emozilla commited on
Commit
8116c39
1 Parent(s): a315f30

scaled rotary embeddings for LLaMA

Browse files
README.md ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - togethercomputer/RedPajama-Data-1T
5
+ ---
6
+
7
+ This is a modified version of the original LLaMA model that incorporates Scaled Rotary Embeddings first proposed by [kaiokendev](https://kaiokendev.github.io/). By default, the model is configured to be equivalent to the original OpenLLaMA model (2048 context length). To modify, instantiate the LLaMA configuration and set `max_position_embeddings` to the desired context length. The value should be a power of 2, e.g. 2048, 4096, 8192, etc.
8
+
9
+ ```python
10
+ config = AutoConfig.from_pretrained("emozilla/open_llama_7b-scaled")
11
+ config.max_position_embeddings = 8192
12
+ model = AutoModelForCausalLM.from_pretrained("emozilla/open_llama_7b-scaled", config=config)
13
+ ```
14
+
15
+ You should also set `max_model_length` on your tokenizer.
16
+
17
+ ```python
18
+ tokenizer = AutoTokenizer.from_pretrained("emozilla/open_llama_7b-scaled", max_model_length=8192)
19
+ ```
20
+
21
+ # OpenLLaMA: An Open Reproduction of LLaMA
22
+
23
+
24
+ In this repo, we present a permissively licensed open source reproduction of Meta AI's [LLaMA](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/) large language model. We are releasing a 7B and 3B model trained on 1T tokens, as well as the preview of a 13B model trained on 600B tokens. We provide PyTorch and JAX weights of pre-trained OpenLLaMA models, as well as evaluation results and comparison against the original LLaMA models. Please see the [project homepage of OpenLLaMA](https://github.com/openlm-research/open_llama) for more details.
25
+
26
+
27
+ ## Weights Release, License and Usage
28
+
29
+ We release the weights in two formats: an EasyLM format to be use with our [EasyLM framework](https://github.com/young-geng/EasyLM), and a PyTorch format to be used with the [Hugging Face transformers](https://huggingface.co/docs/transformers/index) library. Both our training framework EasyLM and the checkpoint weights are licensed permissively under the Apache 2.0 license.
30
+
31
+ ### Loading the Weights with Hugging Face Transformers
32
+ Preview checkpoints can be directly loaded from Hugging Face Hub. **Please note that it is advised to avoid using the Hugging Face fast tokenizer for now, as we’ve observed that the auto-converted fast tokenizer sometimes gives incorrect tokenizations.** This can be achieved by directly using the `LlamaTokenizer` class, or passing in the `use_fast=False` option for the `AutoTokenizer` class. See the following example for usage.
33
+
34
+ ```python
35
+ import torch
36
+ from transformers import LlamaTokenizer, LlamaForCausalLM
37
+
38
+ model_path = 'openlm-research/open_llama_3b'
39
+ # model_path = 'openlm-research/open_llama_7b'
40
+
41
+ tokenizer = LlamaTokenizer.from_pretrained(model_path)
42
+ model = LlamaForCausalLM.from_pretrained(
43
+ model_path, torch_dtype=torch.float16, device_map='auto',
44
+ )
45
+
46
+ prompt = 'Q: What is the largest animal?\nA:'
47
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids
48
+
49
+ generation_output = model.generate(
50
+ input_ids=input_ids, max_new_tokens=32
51
+ )
52
+ print(tokenizer.decode(generation_output[0]))
53
+ ```
54
+
55
+ For more advanced usage, please follow the [transformers LLaMA documentation](https://huggingface.co/docs/transformers/main/model_doc/llama).
56
+
57
+ ### Evaluating with LM-Eval-Harness
58
+ The model can be evaluated with [lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness). However, due to the aforementioned tokenizer issue, we need to avoid using the fast tokenizer to obtain the correct results. This can be achieved by passing in `use_fast=False` to [this part of lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness/blob/4b701e228768052cfae9043dca13e82052ca5eea/lm_eval/models/huggingface.py#LL313C9-L316C10), as shown in the example below:
59
+
60
+ ```python
61
+ tokenizer = self.AUTO_TOKENIZER_CLASS.from_pretrained(
62
+ pretrained if tokenizer is None else tokenizer,
63
+ revision=revision + ("/" + subfolder if subfolder is not None else ""),
64
+ use_fast=False
65
+ )
66
+ ```
67
+
68
+ ### Loading the Weights with EasyLM
69
+
70
+ For using the weights in our EasyLM framework, please refer to the [LLaMA documentation of EasyLM](https://github.com/young-geng/EasyLM/blob/main/docs/llama.md). Note that unlike the original LLaMA model, our OpenLLaMA tokenizer and weights are trained completely from scratch so it is no longer needed to obtain the original LLaMA tokenizer and weights. Note that we use BOS (beginning of sentence) token (id=1) during training, so it is best to prepend this token for best performance during few-shot evaluation.
