Update README.md
Browse files
README.md
CHANGED
@@ -1,201 +1,123 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
datasets:
|
4 |
+
- erfanzar/MoD-Prompts
|
5 |
+
- erfanzar/GPT-4-Prompts
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
pipeline_tag: text-generation
|
9 |
---
|
10 |
|
11 |
+
# Raven Fine-Tuned Gemma-2B
|
12 |
+
|
13 |
+
Raven is a Fine-tuned version of google/gemma-2 whith same prompting style of gemma-2b-it which trained Using TPU VM v4-64 and [EasyDeL](https://github.com/erfanzar/EasyDeL)
|
14 |
+
|
15 |
+
both fine-tuning and serving code are available and it's recommended to use JAX-EasyDeL Gemma since HF-Gemma implementaion is Wrong.
|
16 |
+
|
17 |
+
|
18 |
+
### Serving and Using Raven
|
19 |
+
```python
|
20 |
+
from EasyDel import JAXServer, JAXServerConfig, EasyServe
|
21 |
+
from fjformer import get_dtype
|
22 |
+
from EasyDel.serve.prompters import GemmaPrompter, Llama2Prompter, OpenChatPrompter, ChatMLPrompter
|
23 |
+
from EasyDel.serve.prompters.base_prompter import BasePrompter
|
24 |
+
from jax import numpy as jnp, lax
|
25 |
+
import jax
|
26 |
+
from typing import List, Union, Optional
|
27 |
+
|
28 |
+
max_sequence_length = 8192
|
29 |
+
max_compile_tokens = 256
|
30 |
+
max_new_tokens_ratio = 25
|
31 |
+
dtype = "fp16"
|
32 |
+
prompter_type = "gemma"
|
33 |
+
sharding_axis_dims = (1, 1, 1, -1)
|
34 |
+
pretrained_model_name_or_path = "erfanzar/Raven-v0.1"
|
35 |
+
attn_mechanism = "normal"
|
36 |
+
scan_mlp_chunk_size = max_compile_tokens
|
37 |
+
use_scan_mlp = True
|
38 |
+
scan_ring_attention = True
|
39 |
+
block_k = 128
|
40 |
+
block_q = 128
|
41 |
+
use_sharded_kv_caching = False
|
42 |
+
|
43 |
+
server_config = JAXServerConfig(
|
44 |
+
max_sequence_length=max_sequence_length,
|
45 |
+
max_compile_tokens=max_compile_tokens,
|
46 |
+
max_new_tokens=max_compile_tokens * max_new_tokens_ratio,
|
47 |
+
dtype=dtype,
|
48 |
+
pre_compile=False,
|
49 |
+
eos_token_id=107
|
50 |
+
)
|
51 |
+
|
52 |
+
prompters = {
|
53 |
+
"gemma": GemmaPrompter(),
|
54 |
+
"llama": Llama2Prompter(),
|
55 |
+
"openchat": OpenChatPrompter(),
|
56 |
+
"chatml": ChatMLPrompter()
|
57 |
+
}
|
58 |
+
|
59 |
+
prompter: BasePrompter = prompters[prompter_type]
|
60 |
+
|
61 |
+
class JAXServerC(JAXServer):
|
62 |
+
@staticmethod
|
63 |
+
def format_chat(history: List[List[str]], prompt: str, system: Union[str, None]) -> str:
|
64 |
+
return prompter.format_message(
|
65 |
+
history=history,
|
66 |
+
prompt=prompt,
|
67 |
+
system_message=system,
|
68 |
+
prefix=None
|
69 |
+
)
|
70 |
+
|
71 |
+
@staticmethod
|
72 |
+
def format_instruct(system: str, instruction: str) -> str:
|
73 |
+
return prompter.format_message(
|
74 |
+
prefix=None,
|
75 |
+
system_message=system,
|
76 |
+
prompt=instruction,
|
77 |
+
history=[]
|
78 |
+
)
|
79 |
+
|
80 |
+
server = JAXServerC.from_torch_pretrained(
|
81 |
+
server_config=server_config,
|
82 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
83 |
+
device=jax.devices('cpu')[0],
|
84 |
+
dtype=get_dtype(dtype=dtype),
|
85 |
+
param_dtype=get_dtype(dtype=dtype),
|
86 |
+
precision=jax.lax.Precision("fastest"),
|
87 |
+
sharding_axis_dims=sharding_axis_dims,
|
88 |
+
sharding_axis_names=("dp", "fsdp", "tp", "sp"),
|
89 |
+
input_shape=(1, server_config.max_sequence_length),
|
90 |
+
model_config_kwargs=dict(
|
91 |
+
fully_sharded_data_parallel=True,
|
92 |
+
attn_mechanism=attn_mechanism,
|
93 |
+
scan_mlp_chunk_size=max_compile_tokens,
|
94 |
+
use_scan_mlp=use_scan_mlp,
|
95 |
+
scan_ring_attention=scan_ring_attention,
|
96 |
+
block_k=block_k,
|
97 |
+
block_q=block_q,
|
98 |
+
use_sharded_kv_caching=use_sharded_kv_caching
|
99 |
+
)
|
100 |
+
)
|
101 |
+
|
102 |
+
history = []
|
103 |
+
while True:
|
104 |
+
user_prompt = input("> ")
|
105 |
+
model_prompt = server.format_chat(
|
106 |
+
history,
|
107 |
+
user_prompt,
|
108 |
+
"You are an AI assistant be respect-full and explain detailed questions step by step."
|
109 |
+
)
|
110 |
+
|
111 |
+
past_response_length = 0
|
112 |
+
|
113 |
+
for response, used_tokens in server.sample(
|
114 |
+
model_prompt,
|
115 |
+
greedy=False
|
116 |
+
):
|
117 |
+
print(response[past_response_length:], end="")
|
118 |
+
past_response_length = len(response)
|
119 |
+
|
120 |
+
history.append([user_prompt, response])
|
121 |
+
```
|
122 |
+
|
123 |
+
Gradio UI is also available via `server.gradio_inference().launch()`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|