ericflo's picture
Create sft.py
86b5e8a verified
# flake8: noqa
"""
pip install -U transformers accelerate trl wandb wheel packaging peft bitsandbytes liger-kernel flash_attn
python sft.py \
--run_name="llama3.1-8b-continued2" \
--model_name_or_path="meta-llama/Meta-Llama-3.1-8B" \
--dataset_name="mlfoundations/dclm-baseline-1.0-parquet,mlabonne/FineTome-100k" \
--report_to="wandb" \
--optim="adamw_torch_fused" \
--lr_scheduler_type="cosine" \
--max_steps=10000000 \
--max_seq_length=64000 \
--learning_rate=0.0001 \
--attn_implementation="flash_attention_2" \
--save_strategy="steps" \
--save_steps 50 \
--save_total_limit=10 \
--per_device_train_batch_size=1 \
--gradient_accumulation_steps=8 \
--logging_steps=1 \
--num_train_epochs=1 \
--load_in_4bit \
--push_to_hub \
--hub_model_id="ericflo/Llama-3.1-8B-ContinuedTraining2-LoRA" \
--hub_strategy="all_checkpoints" \
--gradient_checkpointing \
--use_peft \
--lora_r=128 \
--lora_alpha=256 \
--lora_dropout=0.05 \
--use_liger=true \
--packing=true \
--torch_dtype="bfloat16" \
--output_dir="continuedtraining2_output"
"""
import logging
import os
import random
from contextlib import nullcontext
from trl.commands.cli_utils import init_zero_verbose, SFTScriptArguments, TrlParser
from trl.env_utils import strtobool
TRL_USE_RICH = strtobool(os.getenv("TRL_USE_RICH", "0"))
if TRL_USE_RICH:
init_zero_verbose()
FORMAT = "%(message)s"
from rich.console import Console
from rich.logging import RichHandler
import torch
from datasets import load_dataset, interleave_datasets
from tqdm.rich import tqdm
from transformers import AutoTokenizer
from trl import (
ModelConfig,
RichProgressCallback,
SFTConfig,
SFTTrainer,
get_peft_config,
get_quantization_config,
get_kbit_device_map,
)
tqdm.pandas()
if TRL_USE_RICH:
logging.basicConfig(format=FORMAT, datefmt="[%X]", handlers=[RichHandler()], level=logging.INFO)
print("Loading tokenizers...")
METAML_TOK = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
CHATML_TOK = AutoTokenizer.from_pretrained("NousResearch/Hermes-3-Llama-3.1-8B")
print("Tokenizers loaded.")
def formatting_prompts_func(example):
try:
language = example.get('language')
url = example.get('url')
text = example.get('text')
title = example.get('title')
conversations = example.get('conversations')
source = example.get('source')
repo_name = example.get('max_stars_repo_name')
repo_path = example.get('max_stars_repo_path')
star_count = example.get('max_stars_count')
content = example.get('content')
# mlfoundations/dclm-baseline-1.0-parquet
if language and url and text:
return f'{language} {url} {text}'
elif title and url and text: # wikimedia/wikipedia
return f'{title} {url} {text}'
elif conversations: # mlabonne/FineTome-100k
rows = [{
"role": {"system": "system", "gpt": "assistant", "human": "user"}[row["from"]],
"content": row["value"],
} for row in conversations]
tok = random.choice([METAML_TOK, CHATML_TOK])
return f'{source} {tok.apply_chat_template(rows, tokenize=False)}'
elif "max_stars_repo_name" in example: # bigcode/starcoderdata
return f'{example["max_stars_repo_name"]} {example["max_stars_repo_path"]} {example["max_stars_count"]} {example["content"]}'
print(f"Unknown example: {example}")
raise ValueError(f"Unknown example: {example}")
except Exception as e:
print(e)
raise e
if __name__ == "__main__":
parser = TrlParser((SFTScriptArguments, SFTConfig, ModelConfig))
args, training_args, model_config = parser.parse_args_and_config()
# Force use our print callback
if TRL_USE_RICH:
training_args.disable_tqdm = True
console = Console()
################
# Model init kwargs & Tokenizer
################
model_config.lora_target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
quantization_config = get_quantization_config(model_config)
model_kwargs = dict(
revision=model_config.model_revision,
trust_remote_code=model_config.trust_remote_code,
attn_implementation=model_config.attn_implementation,
torch_dtype=model_config.torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
training_args.model_init_kwargs = model_kwargs
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, use_fast=True
)
tokenizer.pad_token = tokenizer.eos_token
################
# Dataset
################
dataset_names = args.dataset_name.split(',')
train_datasets = [load_dataset(name, split="train", streaming=True) for name in dataset_names]
train_datasets.append(load_dataset("bigcode/starcoderdata", data_dir="python", split="train", streaming=True))
train_datasets.append(load_dataset("wikimedia/wikipedia", "20231101.en", split="train", streaming=True))
train_datasets.append(load_dataset("wikimedia/wikipedia", "20231101.es", split="train", streaming=True))
train_datasets.append(load_dataset("wikimedia/wikipedia", "20231101.fr", split="train", streaming=True))
interleaved_dataset = interleave_datasets(train_datasets)
eval_dataset = interleaved_dataset.take(100)
train_dataset = interleaved_dataset.skip(100)
print(train_dataset)
print(eval_dataset)
################
# Optional rich context managers
###############
init_context = nullcontext() if not TRL_USE_RICH else console.status("[bold green]Initializing the SFTTrainer...")
save_context = (
nullcontext()
if not TRL_USE_RICH
else console.status(f"[bold green]Training completed! Saving the model to {training_args.output_dir}")
)
################
# Training
################
with init_context:
trainer = SFTTrainer(
model=model_config.model_name_or_path,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
peft_config=get_peft_config(model_config),
callbacks=[RichProgressCallback] if TRL_USE_RICH else None,
formatting_func=formatting_prompts_func,
)
trainer.train()
with save_context:
trainer.save_model(training_args.output_dir)