71
+
72
+
73
+
74
+ ## Dataset and Training
75
+
76
+ We train our models on the [RedPajama](https://www.together.xyz/blog/redpajama) dataset released by [Together](https://www.together.xyz/), which is a reproduction of the LLaMA training dataset containing over 1.2 trillion tokens. We follow the exactly same preprocessing steps and training hyperparameters as the original LLaMA paper, including model architecture, context length, training steps, learning rate schedule, and optimizer. The only difference between our setting and the original one is the dataset used: OpenLLaMA employs the RedPajama dataset rather than the one utilized by the original LLaMA.
77
+
78
+ We train the models on cloud TPU-v4s using [EasyLM](https://github.com/young-geng/EasyLM), a JAX based training pipeline we developed for training and fine-tuning large language models. We employ a combination of normal data parallelism and [fully sharded data parallelism (also know as ZeRO stage 3)](https://engineering.fb.com/2021/07/15/open-source/fsdp/) to balance the training throughput and memory usage. Overall we reach a throughput of over 2200 tokens / second / TPU-v4 chip for our 7B model.
79
+
80
+
81
+ ## Evaluation
82
+ We evaluated OpenLLaMA on a wide range of tasks using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). The LLaMA results are generated by running the original LLaMA model on the same evaluation metrics. We note that our results for the LLaMA model differ slightly from the original LLaMA paper, which we believe is a result of different evaluation protocols. Similar differences have been reported in [this issue of lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/issues/443). Additionally, we present the results of GPT-J, a 6B parameter model trained on the [Pile](https://pile.eleuther.ai/) dataset by [EleutherAI](https://www.eleuther.ai/).
83
+
84
+ The original LLaMA model was trained for 1 trillion tokens and GPT-J was trained for 500 billion tokens. We present the results in the table below. OpenLLaMA exhibits comparable performance to the original LLaMA and GPT-J across a majority of tasks, and outperforms them in some tasks.
85
+
86
+
87
+ | **Task/Metric** | GPT-J 6B | LLaMA 7B | OpenLLaMA 7B | OpenLLaMA 3B | OpenLLaMA 13B 600BT |
88
+ | ---------------------- | -------- | -------- | ------------ | ------------ | ------------------- |
89
+ | anli_r1/acc | 0.32 | 0.35 | 0.33 | 0.33 | 0.33 |
90
+ | anli_r2/acc | 0.34 | 0.34 | 0.36 | 0.32 | 0.35 |
91
+ | anli_r3/acc | 0.35 | 0.37 | 0.38 | 0.35 | 0.38 |
92
+ | arc_challenge/acc | 0.34 | 0.39 | 0.37 | 0.34 | 0.39 |
93
+ | arc_challenge/acc_norm | 0.37 | 0.41 | 0.38 | 0.37 | 0.42 |
94
+ | arc_easy/acc | 0.67 | 0.68 | 0.72 | 0.69 | 0.74 |
95
+ | arc_easy/acc_norm | 0.62 | 0.52 | 0.68 | 0.65 | 0.70 |
96
+ | ddboolq/acc | 0.50 | 0.56 | 0.53 | 0.49 | 0.71 |
97
+ | hellaswag/acc | 0.36 | 0.36 | 0.63 | 0.43 | 0.54 |
98
+ | hellaswag/acc_norm | 0.66 | 0.73 | 0.72 | 0.67 | 0.73 |
99
+ | openbookqa/acc | 0.29 | 0.29 | 0.30 | 0.27 | 0.30 |
100
+ | openbookqa/acc_norm | 0.38 | 0.41 | 0.40 | 0.40 | 0.41 |
101
+ | piqa/acc | 0.75 | 0.78 | 0.76 | 0.75 | 0.77 |
102
+ | piqa/acc_norm | 0.76 | 0.78 | 0.77 | 0.76 | 0.78 |
103
+ | record/em | 0.88 | 0.91 | 0.89 | 0.88 | 0.90 |
104
+ | record/f1 | 0.89 | 0.91 | 0.90 | 0.89 | 0.90 |
105
+ | rte/acc | 0.54 | 0.56 | 0.60 | 0.58 | 0.65 |
106
+ | truthfulqa_mc/mc1 | 0.20 | 0.21 | 0.23 | 0.22 | 0.22 |
107
+ | truthfulqa_mc/mc2 | 0.36 | 0.34 | 0.35 | 0.35 | 0.35 |
108
+ | wic/acc | 0.50 | 0.50 | 0.51 | 0.48 | 0.49 |
109
+ | winogrande/acc | 0.64 | 0.68 | 0.67 | 0.62 | 0.67 |
110
+ | Average | 0.51 | 0.53 | 0.55 | 0.52 | 0.56 |
111
+
112
+
113
+ We removed the task CB and WSC from our benchmark, as our model performs suspiciously well on these two tasks. We hypothesize that there could be a benchmark data contamination in the training set.
114
+
115
+
116
+ ## Contact
117
+
118
+ We would love to get feedback from the community. If you have any questions, please open an issue or contact us.
119
+
120
+ OpenLLaMA is developed by:
121
+ [Xinyang Geng](https://young-geng.xyz/)* and [Hao Liu](https://www.haoliu.site/)* from Berkeley AI Research.
