File size: 3,121 Bytes
8d16b25 8b08e58 1a42a40 8d16b25 1a42a40 8b08e58 1a42a40 8d16b25 1a42a40 cd13223 1a42a40 d6ab683 1a42a40 d6ab683 26519d8 d6ab683 5889e10 d6ab683 26519d8 d6ab683 26519d8 d6ab683 d254407 2612fa2 d254407 695fc3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
---
pipeline_tag: sentence-similarity
tags:
- sentence-similarity
- sentence-transformers
license: mit
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- no
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
---
A quantized version of [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). Quantization was performed per-layer under the same conditions as our ELSERv2 model, as described [here](https://www.elastic.co/search-labs/blog/articles/introducing-elser-v2-part-1#quantization).
[Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf).
Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022
## Benchmarks
We performed a number of small benchmarks to assess both the changes in quality as well as inference latency against the baseline original model.
### Quality
Measuring NDCG@10 using the dev split of the MIRACL datasets for select languages, we see mostly a marginal change in quality of the quantized model.
| | de | yo| ru | ar | es | th |
| --- | --- | ---| --- | --- | --- | --- |
| multilingual-e5-small | 0.75862 | 0.56193 | 0.80309 | 0.82778 | 0.81672 | 0.85072 |
| multilingual-e5-small-optimized | 0.75992 | 0.48934 | 0.79668 | 0.82017 | 0.8135 | 0.84316 |
To test the English out-of-domain performance, we used the test split of various datasets in the BEIR evaluation. Measuring NDCG@10, we see a larger change in SCIFACT, but marginal in the other datasets evaluated.
| | FIQA | SCIFACT | nfcorpus |
| --- | --- | --- | --- |
| multilingual-e5-small | 0.33126 | 0.677 | 0.31004 |
| multilingual-e5-small-optimized | 0.31734 | 0.65484 | 0.30126 |
### Performance
Using a PyTorch model traced for Linux and Intel CPUs, we performed performance benchmarking with various lengths of input. Overall, we see on average a 50-20% performance improvement with the optimized model.
| input length (characters) | multilingual-e5-small | multilingual-e5-small-optimized | speedup |
| --- | --- | --- | --- |
| 0 - 50 | 0.0181 | 0.00826 | 54.36% |
| 50 - 100 | 0.0275 | 0.0164 | 40.36% |
| 100 - 150 | 0.0366 | 0.0237 | 35.25% |
| 150 - 200 | 0.0435 | 0.0301 | 30.80% |
| 200 - 250 | 0.0514 | 0.0379 | 26.26% |
| 250 - 300 | 0.0569 | 0.043 | 24.43% |
| 300 - 350 | 0.0663 | 0.0513 | 22.62% |
| 350 - 400 | 0.0737 | 0.0576 | 21.85% |
### Disclaimer
This e5 model, as defined, hosted, integrated and used in conjunction with our other Elastic Software is covered by our standard warranty.
|