eformat commited on
Commit
ad3d8e2
1 Parent(s): 487c52f

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ibm-granite/granite-3.0-8b-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "ibm-granite/granite-3.0-8b-base",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0487db4e58534a2548a655596f2f578368be7a0bdb5a664ebcac212c964971c8
3
+ size 34100216
checkpoint-200/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ibm-granite/granite-3.0-8b-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
checkpoint-200/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "ibm-granite/granite-3.0-8b-base",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-200/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0487db4e58534a2548a655596f2f578368be7a0bdb5a664ebcac212c964971c8
3
+ size 34100216
checkpoint-200/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5746457e5064b1dbc75f3545bd21d4601a5726eda5c8280f201d07f8d9ba24a
3
+ size 68292346
checkpoint-200/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04745946c21cb6d9e7af44a9e436e4207c8437de1201d76c48a7771e0e0f3bad
3
+ size 14244
checkpoint-200/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40514b8a2212f479584d7334d3fcf8c4668d282c84b271544e6dc4c72021472c
3
+ size 1064
checkpoint-200/trainer_state.json ADDED
@@ -0,0 +1,1433 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.00485074853113271,
5
+ "eval_steps": 500,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 2.4253742655663552e-05,
13
+ "grad_norm": 3.3759636878967285,
14
+ "learning_rate": 2.0000000000000003e-06,
15
+ "loss": 1.4074,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 4.8507485311327104e-05,
20
+ "grad_norm": 0.8539016246795654,
21
+ "learning_rate": 4.000000000000001e-06,
22
+ "loss": 1.4688,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 7.276122796699065e-05,
27
+ "grad_norm": NaN,
28
+ "learning_rate": 4.000000000000001e-06,
29
+ "loss": 2.2166,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 9.701497062265421e-05,
34
+ "grad_norm": 0.8566086888313293,
35
+ "learning_rate": 6e-06,
36
+ "loss": 1.3767,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.00012126871327831776,
41
+ "grad_norm": 1.564802885055542,
42
+ "learning_rate": 8.000000000000001e-06,
43
+ "loss": 1.3408,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0001455224559339813,
48
+ "grad_norm": 6.496278762817383,
49
+ "learning_rate": 1e-05,
50
+ "loss": 2.1242,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.00016977619858964487,
55
+ "grad_norm": 3.3886003494262695,
56
+ "learning_rate": 1.2e-05,
57
+ "loss": 1.639,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.00019402994124530841,
62
+ "grad_norm": 0.5676108598709106,
63
+ "learning_rate": 1.4000000000000001e-05,
64
+ "loss": 1.547,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.00021828368390097196,
69
+ "grad_norm": 7.636886119842529,
70
+ "learning_rate": 1.6000000000000003e-05,
71
+ "loss": 1.6577,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.00024253742655663553,
76
+ "grad_norm": 13.671367645263672,
77
+ "learning_rate": 1.8e-05,
78
+ "loss": 1.9861,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.00026679116921229907,
83
+ "grad_norm": 1.700162649154663,
84
+ "learning_rate": 2e-05,
85
+ "loss": 2.1347,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.0002910449118679626,
90
+ "grad_norm": 4.465837478637695,
91
+ "learning_rate": 2.2000000000000003e-05,
92
+ "loss": 1.2903,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.00031529865452362615,
97
+ "grad_norm": 5.200563430786133,
98
+ "learning_rate": 2.4e-05,
99
+ "loss": 1.727,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.00033955239717928975,
104
+ "grad_norm": 2.4282960891723633,
105
+ "learning_rate": 2.6000000000000002e-05,
106
+ "loss": 1.8629,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.0003638061398349533,
111
+ "grad_norm": 0.8094596266746521,
112
+ "learning_rate": 2.8000000000000003e-05,
113
+ "loss": 1.3653,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.00038805988249061683,
118
+ "grad_norm": 0.8468468189239502,
119
+ "learning_rate": 3e-05,
120
+ "loss": 1.9853,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.00041231362514628037,
125
+ "grad_norm": 0.9713991284370422,
126
+ "learning_rate": 3.2000000000000005e-05,
127
+ "loss": 1.0837,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.0004365673678019439,
132
+ "grad_norm": 0.8852229118347168,
133
+ "learning_rate": 3.4000000000000007e-05,
134
+ "loss": 1.8255,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.0004608211104576075,