122
+ *Equal Contribution
123
+
124
+
125
+
126
+ ## Acknowledgment
127
+
128
+ We thank the [Google TPU Research Cloud](https://sites.research.google/trc/about/) program for providing part of the computation resources. We’d like to specially thank Jonathan Caton from TPU Research Cloud for helping us organizing compute resources, Rafi Witten from the Google Cloud team and James Bradbury from the Google JAX team for helping us optimizing our training throughput. We’d also want to thank Charlie Snell, Gautier Izacard, Eric Wallace, Lianmin Zheng and our user community for the discussions and feedback.
129
+
130
+ The OpenLLaMA 13B model is trained in collaboration with [Stability AI](https://stability.ai/), and we thank Stability AI for providing the computation resources. We’d like to especially thank David Ha and Shivanshu Purohit for the coordinating the logistics and providing engineering support.
131
+
132
+
133
+ ## Reference
134
+
135
+ If you found OpenLLaMA useful in your research or applications, please cite using the following BibTeX:
136
+ ```
137
+ @software{openlm2023openllama,
138
+ author = {Geng, Xinyang and Liu, Hao},
139
+ title = {OpenLLaMA: An Open Reproduction of LLaMA},
140
+ month = May,
141
+ year = 2023,
142
+ url = {https://github.com/openlm-research/open_llama}
143
+ }
144
+ ```
145
+ ```
146
+ @software{together2023redpajama,
147
+ author = {Together Computer},
148
+ title = {RedPajama-Data: An Open Source Recipe to Reproduce LLaMA training dataset},
149
+ month = April,
150
+ year = 2023,
151
+ url = {https://github.com/togethercomputer/RedPajama-Data}
152
+ }
153
+ ```
154
+ ```
155
+ @article{touvron2023llama,
156
+ title={Llama: Open and efficient foundation language models},
157
+ author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and others},
158
+ journal={arXiv preprint arXiv:2302.13971},
159
+ year={2023}
160
+ }
161
+ ```
162
+
163
+
164
+
165
+
166
+
167
+
168
+
169
+
170
+
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoModel": "modelling_llama.LlamaModel",
7
+ "AutoModelForCausalLM": "modelling_llama.LlamaForCausalLM",
8
+ "AutoModelForSequenceClassification": "modelling_llama.LlamaForSequenceClassification"
9
+ },
10
+ "bos_token_id": 1,
11
+ "eos_token_id": 2,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 11008,
16
+ "max_position_embeddings": 2048,
17
+ "model_type": "llama",
18
+ "num_attention_heads": 32,
19
+ "num_hidden_layers": 32,
20
+ "pad_token_id": 0,
21
+ "rms_norm_eps": 1e-06,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "float16",
24
+ "transformers_version": "4.30.0.dev0",
25
+ "use_cache": true,
26
+ "vocab_size": 32000
27
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.30.0.dev0"
7
+ }
modelling_llama.py ADDED
@@ -0,0 +1,895 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch LLaMA model."""
21
+ import math
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
31
+ from transformers.modeling_utils import PreTrainedModel
32
+ from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
33
+ from transformers.models.llama.modeling_llama import LlamaConfig
34
+
35
+
36
+ logger = logging.get_logger(__name__)
37
+
38
+ _CONFIG_FOR_DOC = "LlamaConfig"
39
+
40
+
41
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
42
+ def _make_causal_mask(
43
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
44
+ ):
45
+ """
46
+ Make causal mask used for bi-directional self-attention.
47
+ """
48
+ bsz, tgt_len = input_ids_shape
49
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
50
+ mask_cond = torch.arange(mask.size(-1), device=device)
51
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
52
+ mask = mask.to(dtype)
53
+
54
+ if past_key_values_length > 0:
55
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
56
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
57
+
58
+
59
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
60
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
61
+ """
62
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
63
+ """
64
+ bsz, src_len = mask.size()
65
+ tgt_len = tgt_len if tgt_len is not None else src_len
66
+
67
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
68
+
69
+ inverted_mask = 1.0 - expanded_mask
70
+
71
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
72
+
73
+
74
+ class LlamaRMSNorm(nn.Module):
75
+ def __init__(self, hidden_size, eps=1e-6):
76
+ """
77
+ LlamaRMSNorm is equivalent to T5LayerNorm
78
+ """
79
+ super().__init__()
80
+ self.weight = nn.Parameter(torch.ones(hidden_size))
81
+ self.variance_epsilon = eps
82
+
83
+ def forward(self, hidden_states):
84
+ input_dtype = hidden_states.dtype
85
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
86
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
87
+
88
+ return (self.weight * hidden_states).to(input_dtype)
89
+
90
+
91
+ class LlamaRotaryEmbedding(torch.nn.Module):
92
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, scale=1, device=None):
93
+ super().__init__()
94
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
95
+ self.register_buffer("inv_freq", inv_freq)
96
+
97
+ # Build here to make `torch.jit.trace` work.
