm2d-414 [4, 64, 14, 14] 128 SiLU-415 [4, 64, 14, 14] 0 CifNetConvLayer-416 [4, 64, 14, 14] 0 Conv2d-417 [4, 64, 14, 14] 36,864 BatchNorm2d-418 [4, 64, 14, 14] 128 SiLU-419 [4, 64, 14, 14] 0 CifNetConvLayer-420 [4, 64, 14, 14] 0 Identity-421 [4, 64, 14, 14] 0 CifNetBasicLayer-422 [4, 64, 14, 14] 0 Conv2d-423 [4, 64, 14, 14] 36,864 BatchNorm2d-424 [4, 64, 14, 14] 128 SiLU-425 [4, 64, 14, 14] 0 CifNetConvLayer-426 [4, 64, 14, 14] 0 Conv2d-427 [4, 64, 14, 14] 36,864 BatchNorm2d-428 [4, 64, 14, 14] 128 SiLU-429 [4, 64, 14, 14] 0 CifNetConvLayer-430 [4, 64, 14, 14] 0 Identity-431 [4, 64, 14, 14] 0 CifNetBasicLayer-432 [4, 64, 14, 14] 0 Conv2d-433 [4, 64, 14, 14] 36,864 BatchNorm2d-434 [4, 64, 14, 14] 128 SiLU-435 [4, 64, 14, 14] 0 CifNetConvLayer-436 [4, 64, 14, 14] 0 Conv2d-437 [4, 64, 14, 14] 36,864 BatchNorm2d-438 [4, 64, 14, 14] 128 SiLU-439 [4, 64, 14, 14] 0 CifNetConvLayer-440 [4, 64, 14, 14] 0 Identity-441 [4, 64, 14, 14] 0 CifNetBasicLayer-442 [4, 64, 14, 14] 0 Conv2d-443 [4, 64, 14, 14] 36,864 BatchNorm2d-444 [4, 64, 14, 14] 128 SiLU-445 [4, 64, 14, 14] 0 CifNetConvLayer-446 [4, 64, 14, 14] 0 Conv2d-447 [4, 64, 14, 14] 36,864 BatchNorm2d-448 [4, 64, 14, 14] 128 SiLU-449 [4, 64, 14, 14] 0 CifNetConvLayer-450 [4, 64, 14, 14] 0 Identity-451 [4, 64, 14, 14] 0 CifNetBasicLayer-452 [4, 64, 14, 14] 0 Conv2d-453 [4, 64, 14, 14] 36,864 BatchNorm2d-454 [4, 64, 14, 14] 128 SiLU-455 [4, 64, 14, 14] 0 CifNetConvLayer-456 [4, 64, 14, 14] 0 Conv2d-457 [4, 64, 14, 14] 36,864 BatchNorm2d-458 [4, 64, 14, 14] 128 SiLU-459 [4, 64, 14, 14] 0 CifNetConvLayer-460 [4, 64, 14, 14] 0 Identity-461 [4, 64, 14, 14] 0 CifNetBasicLayer-462 [4, 64, 14, 14] 0 Conv2d-463 [4, 64, 14, 14] 36,864 BatchNorm2d-464 [4, 64, 14, 14] 128 SiLU-465 [4, 64, 14, 14] 0 CifNetConvLayer-466 [4, 64, 14, 14] 0 Conv2d-467 [4, 64, 14, 14] 36,864 BatchNorm2d-468 [4, 64, 14, 14] 128 SiLU-469 [4, 64, 14, 14] 0 CifNetConvLayer-470 [4, 64, 14, 14] 0 Identity-471 [4, 64, 14, 14] 0 CifNetBasicLayer-472 [4, 64, 14, 14] 0 Conv2d-473 [4, 64, 14, 14] 36,864 BatchNorm2d-474 [4, 64, 14, 14] 128 SiLU-475 [4, 64, 14, 14] 0 CifNetConvLayer-476 [4, 64, 14, 14] 0 Conv2d-477 [4, 64, 14, 14] 36,864 BatchNorm2d-478 [4, 64, 14, 14] 128 SiLU-479 [4, 64, 14, 14] 0 CifNetConvLayer-480 [4, 64, 14, 14] 0 Identity-481 [4, 64, 14, 14] 0 CifNetBasicLayer-482 [4, 64, 14, 14] 0 Conv2d-483 [4, 64, 14, 14] 36,864 BatchNorm2d-484 [4, 64, 14, 14] 128 SiLU-485 [4, 64, 14, 14] 0 CifNetConvLayer-486 [4, 64, 14, 14] 0 Conv2d-487 [4, 64, 14, 14] 36,864 BatchNorm2d-488 [4, 64, 14, 14] 128 SiLU-489 [4, 64, 14, 14] 0 CifNetConvLayer-490 [4, 64, 14, 14] 0 Identity-491 [4, 64, 14, 