139
+ "grad_norm": NaN,
140
+ "learning_rate": 3.4000000000000007e-05,
141
+ "loss": 1.8453,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.00048507485311327105,
146
+ "grad_norm": 0.7369140982627869,
147
+ "learning_rate": 3.6e-05,
148
+ "loss": 1.4695,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.0005093285957689346,
153
+ "grad_norm": 0.7990018129348755,
154
+ "learning_rate": 3.8e-05,
155
+ "loss": 0.9667,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.0005335823384245981,
160
+ "grad_norm": 51.18899917602539,
161
+ "learning_rate": 4e-05,
162
+ "loss": 2.049,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.0005578360810802617,
167
+ "grad_norm": 2.142543315887451,
168
+ "learning_rate": 4.2e-05,
169
+ "loss": 1.7967,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.0005820898237359252,
174
+ "grad_norm": 14.483644485473633,
175
+ "learning_rate": 4.4000000000000006e-05,
176
+ "loss": 1.6066,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.0006063435663915888,
181
+ "grad_norm": 0.4434223771095276,
182
+ "learning_rate": 4.600000000000001e-05,
183
+ "loss": 0.9649,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.0006305973090472523,
188
+ "grad_norm": 2.3446133136749268,
189
+ "learning_rate": 4.8e-05,
190
+ "loss": 2.2895,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.000654851051702916,
195
+ "grad_norm": 7.05695104598999,
196
+ "learning_rate": 5e-05,
197
+ "loss": 1.5174,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.0006791047943585795,
202
+ "grad_norm": 1.1299482583999634,
203
+ "learning_rate": 5.2000000000000004e-05,
204
+ "loss": 1.6502,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.000703358537014243,
209
+ "grad_norm": 1.1360725164413452,
210
+ "learning_rate": 5.4000000000000005e-05,
211
+ "loss": 1.9164,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.0007276122796699066,
216
+ "grad_norm": 0.6310778260231018,
217
+ "learning_rate": 5.6000000000000006e-05,
218
+ "loss": 1.3889,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.0007518660223255701,
223
+ "grad_norm": 23.649295806884766,
224
+ "learning_rate": 5.8e-05,
225
+ "loss": 1.8868,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.0007761197649812337,
230
+ "grad_norm": 1.4656137228012085,
231
+ "learning_rate": 6e-05,
232
+ "loss": 2.1166,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.0008003735076368972,
237
+ "grad_norm": 1.1650835275650024,
238
+ "learning_rate": 6.2e-05,
239
+ "loss": 1.6361,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.0008246272502925607,
244
+ "grad_norm": 3.5989675521850586,
245
+ "learning_rate": 6.400000000000001e-05,
246
+ "loss": 1.9528,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.0008488809929482243,
251
+ "grad_norm": NaN,
252
+ "learning_rate": 6.400000000000001e-05,
253
+ "loss": 1.1095,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.0008731347356038878,
258
+ "grad_norm": 0.7551969885826111,
259
+ "learning_rate": 6.6e-05,
260
+ "loss": 1.4748,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.0008973884782595515,
265
+ "grad_norm": 0.7345149517059326,
266
+ "learning_rate": 6.800000000000001e-05,
267
+ "loss": 1.3746,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.000921642220915215,
272
+ "grad_norm": 0.96466463804245,
273
+ "learning_rate": 7e-05,
274
+ "loss": 1.3491,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.0009458959635708786,
279
+ "grad_norm": 0.895024836063385,
280
+ "learning_rate": 7.2e-05,
281
+ "loss": 1.3976,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.0009701497062265421,
286
+ "grad_norm": 2.5485947132110596,
287
+ "learning_rate": 7.4e-05,
288
+ "loss": 1.6924,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.0009944034488822055,
293
+ "grad_norm": 14.429283142089844,
294
+ "learning_rate": 7.6e-05,
295
+ "loss": 1.2937,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.0010186571915378692,
300
+ "grad_norm": 0.8819990158081055,
301
+ "learning_rate": 7.800000000000001e-05,
302
+ "loss": 1.3237,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.0010429109341935328,
307
+ "grad_norm": 1.2532185316085815,
308
+ "learning_rate": 8e-05,
309
+ "loss": 1.2843,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.0010671646768491963,
314
+ "grad_norm": 3.7754809856414795,
315
+ "learning_rate": 8.2e-05,
316
+ "loss": 2.0701,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.00109141841950486,
321
+ "grad_norm": 6.247189044952393,
322
+ "learning_rate": 8.4e-05,