98
+ self.max_seq_len_cached = max_position_embeddings
99
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
100
+
101
+ self.scale = scale
102
+ t *= self.scale
103
+
104
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
105
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
106
+ emb = torch.cat((freqs, freqs), dim=-1)
107
+ dtype = torch.get_default_dtype()
108
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
109
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
110
+
111
+ def forward(self, x, seq_len=None):
112
+ # x: [bs, num_attention_heads, seq_len, head_size]
113
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
114
+ if seq_len > self.max_seq_len_cached:
115
+ self.max_seq_len_cached = seq_len
116
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
117
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
118
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
119
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
120
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(x.dtype), persistent=False)
121
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(x.dtype), persistent=False)
122
+ return (
123
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
124
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
125
+ )
126
+
127
+
128
+ def rotate_half(x):
129
+ """Rotates half the hidden dims of the input."""
130
+ x1 = x[..., : x.shape[-1] // 2]
131
+ x2 = x[..., x.shape[-1] // 2 :]
132
+ return torch.cat((-x2, x1), dim=-1)
133
+
134
+
135
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
136
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
137
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
138
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
139
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
140
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
141
+ q_embed = (q * cos) + (rotate_half(q) * sin)
142
+ k_embed = (k * cos) + (rotate_half(k) * sin)
143
+ return q_embed, k_embed
144
+
145
+
146
+ class LlamaMLP(nn.Module):
147
+ def __init__(
148
+ self,
149
+ hidden_size: int,
150
+ intermediate_size: int,
151
+ hidden_act: str,
152
+ ):
153
+ super().__init__()
154
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
155
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
156
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
157
+ self.act_fn = ACT2FN[hidden_act]
158
+
159
+ def forward(self, x):
160
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
161
+
162
+
163
+ class LlamaAttention(nn.Module):
164
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
165
+
166
+ def __init__(self, config: LlamaConfig):
167
+ super().__init__()
168
+ self.config = config
169
+ self.hidden_size = config.hidden_size
170
+ self.num_heads = config.num_attention_heads
171
+ self.head_dim = self.hidden_size // self.num_heads
172
+ self.max_position_embeddings = config.max_position_embeddings
173
+ self.position_embeddings_scale = 2048 / self.max_position_embeddings
174
+
175
+ if (self.head_dim * self.num_heads) != self.hidden_size:
176
+ raise ValueError(
177
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
178
+ f" and `num_heads`: {self.num_heads})."
179
+ )
180
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
181
+ self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
182
+ self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
183
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
184
+ self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings, scale=self.position_embeddings_scale)
185
+
186
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
187
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
188
+
189
+ def forward(
190
+ self,
191
+ hidden_states: torch.Tensor,
192
+ attention_mask: Optional[torch.Tensor] = None,
193
+ position_ids: Optional[torch.LongTensor] = None,
194
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
195
+ output_attentions: bool = False,
196
+ use_cache: bool = False,
197
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
198
+ bsz, q_len, _ = hidden_states.size()
199
+
200
+ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
201
+ key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
202
+ value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
203
+
204
+ kv_seq_len = key_states.shape[-2]
205
+ if past_key_value is not None:
206
+ kv_seq_len += past_key_value[0].shape[-2]
207
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
208
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
209
+ # [bsz, nh, t, hd]
210
+
211
+ if past_key_value is not None:
212
+ # reuse k, v, self_attention
213
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
214
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
215
+
216
+ past_key_value = (key_states, value_states) if use_cache else None
217
+
218
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
219
+
220
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
221
+ raise ValueError(
222
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
223
+ f" {attn_weights.size()}"
224
+ )
225
+
226
+ if attention_mask is not None:
227
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
228
+ raise ValueError(
229
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
230
+ )
231
+ attn_weights = attn_weights + attention_mask
232
+ attn_weights = torch.max(
233
+ attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
234
+ )
235
+
236
+ # upcast attention to fp32
237
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
238
+ attn_output = torch.matmul(attn_weights, value_states)
239
+
240
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
241
+ raise ValueError(
242
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
243
+ f" {attn_output.size()}"
244
+ )
245
+
246
+ attn_output = attn_output.transpose(1, 2)
247
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
248
+
249
+ attn_output = self.o_proj(attn_output)
250
+
251
+ if not output_attentions:
252
+ attn_weights = None
253
+
254
+ return attn_output, attn_weights, past_key_value
255
+
256
+
257
+ class LlamaDecoderLayer(nn.Module):
258
+ def __init__(self, config: LlamaConfig):
259
+ super().__init__()
260
+ self.hidden_size = config.hidden_size
261
+ self.self_attn = LlamaAttention(config=config)
262
+ self.mlp = LlamaMLP(
263
+ hidden_size=self.hidden_size,
264
+ intermediate_size=config.intermediate_size,
265
+ hidden_act=config.hidden_act,
266
+ )
267
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
268
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
269
+
270
+ def forward(
271
+ self,
272
+ hidden_states: torch.Tensor,
273
+ attention_mask: Optional[torch.Tensor] = None,
274
+ position_ids: Optional[torch.LongTensor] = None,
275
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
276
+ output_attentions: Optional[bool] = False,
277
+ use_cache: Optional[bool] = False,
278
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
279
+ """
280
+ Args:
281
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
282
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
283
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
284
+ output_attentions (`bool`, *optional*):
285
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
286
+ returned tensors for more detail.
