erfanzar commited on
Commit
b8b3287
1 Parent(s): 8a37b9d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +119 -197
README.md CHANGED
@@ -1,201 +1,123 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
-
201
-
 
1
  ---
2
  library_name: transformers
3
+ datasets:
4
+ - erfanzar/MoD-Prompts
5
+ - erfanzar/GPT-4-Prompts
6
+ language:
7
+ - en
8
+ pipeline_tag: text-generation
9
  ---
10
 
11
+ # Raven Fine-Tuned Gemma-2B
12
+
13
+ Raven is a Fine-tuned version of google/gemma-2 whith same prompting style of gemma-2b-it which trained Using TPU VM v4-64 and [EasyDeL](https://github.com/erfanzar/EasyDeL)
14
+
15
+ both fine-tuning and serving code are available and it's recommended to use JAX-EasyDeL Gemma since HF-Gemma implementaion is Wrong.
16
+
17
+
18
+ ### Serving and Using Raven
19
+ ```python
20
+ from EasyDel import JAXServer, JAXServerConfig, EasyServe
21
+ from fjformer import get_dtype
22
+ from EasyDel.serve.prompters import GemmaPrompter, Llama2Prompter, OpenChatPrompter, ChatMLPrompter
23
+ from EasyDel.serve.prompters.base_prompter import BasePrompter
24
+ from jax import numpy as jnp, lax
25
+ import jax
26
+ from typing import List, Union, Optional
27
+
28
+ max_sequence_length = 8192
29
+ max_compile_tokens = 256
30
+ max_new_tokens_ratio = 25
31
+ dtype = "fp16"
32
+ prompter_type = "gemma"
33
+ sharding_axis_dims = (1, 1, 1, -1)
34
+ pretrained_model_name_or_path = "erfanzar/Raven-v0.1"
35
+ attn_mechanism = "normal"
36
+ scan_mlp_chunk_size = max_compile_tokens
37
+ use_scan_mlp = True
38
+ scan_ring_attention = True
39
+ block_k = 128
40
+ block_q = 128
41
+ use_sharded_kv_caching = False
42
+
43
+ server_config = JAXServerConfig(
44
+ max_sequence_length=max_sequence_length,
45
+ max_compile_tokens=max_compile_tokens,
46
+ max_new_tokens=max_compile_tokens * max_new_tokens_ratio,
47
+ dtype=dtype,
48
+ pre_compile=False,
49
+ eos_token_id=107
50
+ )
51
+
52
+ prompters = {
53
+ "gemma": GemmaPrompter(),
54
+ "llama": Llama2Prompter(),
55
+ "openchat": OpenChatPrompter(),
56
+ "chatml": ChatMLPrompter()
57
+ }
58
+
59
+ prompter: BasePrompter = prompters[prompter_type]
60
+
61
+ class JAXServerC(JAXServer):
62
+ @staticmethod
63
+ def format_chat(history: List[List[str]], prompt: str, system: Union[str, None]) -> str:
64
+ return prompter.format_message(
65
+ history=history,
66
+ prompt=prompt,
67
+ system_message=system,
68
+ prefix=None
69
+ )
70
+
71
+ @staticmethod
72
+ def format_instruct(system: str, instruction: str) -> str:
73
+ return prompter.format_message(
74
+ prefix=None,
75
+ system_message=system,
76
+ prompt=instruction,
77
+ history=[]
78
+ )
79
+
80
+ server = JAXServerC.from_torch_pretrained(
81
+ server_config=server_config,
82
+ pretrained_model_name_or_path=pretrained_model_name_or_path,
83
+ device=jax.devices('cpu')[0],
84
+ dtype=get_dtype(dtype=dtype),
85
+ param_dtype=get_dtype(dtype=dtype),
86
+ precision=jax.lax.Precision("fastest"),
87
+ sharding_axis_dims=sharding_axis_dims,
88
+ sharding_axis_names=("dp", "fsdp", "tp", "sp"),
89
+ input_shape=(1, server_config.max_sequence_length),
90
+ model_config_kwargs=dict(
91
+ fully_sharded_data_parallel=True,
92
+ attn_mechanism=attn_mechanism,
93
+ scan_mlp_chunk_size=max_compile_tokens,
94
+ use_scan_mlp=use_scan_mlp,
95
+ scan_ring_attention=scan_ring_attention,
96
+ block_k=block_k,
97
+ block_q=block_q,
98
+ use_sharded_kv_caching=use_sharded_kv_caching
99
+ )
100
+ )
101
+
102
+ history = []
103
+ while True:
104
+ user_prompt = input("> ")
105
+ model_prompt = server.format_chat(
106
+ history,
107
+ user_prompt,
108
+ "You are an AI assistant be respect-full and explain detailed questions step by step."
109
+ )
110
+
111
+ past_response_length = 0
112
+
113
+ for response, used_tokens in server.sample(
114
+ model_prompt,
115
+ greedy=False
116
+ ):
117
+ print(response[past_response_length:], end="")
118
+ past_response_length = len(response)
119
+
120
+ history.append([user_prompt, response])
121
+ ```
122
+
123
+ Gradio UI is also available via `server.gradio_inference().launch()`.