323
+ "loss": 1.3514,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.0011156721621605234,
328
+ "grad_norm": 2.4143786430358887,
329
+ "learning_rate": 8.6e-05,
330
+ "loss": 1.3366,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.001139925904816187,
335
+ "grad_norm": 0.9999021887779236,
336
+ "learning_rate": 8.800000000000001e-05,
337
+ "loss": 1.6014,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.0011641796474718504,
342
+ "grad_norm": 10.256402015686035,
343
+ "learning_rate": 9e-05,
344
+ "loss": 1.5158,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.001188433390127514,
349
+ "grad_norm": 3.1409249305725098,
350
+ "learning_rate": 9.200000000000001e-05,
351
+ "loss": 1.2433,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.0012126871327831775,
356
+ "grad_norm": 5.032261371612549,
357
+ "learning_rate": 9.4e-05,
358
+ "loss": 1.9222,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.0012369408754388412,
363
+ "grad_norm": 32.46524429321289,
364
+ "learning_rate": 9.6e-05,
365
+ "loss": 1.944,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.0012611946180945046,
370
+ "grad_norm": 3.3015825748443604,
371
+ "learning_rate": 9.8e-05,
372
+ "loss": 1.6905,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.0012854483607501683,
377
+ "grad_norm": 33.24071502685547,
378
+ "learning_rate": 0.0001,
379
+ "loss": 1.8358,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.001309702103405832,
384
+ "grad_norm": 1.4521846771240234,
385
+ "learning_rate": 0.00010200000000000001,
386
+ "loss": 1.6665,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.0013339558460614953,
391
+ "grad_norm": 1.9511698484420776,
392
+ "learning_rate": 0.00010400000000000001,
393
+ "loss": 1.2289,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.001358209588717159,
398
+ "grad_norm": 7.6353535652160645,
399
+ "learning_rate": 0.00010600000000000002,
400
+ "loss": 1.762,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.0013824633313728224,
405
+ "grad_norm": 1.035163164138794,
406
+ "learning_rate": 0.00010800000000000001,
407
+ "loss": 1.4294,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.001406717074028486,
412
+ "grad_norm": 4.369189262390137,
413
+ "learning_rate": 0.00011000000000000002,
414
+ "loss": 1.4502,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.0014309708166841495,
419
+ "grad_norm": 1.308000087738037,
420
+ "learning_rate": 0.00011200000000000001,
421
+ "loss": 1.4871,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.0014552245593398132,
426
+ "grad_norm": 0.9026333093643188,
427
+ "learning_rate": 0.00011399999999999999,
428
+ "loss": 1.431,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.0014794783019954766,
433
+ "grad_norm": 1.266846776008606,
434
+ "learning_rate": 0.000116,
435
+ "loss": 1.5601,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.0015037320446511402,
440
+ "grad_norm": 2.569223642349243,
441
+ "learning_rate": 0.000118,
442
+ "loss": 1.3147,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.0015279857873068039,
447
+ "grad_norm": 0.6180663108825684,
448
+ "learning_rate": 0.00012,
449
+ "loss": 0.735,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.0015522395299624673,
454
+ "grad_norm": 7.6248650550842285,
455
+ "learning_rate": 0.000122,
456
+ "loss": 1.1034,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.001576493272618131,
461
+ "grad_norm": NaN,
462
+ "learning_rate": 0.000122,
463
+ "loss": 2.0957,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.0016007470152737944,
468
+ "grad_norm": 17.51434326171875,
469
+ "learning_rate": 0.000124,
470
+ "loss": 1.7337,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.001625000757929458,
475
+ "grad_norm": 4.455969333648682,
476
+ "learning_rate": 0.000126,
477
+ "loss": 1.8453,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.0016492545005851215,
482
+ "grad_norm": 3.6060261726379395,
483
+ "learning_rate": 0.00012800000000000002,
484
+ "loss": 1.304,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.0016735082432407851,
489
+ "grad_norm": 1.1424020528793335,
490
+ "learning_rate": 0.00013000000000000002,
491
+ "loss": 1.2339,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.0016977619858964486,
496
+ "grad_norm": 1.294066309928894,
497
+ "learning_rate": 0.000132,
498
+ "loss": 1.3406,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.0017220157285521122,
503
+ "grad_norm": 8.3845796585083,
504
+ "learning_rate": 0.000134,
505
+ "loss": 2.0366,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.0017462694712077757,