287
+ use_cache (`bool`, *optional*):
288
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
289
+ (see `past_key_values`).
290
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
291
+ """
292
+
293
+ residual = hidden_states
294
+
295
+ hidden_states = self.input_layernorm(hidden_states)
296
+
297
+ # Self Attention
298
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
299
+ hidden_states=hidden_states,
300
+ attention_mask=attention_mask,
301
+ position_ids=position_ids,
302
+ past_key_value=past_key_value,
303
+ output_attentions=output_attentions,
304
+ use_cache=use_cache,
305
+ )
306
+ hidden_states = residual + hidden_states
307
+
308
+ # Fully Connected
309
+ residual = hidden_states
310
+ hidden_states = self.post_attention_layernorm(hidden_states)
311
+ hidden_states = self.mlp(hidden_states)
312
+ hidden_states = residual + hidden_states
313
+
314
+ outputs = (hidden_states,)
315
+
316
+ if output_attentions:
317
+ outputs += (self_attn_weights,)
318
+
319
+ if use_cache:
320
+ outputs += (present_key_value,)
321
+
322
+ return outputs
323
+
324
+
325
+ LLAMA_START_DOCSTRING = r"""
326
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
327
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
328
+ etc.)
329
+
330
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
331
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
332
+ and behavior.
333
+
334
+ Parameters:
335
+ config ([`LlamaConfig`]):
336
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
337
+ load the weights associated with the model, only the configuration. Check out the
338
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
339
+ """
340
+
341
+
342
+ @add_start_docstrings(
343
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
344
+ LLAMA_START_DOCSTRING,
345
+ )
346
+ class LlamaPreTrainedModel(PreTrainedModel):
347
+ config_class = LlamaConfig
348
+ base_model_prefix = "model"
349
+ supports_gradient_checkpointing = True
350
+ _no_split_modules = ["LlamaDecoderLayer"]
351
+ _skip_keys_device_placement = "past_key_values"
352
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
353
+
354
+ def _init_weights(self, module):
355
+ std = self.config.initializer_range
356
+ if isinstance(module, nn.Linear):
357
+ module.weight.data.normal_(mean=0.0, std=std)
358
+ if module.bias is not None:
359
+ module.bias.data.zero_()
360
+ elif isinstance(module, nn.Embedding):
361
+ module.weight.data.normal_(mean=0.0, std=std)
362
+ if module.padding_idx is not None:
363
+ module.weight.data[module.padding_idx].zero_()
364
+
365
+ def _set_gradient_checkpointing(self, module, value=False):
366
+ if isinstance(module, LlamaModel):
367
+ module.gradient_checkpointing = value
368
+
369
+
370
+ LLAMA_INPUTS_DOCSTRING = r"""
371
+ Args:
372
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
373
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
374
+ it.
375
+
376
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
377
+ [`PreTrainedTokenizer.__call__`] for details.
378
+
379
+ [What are input IDs?](../glossary#input-ids)
380
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
381
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
382
+
383
+ - 1 for tokens that are **not masked**,
384
+ - 0 for tokens that are **masked**.
385
+
386
+ [What are attention masks?](../glossary#attention-mask)
387
+
388
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
389
+ [`PreTrainedTokenizer.__call__`] for details.
390
+
391
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
392
+ `past_key_values`).
393
+
394
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
395
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
396
+ information on the default strategy.
397
+
398
+ - 1 indicates the head is **not masked**,
399
+ - 0 indicates the head is **masked**.
400
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
401
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
402
+ config.n_positions - 1]`.
403
+
404
+ [What are position IDs?](../glossary#position-ids)
405
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
406
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
407
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
408
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
409
+
410
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
411
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
412
+
413
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
414
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
415
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
416
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
417
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
418
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
419
+ model's internal embedding lookup matrix.
420
+ use_cache (`bool`, *optional*):
421
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
422
+ `past_key_values`).
423
+ output_attentions (`bool`, *optional*):
424
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
425
+ tensors for more detail.
426
+ output_hidden_states (`bool`, *optional*):
427
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
428
+ more detail.