14] 0 CifNetBasicLayer-492 [4, 64, 14, 14] 0 Conv2d-493 [4, 64, 14, 14] 36,864 BatchNorm2d-494 [4, 64, 14, 14] 128 SiLU-495 [4, 64, 14, 14] 0 CifNetConvLayer-496 [4, 64, 14, 14] 0 Conv2d-497 [4, 64, 14, 14] 36,864 BatchNorm2d-498 [4, 64, 14, 14] 128 SiLU-499 [4, 64, 14, 14] 0 CifNetConvLayer-500 [4, 64, 14, 14] 0 Identity-501 [4, 64, 14, 14] 0 CifNetBasicLayer-502 [4, 64, 14, 14] 0 Conv2d-503 [4, 64, 14, 14] 36,864 BatchNorm2d-504 [4, 64, 14, 14] 128 SiLU-505 [4, 64, 14, 14] 0 CifNetConvLayer-506 [4, 64, 14, 14] 0 Conv2d-507 [4, 64, 14, 14] 36,864 BatchNorm2d-508 [4, 64, 14, 14] 128 SiLU-509 [4, 64, 14, 14] 0 CifNetConvLayer-510 [4, 64, 14, 14] 0 Identity-511 [4, 64, 14, 14] 0 CifNetBasicLayer-512 [4, 64, 14, 14] 0 Conv2d-513 [4, 64, 14, 14] 36,864 BatchNorm2d-514 [4, 64, 14, 14] 128 SiLU-515 [4, 64, 14, 14] 0 CifNetConvLayer-516 [4, 64, 14, 14] 0 Conv2d-517 [4, 64, 14, 14] 36,864 BatchNorm2d-518 [4, 64, 14, 14] 128 SiLU-519 [4, 64, 14, 14] 0 CifNetConvLayer-520 [4, 64, 14, 14] 0 Identity-521 [4, 64, 14, 14] 0 CifNetBasicLayer-522 [4, 64, 14, 14] 0 Conv2d-523 [4, 64, 14, 14] 36,864 BatchNorm2d-524 [4, 64, 14, 14] 128 SiLU-525 [4, 64, 14, 14] 0 CifNetConvLayer-526 [4, 64, 14, 14] 0 Conv2d-527 [4, 64, 14, 14] 36,864 BatchNorm2d-528 [4, 64, 14, 14] 128 SiLU-529 [4, 64, 14, 14] 0 CifNetConvLayer-530 [4, 64, 14, 14] 0 Identity-531 [4, 64, 14, 14] 0 CifNetBasicLayer-532 [4, 64, 14, 14] 0 Conv2d-533 [4, 64, 14, 14] 36,864 BatchNorm2d-534 [4, 64, 14, 14] 128 SiLU-535 [4, 64, 14, 14] 0 CifNetConvLayer-536 [4, 64, 14, 14] 0 Conv2d-537 [4, 64, 14, 14] 36,864 BatchNorm2d-538 [4, 64, 14, 14] 128 SiLU-539 [4, 64, 14, 14] 0 CifNetConvLayer-540 [4, 64, 14, 14] 0 Identity-541 [4, 64, 14, 14] 0 CifNetBasicLayer-542 [4, 64, 14, 14] 0 Conv2d-543 [4, 64, 14, 14] 36,864 BatchNorm2d-544 [4, 64, 14, 14] 128 SiLU-545 [4, 64, 14, 14] 0 CifNetConvLayer-546 [4, 64, 14, 14] 0 Conv2d-547 [4, 64, 14, 14] 36,864 BatchNorm2d-548 [4, 64, 14, 14] 128 SiLU-549 [4, 64, 14, 14] 0 CifNetConvLayer-550 [4, 64, 14, 14] 0 Identity-551 [4, 64, 14, 14] 0 CifNetBasicLayer-552 [4, 64, 14, 14] 0 CifNetStage-553 [4, 64, 14, 14] 0 CifNetEncoder-554 [[-1, 64, 14, 14]] 0 AdaptiveAvgPool2d-555 [4, 64, 1, 1] 0 CifNetModel-556 [[-1, 64, 14, 14], [-1, 64, 1, 1]] 0 Flatten-557 [4, 64] 0 Linear-558 [4, 10] 650 ================================================================ Total params: 1,732,634 Trainable params: 1,732,634 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 2.30 Forward/backward pass size (MB): 520.92 Params size (MB): 6.61 Estimated Total Size (MB): 529.82 ----------------------------------------------------------------