510
+ "grad_norm": 7.098409175872803,
511
+ "learning_rate": 0.00013600000000000003,
512
+ "loss": 1.566,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.0017705232138634393,
517
+ "grad_norm": NaN,
518
+ "learning_rate": 0.00013600000000000003,
519
+ "loss": 1.1374,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.001794776956519103,
524
+ "grad_norm": 3.7947475910186768,
525
+ "learning_rate": 0.000138,
526
+ "loss": 1.4067,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.0018190306991747664,
531
+ "grad_norm": 3.4975695610046387,
532
+ "learning_rate": 0.00014,
533
+ "loss": 1.4905,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.00184328444183043,
538
+ "grad_norm": 1.821387529373169,
539
+ "learning_rate": 0.000142,
540
+ "loss": 1.289,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.0018675381844860935,
545
+ "grad_norm": 58.30936050415039,
546
+ "learning_rate": 0.000144,
547
+ "loss": 1.4909,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.0018917919271417571,
552
+ "grad_norm": 1.3323521614074707,
553
+ "learning_rate": 0.000146,
554
+ "loss": 1.1766,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.0019160456697974206,
559
+ "grad_norm": 5.184061050415039,
560
+ "learning_rate": 0.000148,
561
+ "loss": 0.9555,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.0019402994124530842,
566
+ "grad_norm": 3.7887625694274902,
567
+ "learning_rate": 0.00015000000000000001,
568
+ "loss": 1.8287,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.001964553155108748,
573
+ "grad_norm": 0.8411690592765808,
574
+ "learning_rate": 0.000152,
575
+ "loss": 1.1176,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.001988806897764411,
580
+ "grad_norm": 1.881020426750183,
581
+ "learning_rate": 0.000154,
582
+ "loss": 1.4231,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.0020130606404200747,
587
+ "grad_norm": 2.2068991661071777,
588
+ "learning_rate": 0.00015600000000000002,
589
+ "loss": 1.4049,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.0020373143830757384,
594
+ "grad_norm": 4.380375862121582,
595
+ "learning_rate": 0.00015800000000000002,
596
+ "loss": 1.0798,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.002061568125731402,
601
+ "grad_norm": 1.7205640077590942,
602
+ "learning_rate": 0.00016,
603
+ "loss": 1.4954,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.0020858218683870657,
608
+ "grad_norm": 1.5813369750976562,
609
+ "learning_rate": 0.000162,
610
+ "loss": 1.4113,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.002110075611042729,
615
+ "grad_norm": 1.3017473220825195,
616
+ "learning_rate": 0.000164,
617
+ "loss": 1.2315,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.0021343293536983925,
622
+ "grad_norm": 2.0372846126556396,
623
+ "learning_rate": 0.000166,
624
+ "loss": 1.5282,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.002158583096354056,
629
+ "grad_norm": 1.0349255800247192,
630
+ "learning_rate": 0.000168,
631
+ "loss": 1.3279,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.00218283683900972,
636
+ "grad_norm": 2.119569778442383,
637
+ "learning_rate": 0.00017,
638
+ "loss": 1.0482,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.002207090581665383,
643
+ "grad_norm": 2.0538179874420166,
644
+ "learning_rate": 0.000172,
645
+ "loss": 1.0129,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.0022313443243210467,
650
+ "grad_norm": 1.4903944730758667,
651
+ "learning_rate": 0.000174,
652
+ "loss": 1.7894,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.0022555980669767104,
657
+ "grad_norm": 5.269598007202148,
658
+ "learning_rate": 0.00017600000000000002,
659
+ "loss": 1.1085,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.002279851809632374,
664
+ "grad_norm": 2.082563877105713,
665
+ "learning_rate": 0.00017800000000000002,
666
+ "loss": 1.4559,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.0023041055522880377,
671
+ "grad_norm": 1.0695875883102417,
672
+ "learning_rate": 0.00018,
673
+ "loss": 1.5581,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.002328359294943701,
678
+ "grad_norm": 1.9814307689666748,
679
+ "learning_rate": 0.000182,
680
+ "loss": 1.5945,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.0023526130375993645,
685
+ "grad_norm": 8.308389663696289,
686
+ "learning_rate": 0.00018400000000000003,
687
+ "loss": 2.0305,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.002376866780255028,
692
+ "grad_norm": 1.8079288005828857,
693
+ "learning_rate": 0.00018600000000000002,
694