429
+ return_dict (`bool`, *optional*):
430
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
431
+ """
432
+
433
+
434
+ @add_start_docstrings(
435
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
436
+ LLAMA_START_DOCSTRING,
437
+ )
438
+ class LlamaModel(LlamaPreTrainedModel):
439
+ """
440
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
441
+
442
+ Args:
443
+ config: LlamaConfig
444
+ """
445
+
446
+ def __init__(self, config: LlamaConfig):
447
+ super().__init__(config)
448
+ self.padding_idx = config.pad_token_id
449
+ self.vocab_size = config.vocab_size
450
+
451
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
452
+ self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
453
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
454
+
455
+ self.gradient_checkpointing = False
456
+ # Initialize weights and apply final processing
457
+ self.post_init()
458
+
459
+ def get_input_embeddings(self):
460
+ return self.embed_tokens
461
+
462
+ def set_input_embeddings(self, value):
463
+ self.embed_tokens = value
464
+
465
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
466
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
467
+ # create causal mask
468
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
469
+ combined_attention_mask = None
470
+ if input_shape[-1] > 1:
471
+ combined_attention_mask = _make_causal_mask(
472
+ input_shape,
473
+ inputs_embeds.dtype,
474
+ device=inputs_embeds.device,
475
+ past_key_values_length=past_key_values_length,
476
+ )
477
+
478
+ if attention_mask is not None:
479
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
480
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
481
+ inputs_embeds.device
482
+ )
483
+ combined_attention_mask = (
484
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
485
+ )
486
+
487
+ return combined_attention_mask
488
+
489
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
490
+ def forward(
491
+ self,
492
+ input_ids: torch.LongTensor = None,
493
+ attention_mask: Optional[torch.Tensor] = None,
494
+ position_ids: Optional[torch.LongTensor] = None,
495
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
496
+ inputs_embeds: Optional[torch.FloatTensor] = None,
497
+ use_cache: Optional[bool] = None,
498
+ output_attentions: Optional[bool] = None,
499
+ output_hidden_states: Optional[bool] = None,
500
+ return_dict: Optional[bool] = None,
501
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
502
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
503
+ output_hidden_states = (
504
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
505
+ )
506
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
507
+
508
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
509
+
510
+ # retrieve input_ids and inputs_embeds
511
+ if input_ids is not None and inputs_embeds is not None:
512
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
513
+ elif input_ids is not None:
514
+ batch_size, seq_length = input_ids.shape
515
+ elif inputs_embeds is not None:
516
+ batch_size, seq_length, _ = inputs_embeds.shape
517
+ else:
518
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
519
+
520
+ seq_length_with_past = seq_length
521
+ past_key_values_length = 0
522
+
523
+ if past_key_values is not None:
524
+ past_key_values_length = past_key_values[0][0].shape[2]
525
+ seq_length_with_past = seq_length_with_past + past_key_values_length
526
+
527
+ if position_ids is None:
528
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
529
+ position_ids = torch.arange(
530
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
531
+ )
532
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
533
+ else:
534
+ position_ids = position_ids.view(-1, seq_length).long()
535
+
536
+ if inputs_embeds is None:
537
+ inputs_embeds = self.embed_tokens(input_ids)
538
+ # embed positions
539
+ if attention_mask is None:
540
+ attention_mask = torch.ones(
541
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
542
+ )
543
+ attention_mask = self._prepare_decoder_attention_mask(
544
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
545
+ )
546
+
547
+ hidden_states = inputs_embeds
548
+
549
+ if self.gradient_checkpointing and self.training:
550
+ if use_cache:
551
+ logger.warning_once(
552
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
553
+ )
554
+ use_cache = False
555
+
556
+ # decoder layers
557
+ all_hidden_states = () if output_hidden_states else None
558
+ all_self_attns = () if output_attentions else None
559
+ next_decoder_cache = () if use_cache else None
560
+
561
+ for idx, decoder_layer in enumerate(self.layers):
562
+ if output_hidden_states:
563
+ all_hidden_states += (hidden_states,)
564
+
565
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
566
+
567
+ if self.gradient_checkpointing and self.training:
568
+
569
+ def create_custom_forward(module):
570
+ def custom_forward(*inputs):
571
+ # None for past_key_value
572
+ return module(*inputs, output_attentions, None)
573
+
574
+ return custom_forward
575
+
576
+ layer_outputs = torch.utils.checkpoint.checkpoint(
577
+ create_custom_forward(decoder_layer),
578
+ hidden_states,
579
+ attention_mask,
580
+ position_ids,
581
+ None,
582
+ )
583
+ else:
584
+ layer_outputs = decoder_layer(
585
+ hidden_states,
586
+ attention_mask=attention_mask,
587
+ position_ids=position_ids,
588
+ past_key_value=past_key_value,
589
+ output_attentions=output_attentions,
590
+ use_cache=use_cache,
591
+ )
592
+
593
+ hidden_states = layer_outputs[0]
594
+
595
+ if use_cache:
596
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
597
+
598
+ if output_attentions:
599
+ all_self_attns += (layer_outputs[1],)
600
+
601
+ hidden_states = self.norm(hidden_states)
602
+
603
+ # add hidden states from the last decoder layer
604
+ if output_hidden_states:
605
+ all_hidden_states += (hidden_states,)
606
+
607
+ next_cache = next_decoder_cache if use_cache else None
608
+ if not return_dict:
609
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
