--- language: en license: apache-2.0 datasets: - conll2003 model-index: - name: elastic/distilbert-base-cased-finetuned-conll03-english results: - task: type: token-classification name: Token Classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation metrics: - name: Accuracy type: accuracy value: 0.9834432212868665 verified: true - name: Precision type: precision value: 0.9857564461012737 verified: true - name: Recall type: recall value: 0.9882123948925569 verified: true - name: F1 type: f1 value: 0.9869828926905132 verified: true - name: loss type: loss value: 0.07748260349035263 verified: true --- [DistilBERT base cased](https://huggingface.co/distilbert-base-cased), fine-tuned for NER using the [conll03 english dataset](https://huggingface.co/datasets/conll2003). Note that this model is sensitive to capital letters — "english" is different than "English". For the case insensitive version, please use [elastic/distilbert-base-uncased-finetuned-conll03-english](https://huggingface.co/elastic/distilbert-base-uncased-finetuned-conll03-english). ## Versions - Transformers version: 4.3.1 - Datasets version: 1.3.0 ## Training ``` $ run_ner.py \ --model_name_or_path distilbert-base-cased \ --label_all_tokens True \ --return_entity_level_metrics True \ --dataset_name conll2003 \ --output_dir /tmp/distilbert-base-cased-finetuned-conll03-english \ --do_train \ --do_eval ``` After training, we update the labels to match the NER specific labels from the dataset [conll2003](https://raw.githubusercontent.com/huggingface/datasets/1.3.0/datasets/conll2003/dataset_infos.json)