+ "loss": 1.4862,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.002401120522910692,
699
+ "grad_norm": 12.573166847229004,
700
+ "learning_rate": 0.000188,
701
+ "loss": 1.7458,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.002425374265566355,
706
+ "grad_norm": 33.789764404296875,
707
+ "learning_rate": 0.00019,
708
+ "loss": 1.3982,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.0024496280082220187,
713
+ "grad_norm": 27.591976165771484,
714
+ "learning_rate": 0.000192,
715
+ "loss": 1.5771,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.0024738817508776823,
720
+ "grad_norm": 1.4807827472686768,
721
+ "learning_rate": 0.000194,
722
+ "loss": 1.462,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.002498135493533346,
727
+ "grad_norm": 1.479779601097107,
728
+ "learning_rate": 0.000196,
729
+ "loss": 1.5715,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.002522389236189009,
734
+ "grad_norm": 1.569394826889038,
735
+ "learning_rate": 0.00019800000000000002,
736
+ "loss": 1.7968,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.002546642978844673,
741
+ "grad_norm": 1.3037728071212769,
742
+ "learning_rate": 0.0002,
743
+ "loss": 1.2281,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.0025708967215003365,
748
+ "grad_norm": 3.430941104888916,
749
+ "learning_rate": 0.00019800000000000002,
750
+ "loss": 1.5046,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.002595150464156,
755
+ "grad_norm": 1.2662192583084106,
756
+ "learning_rate": 0.000196,
757
+ "loss": 1.1589,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.002619404206811664,
762
+ "grad_norm": 1.0078253746032715,
763
+ "learning_rate": 0.000194,
764
+ "loss": 1.2159,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.002643657949467327,
769
+ "grad_norm": 1.0011709928512573,
770
+ "learning_rate": 0.000192,
771
+ "loss": 1.3889,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.0026679116921229907,
776
+ "grad_norm": 1.0177195072174072,
777
+ "learning_rate": 0.00019,
778
+ "loss": 1.5495,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.0026921654347786543,
783
+ "grad_norm": 14.817512512207031,
784
+ "learning_rate": 0.000188,
785
+ "loss": 1.3749,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.002716419177434318,
790
+ "grad_norm": 2.8248116970062256,
791
+ "learning_rate": 0.00018600000000000002,
792
+ "loss": 1.4093,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.002740672920089981,
797
+ "grad_norm": 1.23388671875,
798
+ "learning_rate": 0.00018400000000000003,
799
+ "loss": 1.662,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.002764926662745645,
804
+ "grad_norm": 1.2018444538116455,
805
+ "learning_rate": 0.000182,
806
+ "loss": 1.561,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.0027891804054013085,
811
+ "grad_norm": 1.6609792709350586,
812
+ "learning_rate": 0.00018,
813
+ "loss": 1.449,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.002813434148056972,
818
+ "grad_norm": 4.717409610748291,
819
+ "learning_rate": 0.00017800000000000002,
820
+ "loss": 1.3023,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.002837687890712636,
825
+ "grad_norm": 0.6800332069396973,
826
+ "learning_rate": 0.00017600000000000002,
827
+ "loss": 1.1162,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.002861941633368299,
832
+ "grad_norm": 1.1162289381027222,
833
+ "learning_rate": 0.000174,
834
+ "loss": 1.2826,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.0028861953760239627,
839
+ "grad_norm": 0.9007352590560913,
840
+ "learning_rate": 0.000172,
841
+ "loss": 1.7017,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.0029104491186796263,
846
+ "grad_norm": 2.0487279891967773,
847
+ "learning_rate": 0.00017,
848
+ "loss": 2.0916,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.00293470286133529,
853
+ "grad_norm": 4.298633098602295,
854
+ "learning_rate": 0.000168,
855
+ "loss": 2.2025,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.002958956603990953,
860
+ "grad_norm": 1.0514113903045654,
861
+ "learning_rate": 0.000166,
862
+ "loss": 1.3972,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.002983210346646617,
867
+ "grad_norm": 0.7477086186408997,
868
+ "learning_rate": 0.000164,
869
+ "loss": 1.0473,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.0030074640893022805,
874
+ "grad_norm": 1.2515380382537842,
875
+ "learning_rate": 0.000162,
876
+ "loss": 1.4222,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.003031717831957944,
881
+ "grad_norm": 1.1901217699050903,
882