610
+ return BaseModelOutputWithPast(
611
+ last_hidden_state=hidden_states,
612
+ past_key_values=next_cache,
613
+ hidden_states=all_hidden_states,
614
+ attentions=all_self_attns,
615
+ )
616
+
617
+
618
+ class LlamaForCausalLM(LlamaPreTrainedModel):
619
+ _tied_weights_keys = ["lm_head.weight"]
620
+
621
+ def __init__(self, config):
622
+ super().__init__(config)
623
+ self.model = LlamaModel(config)
624
+
625
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
626
+
627
+ # Initialize weights and apply final processing
628
+ self.post_init()
629
+
630
+ def get_input_embeddings(self):
631
+ return self.model.embed_tokens
632
+
633
+ def set_input_embeddings(self, value):
634
+ self.model.embed_tokens = value
635
+
636
+ def get_output_embeddings(self):
637
+ return self.lm_head
638
+
639
+ def set_output_embeddings(self, new_embeddings):
640
+ self.lm_head = new_embeddings
641
+
642
+ def set_decoder(self, decoder):
643
+ self.model = decoder
644
+
645
+ def get_decoder(self):
646
+ return self.model
647
+
648
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
649
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
650
+ def forward(
651
+ self,
652
+ input_ids: torch.LongTensor = None,
653
+ attention_mask: Optional[torch.Tensor] = None,
654
+ position_ids: Optional[torch.LongTensor] = None,
655
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
656
+ inputs_embeds: Optional[torch.FloatTensor] = None,
657
+ labels: Optional[torch.LongTensor] = None,
658
+ use_cache: Optional[bool] = None,
659
+ output_attentions: Optional[bool] = None,
660
+ output_hidden_states: Optional[bool] = None,
661
+ return_dict: Optional[bool] = None,
662
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
663
+ r"""
664
+ Args:
665
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
666
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
667
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
668
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
669
+
670
+ Returns:
671
+
672
+ Example:
673
+
674
+ ```python
675
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
676
+
677
+ >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
678
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
679
+
680
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
681
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
682
+
683
+ >>> # Generate
684
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
685
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
686
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
687
+ ```"""
688
+
689
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
690
+ output_hidden_states = (
691
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
692
+ )
693
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
694
+
695
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
696
+ outputs = self.model(
697
+ input_ids=input_ids,
698
+ attention_mask=attention_mask,
699
+ position_ids=position_ids,
700
+ past_key_values=past_key_values,
701
+ inputs_embeds=inputs_embeds,
702
+ use_cache=use_cache,
703
+ output_attentions=output_attentions,
704
+ output_hidden_states=output_hidden_states,
705
+ return_dict=return_dict,
706
+ )
707
+
708
+ hidden_states = outputs[0]
709
+ logits = self.lm_head(hidden_states)
710
+
711
+ loss = None
712
+ if labels is not None:
713
+ # Shift so that tokens < n predict n
714
+ shift_logits = logits[..., :-1, :].contiguous()
715
+ shift_labels = labels[..., 1:].contiguous()
716
+ # Flatten the tokens
717
+ loss_fct = CrossEntropyLoss()
718
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
719
+ shift_labels = shift_labels.view(-1)
720
+ # Enable model parallelism
721
+ shift_labels = shift_labels.to(shift_logits.device)
722
+ loss = loss_fct(shift_logits, shift_labels)
723
+
724
+ if not return_dict:
725
+ output = (logits,) + outputs[1:]
726
+ return (loss,) + output if loss is not None else output
727
+
728
+ return CausalLMOutputWithPast(
729
+ loss=loss,
730
+ logits=logits,
731
+ past_key_values=outputs.past_key_values,
732
+ hidden_states=outputs.hidden_states,
733
+ attentions=outputs.attentions,
734
+ )
735
+
736
+ def prepare_inputs_for_generation(
737
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
738
+ ):
739
+ if past_key_values:
740
+ input_ids = input_ids[:, -1:]
741
+
742
+ position_ids = kwargs.get("position_ids", None)
743
+ if attention_mask is not None and position_ids is None:
744
+ # create position_ids on the fly for batch generation
745
+ position_ids = attention_mask.long().cumsum(-1) - 1
746
+ position_ids.masked_fill_(attention_mask == 0, 1)
747
+ if past_key_values:
748
+ position_ids = position_ids[:, -1].unsqueeze(-1)
749
+
750
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
751
+ if inputs_embeds is not None and past_key_values is None:
752
+ model_inputs = {"inputs_embeds": inputs_embeds}
753
+ else:
754
+ model_inputs = {"input_ids": input_ids}
755
+
756
+ model_inputs.update(
757
+ {
758
+ "position_ids": position_ids,
759
+ "past_key_values": past_key_values,
760
+ "use_cache": kwargs.get("use_cache"),
761
+ "attention_mask": attention_mask,
762
+ }
763
+ )
764
+ return model_inputs
765
+
766
+ @staticmethod
767
+ def _reorder_cache(past_key_values, beam_idx):
768
+ reordered_past = ()
769
+ for layer_past in past_key_values:
770
+ reordered_past += (
771
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
772
+ )
773
+ return reordered_past
774
+
775
+
776
+ @add_start_docstrings(
777
+ """
778
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
779
+
780
+ [`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
781
+ (e.g. GPT-2) do.
782
+
783
+ Since it does classification on the last token, it requires to know the position of the last token. If a
784
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
785
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
786
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
787
+ each row of the batch).