+ "learning_rate": 0.00016,
883
+ "loss": 1.0811,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.0030559715746136078,
888
+ "grad_norm": 1.3582122325897217,
889
+ "learning_rate": 0.00015800000000000002,
890
+ "loss": 1.2179,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.003080225317269271,
895
+ "grad_norm": 0.7772126197814941,
896
+ "learning_rate": 0.00015600000000000002,
897
+ "loss": 1.1056,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.0031044790599249346,
902
+ "grad_norm": 3.8524062633514404,
903
+ "learning_rate": 0.000154,
904
+ "loss": 1.1881,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.0031287328025805983,
909
+ "grad_norm": 1.8099156618118286,
910
+ "learning_rate": 0.000152,
911
+ "loss": 1.6343,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.003152986545236262,
916
+ "grad_norm": 1.2134389877319336,
917
+ "learning_rate": 0.00015000000000000001,
918
+ "loss": 1.3875,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.003177240287891925,
923
+ "grad_norm": 0.938895583152771,
924
+ "learning_rate": 0.000148,
925
+ "loss": 1.2225,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.003201494030547589,
930
+ "grad_norm": 1.9306858777999878,
931
+ "learning_rate": 0.000146,
932
+ "loss": 1.2144,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.0032257477732032525,
937
+ "grad_norm": 1.3297972679138184,
938
+ "learning_rate": 0.000144,
939
+ "loss": 1.4381,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.003250001515858916,
944
+ "grad_norm": 1.270509958267212,
945
+ "learning_rate": 0.000142,
946
+ "loss": 1.1591,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.0032742552585145793,
951
+ "grad_norm": 3.317193031311035,
952
+ "learning_rate": 0.00014,
953
+ "loss": 1.2585,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.003298509001170243,
958
+ "grad_norm": 1.2975448369979858,
959
+ "learning_rate": 0.000138,
960
+ "loss": 1.571,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.0033227627438259066,
965
+ "grad_norm": 1.0426270961761475,
966
+ "learning_rate": 0.00013600000000000003,
967
+ "loss": 1.8555,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.0033470164864815703,
972
+ "grad_norm": 1.228779673576355,
973
+ "learning_rate": 0.000134,
974
+ "loss": 1.3992,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.003371270229137234,
979
+ "grad_norm": 0.977001428604126,
980
+ "learning_rate": 0.000132,
981
+ "loss": 1.1395,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.003395523971792897,
986
+ "grad_norm": 1.0894217491149902,
987
+ "learning_rate": 0.00013000000000000002,
988
+ "loss": 1.4242,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.003419777714448561,
993
+ "grad_norm": 1.0413155555725098,
994
+ "learning_rate": 0.00012800000000000002,
995
+ "loss": 1.4771,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.0034440314571042244,
1000
+ "grad_norm": 1.2907966375350952,
1001
+ "learning_rate": 0.000126,
1002
+ "loss": 1.5202,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.003468285199759888,
1007
+ "grad_norm": 0.8118016123771667,
1008
+ "learning_rate": 0.000124,
1009
+ "loss": 1.5335,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.0034925389424155513,
1014
+ "grad_norm": 1.329568862915039,
1015
+ "learning_rate": 0.000122,
1016
+ "loss": 1.7877,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.003516792685071215,
1021
+ "grad_norm": 0.6988470554351807,
1022
+ "learning_rate": 0.00012,
1023
+ "loss": 0.6288,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.0035410464277268786,
1028
+ "grad_norm": 2.3587098121643066,
1029
+ "learning_rate": 0.000118,
1030
+ "loss": 1.2359,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.0035653001703825423,
1035
+ "grad_norm": 1.1087194681167603,
1036
+ "learning_rate": 0.000116,
1037
+ "loss": 1.3769,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.003589553913038206,
1042
+ "grad_norm": 1.6822993755340576,
1043
+ "learning_rate": 0.00011399999999999999,
1044
+ "loss": 1.3112,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.003613807655693869,
1049
+ "grad_norm": 1.3227869272232056,
1050
+ "learning_rate": 0.00011200000000000001,
1051
+ "loss": 1.4754,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.0036380613983495328,
1056
+ "grad_norm": 1.1278481483459473,
1057
+ "learning_rate": 0.00011000000000000002,
1058
+ "loss": 1.1768,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.0036623151410051964,
1063
+ "grad_norm": 1.2085745334625244,
1064
+ "learning_rate": 0.00010800000000000001,
1065