788
+ """,
789
+ LLAMA_START_DOCSTRING,
790
+ )
791
+ class LlamaForSequenceClassification(LlamaPreTrainedModel):
792
+ _keys_to_ignore_on_load_missing = [r"lm_head.weight"]
793
+
794
+ def __init__(self, config):
795
+ super().__init__(config)
796
+ self.num_labels = config.num_labels
797
+ self.model = LlamaModel(config)
798
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
799
+
800
+ # Initialize weights and apply final processing
801
+ self.post_init()
802
+
803
+ def get_input_embeddings(self):
804
+ return self.model.embed_tokens
805
+
806
+ def set_input_embeddings(self, value):
807
+ self.model.embed_tokens = value
808
+
809
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
810
+ def forward(
811
+ self,
812
+ input_ids: torch.LongTensor = None,
813
+ attention_mask: Optional[torch.Tensor] = None,
814
+ position_ids: Optional[torch.LongTensor] = None,
815
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
816
+ inputs_embeds: Optional[torch.FloatTensor] = None,
817
+ labels: Optional[torch.LongTensor] = None,
818
+ use_cache: Optional[bool] = None,
819
+ output_attentions: Optional[bool] = None,
820
+ output_hidden_states: Optional[bool] = None,
821
+ return_dict: Optional[bool] = None,
822
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
823
+ r"""
824
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
825
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
826
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
827
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
828
+ """
829
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
830
+
831
+ transformer_outputs = self.model(
832
+ input_ids,
833
+ attention_mask=attention_mask,
834
+ position_ids=position_ids,
835
+ past_key_values=past_key_values,
836
+ inputs_embeds=inputs_embeds,
837
+ use_cache=use_cache,
838
+ output_attentions=output_attentions,
839
+ output_hidden_states=output_hidden_states,
840
+ return_dict=return_dict,
841
+ )
842
+ hidden_states = transformer_outputs[0]
843
+ logits = self.score(hidden_states)
844
+
845
+ if input_ids is not None:
846
+ batch_size = input_ids.shape[0]
847
+ else:
848
+ batch_size = inputs_embeds.shape[0]
849
+
850
+ if self.config.pad_token_id is None and batch_size != 1:
851
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
852
+ if self.config.pad_token_id is None:
853
+ sequence_lengths = -1
854
+ else:
855
+ if input_ids is not None:
856
+ sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
857
+ else:
858
+ sequence_lengths = -1
859
+
860
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
861
+
862
+ loss = None
863
+ if labels is not None:
864
+ labels = labels.to(logits.device)
865
+ if self.config.problem_type is None:
866
+ if self.num_labels == 1:
867
+ self.config.problem_type = "regression"
868
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
869
+ self.config.problem_type = "single_label_classification"
870
+ else:
871
+ self.config.problem_type = "multi_label_classification"
872
+
873
+ if self.config.problem_type == "regression":
874
+ loss_fct = MSELoss()
875
+ if self.num_labels == 1:
876
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
877
+ else:
878
+ loss = loss_fct(pooled_logits, labels)
879
+ elif self.config.problem_type == "single_label_classification":
880
+ loss_fct = CrossEntropyLoss()
881
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
882
+ elif self.config.problem_type == "multi_label_classification":
883
+ loss_fct = BCEWithLogitsLoss()
884
+ loss = loss_fct(pooled_logits, labels)
885
+ if not return_dict:
886
+ output = (pooled_logits,) + transformer_outputs[1:]
887
+ return ((loss,) + output) if loss is not None else output
888
+
889
+ return SequenceClassifierOutputWithPast(
890
+ loss=loss,
891
+ logits=pooled_logits,
892
+ past_key_values=transformer_outputs.past_key_values,
893
+ hidden_states=transformer_outputs.hidden_states,
894
+ attentions=transformer_outputs.attentions,
895
+ )
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66347239b4c055cb28879975813f20fd57807a133e8c5ec10f2287af4ffe242c
3
+ size 9976634558
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8764ea9d807e0bdadd901218911aa0e7ca421f66134e08c3326846865c1c786
3
+ size 3500315539
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13476839424
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
268
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
269
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
270
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
271
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
272
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
273
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
274
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
275
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
276
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
277
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
278
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
279
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
280
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
281
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
282
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
283
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
284
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
285
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
286
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
287
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
288
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
289
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
290
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
291
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
292
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
293
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
294
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
295
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
296
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
297
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
298
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
299
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
300
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
301
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
302
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
303
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
304
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
305
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
306
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
307
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
308
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
309
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
310
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
311
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
312
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
313
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
314
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
315
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
316
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
317
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
318
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
319
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
320
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
321
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
322
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
323
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
324
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
325
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
326
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
327
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
328
+ "model.norm.weight": "pytorch_model-00002-of-00002.bin"
329
+ }
330
+ }
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": {"content": "<s>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "eos_token": {"content": "</s>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "unk_token": {"content": "<unk>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}}
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab1b681ec7fc02fed5edd3026687d7a692a918c4dd8e150ca2e3994a6229843b
3
+ size 534194
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"add_bos_token": true, "add_eos_token": false, "model_max_length": 2048, "pad_token": null, "sp_model_kwargs": {}, "tokenizer_class": "LlamaTokenizer", "clean_up_tokenization_spaces": false, "bos_token": {"__type": "AddedToken", "content": "<s>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "eos_token": {"__type": "AddedToken", "content": "</s>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "unk_token": {"__type": "AddedToken", "content": "<unk>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}}