+ "loss": 1.4345,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.00368656888366086,
1070
+ "grad_norm": 1.0850399732589722,
1071
+ "learning_rate": 0.00010600000000000002,
1072
+ "loss": 1.2432,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.0037108226263165233,
1077
+ "grad_norm": 1.2463059425354004,
1078
+ "learning_rate": 0.00010400000000000001,
1079
+ "loss": 1.5501,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.003735076368972187,
1084
+ "grad_norm": 1.059967041015625,
1085
+ "learning_rate": 0.00010200000000000001,
1086
+ "loss": 1.0448,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.0037593301116278506,
1091
+ "grad_norm": 2.2503929138183594,
1092
+ "learning_rate": 0.0001,
1093
+ "loss": 1.4892,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.0037835838542835142,
1098
+ "grad_norm": 0.8803784251213074,
1099
+ "learning_rate": 9.8e-05,
1100
+ "loss": 1.2764,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.003807837596939178,
1105
+ "grad_norm": 1.5173571109771729,
1106
+ "learning_rate": 9.6e-05,
1107
+ "loss": 1.0656,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.003832091339594841,
1112
+ "grad_norm": 2.0226430892944336,
1113
+ "learning_rate": 9.4e-05,
1114
+ "loss": 1.1382,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.0038563450822505048,
1119
+ "grad_norm": 1.9149307012557983,
1120
+ "learning_rate": 9.200000000000001e-05,
1121
+ "loss": 1.4105,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.0038805988249061684,
1126
+ "grad_norm": 0.9839889407157898,
1127
+ "learning_rate": 9e-05,
1128
+ "loss": 1.7808,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.003904852567561832,
1133
+ "grad_norm": 1.306378722190857,
1134
+ "learning_rate": 8.800000000000001e-05,
1135
+ "loss": 1.4799,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.003929106310217496,
1140
+ "grad_norm": 1.9649689197540283,
1141
+ "learning_rate": 8.6e-05,
1142
+ "loss": 1.2497,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.003953360052873159,
1147
+ "grad_norm": 0.8306687474250793,
1148
+ "learning_rate": 8.4e-05,
1149
+ "loss": 1.1058,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.003977613795528822,
1154
+ "grad_norm": 1.034351110458374,
1155
+ "learning_rate": 8.2e-05,
1156
+ "loss": 0.9346,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.004001867538184486,
1161
+ "grad_norm": 1.165528416633606,
1162
+ "learning_rate": 8e-05,
1163
+ "loss": 1.2315,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.0040261212808401494,
1168
+ "grad_norm": 1.3174549341201782,
1169
+ "learning_rate": 7.800000000000001e-05,
1170
+ "loss": 1.7447,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.004050375023495813,
1175
+ "grad_norm": 1.8279471397399902,
1176
+ "learning_rate": 7.6e-05,
1177
+ "loss": 1.6226,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.004074628766151477,
1182
+ "grad_norm": 1.1315997838974,
1183
+ "learning_rate": 7.4e-05,
1184
+ "loss": 1.2114,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.00409888250880714,
1189
+ "grad_norm": 1.0842983722686768,
1190
+ "learning_rate": 7.2e-05,
1191
+ "loss": 1.1462,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.004123136251462804,
1196
+ "grad_norm": 0.8647174835205078,
1197
+ "learning_rate": 7e-05,
1198
+ "loss": 0.9729,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.004147389994118468,
1203
+ "grad_norm": 0.9712747931480408,
1204
+ "learning_rate": 6.800000000000001e-05,
1205
+ "loss": 1.2886,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.004171643736774131,
1210
+ "grad_norm": 1.3875259160995483,
1211
+ "learning_rate": 6.6e-05,
1212
+ "loss": 1.5696,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.004195897479429794,
1217
+ "grad_norm": 1.1321961879730225,
1218
+ "learning_rate": 6.400000000000001e-05,
1219
+ "loss": 1.4366,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.004220151222085458,
1224
+ "grad_norm": 5.357350826263428,
1225
+ "learning_rate": 6.2e-05,
1226
+ "loss": 1.5292,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.004244404964741121,
1231
+ "grad_norm": 0.7717924118041992,
1232
+ "learning_rate": 6e-05,
1233
+ "loss": 1.3228,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.004268658707396785,
1238
+ "grad_norm": 1.9575989246368408,
1239
+ "learning_rate": 5.8e-05,
1240
+ "loss": 1.1391,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.004292912450052449,
1245
+ "grad_norm": 1.1362651586532593,
1246
+ "learning_rate": 5.6000000000000006e-05,
1247
+ "loss": 1.5378,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.004317166192708112,
1252
+ "grad_norm": 1.5834994316101074,
1253
+ "learning_rate": 5.4000000000000005e-05,
1254
+ "loss": 1.7488,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.004341419935363776,
1259
+ "grad_norm": Infinity,
1260
+ "learning_rate": 5.4000000000000005e-05,
1261
+ "loss": 1.945,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.00436567367801944,
1266
+ "grad_norm": 1.2279846668243408,
1267
+ "learning_rate": 5.2000000000000004e-05,
1268
+ "loss": 1.2098,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.004389927420675103,
1273
+ "grad_norm": 0.9098599553108215,
1274
+ "learning_rate": 5e-05,
1275
+ "loss": 1.2899,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.004414181163330766,
1280
+ "grad_norm": 1.4090386629104614,
1281
+ "learning_rate": 4.8e-05,
1282
+ "loss": 1.9194,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.00443843490598643,
1287
+ "grad_norm": 0.9789434671401978,
1288
+ "learning_rate": 4.600000000000001e-05,
1289
+ "loss": 0.9409,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.004462688648642093,
1294
+ "grad_norm": 0.8534678220748901,
1295
+ "learning_rate": 4.4000000000000006e-05,
1296
+ "loss": 1.3122,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.004486942391297757,
1301
+ "grad_norm": 0.9604746103286743,
1302
+ "learning_rate": 4.2e-05,
1303
+ "loss": 1.2598,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.004511196133953421,
1308
+ "grad_norm": 1.2235528230667114,
1309
+ "learning_rate": 4e-05,
1310
+ "loss": 1.1669,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.004535449876609084,
1315
+ "grad_norm": 1.1576164960861206,
1316
+ "learning_rate": 3.8e-05,
1317
+ "loss": 1.2882,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.004559703619264748,
1322
+ "grad_norm": 2.6080610752105713,
1323
+ "learning_rate": 3.6e-05,
1324
+ "loss": 1.7071,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.004583957361920412,
1329
+ "grad_norm": 1.0198453664779663,
1330
+ "learning_rate": 3.4000000000000007e-05,
1331
+ "loss": 1.5359,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.004608211104576075,
1336
+ "grad_norm": 0.536956250667572,
1337
+ "learning_rate": 3.2000000000000005e-05,
1338
+ "loss": 0.99,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.004632464847231738,
1343
+ "grad_norm": 1.0942273139953613,
1344
+ "learning_rate": 3e-05,
1345
+ "loss": 1.2758,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.004656718589887402,
1350
+ "grad_norm": 0.7441216707229614,
1351
+ "learning_rate": 2.8000000000000003e-05,
1352
+ "loss": 1.1892,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.004680972332543065,
1357
+ "grad_norm": 1.032776951789856,
1358
+ "learning_rate": 2.6000000000000002e-05,
1359
+ "loss": 1.1905,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.004705226075198729,
1364
+ "grad_norm": 1.4048435688018799,
1365
+ "learning_rate": 2.4e-05,
1366
+ "loss": 1.5178,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.004729479817854393,
1371
+ "grad_norm": 1.3756521940231323,
1372
+ "learning_rate": 2.2000000000000003e-05,
1373
+ "loss": 1.4318,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.004753733560510056,
1378
+ "grad_norm": 1.066291332244873,
1379
+ "learning_rate": 2e-05,
1380
+ "loss": 1.3325,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.00477798730316572,
1385
+ "grad_norm": 1.1176751852035522,
1386
+ "learning_rate": 1.8e-05,
1387
+ "loss": 1.403,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.004802241045821384,
1392
+ "grad_norm": 1.995957851409912,
1393
+ "learning_rate": 1.6000000000000003e-05,
1394
+ "loss": 1.3541,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.004826494788477047,
1399
+ "grad_norm": 2.2354772090911865,
1400
+ "learning_rate": 1.4000000000000001e-05,
1401
+ "loss": 1.6087,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.00485074853113271,
1406
+ "grad_norm": 19.62826919555664,
1407
+ "learning_rate": 1.2e-05,
1408
+ "loss": 1.8031,
1409
+ "step": 200
1410
+ }
1411
+ ],
1412
+ "logging_steps": 1,
1413
+ "max_steps": 200,
1414
+ "num_input_tokens_seen": 0,
1415
+ "num_train_epochs": 1,
1416
+ "save_steps": 500,
1417
+ "stateful_callbacks": {
1418
+ "TrainerControl": {
1419
+ "args": {
1420
+ "should_epoch_stop": false,
1421
+ "should_evaluate": false,
1422
+ "should_log": false,
1423
+ "should_save": true,
1424
+ "should_training_stop": true
1425
+ },
1426
+ "attributes": {}
1427
+ }
1428
+ },
1429
+ "total_flos": 6033065352437760.0,
1430
+ "train_batch_size": 1,
1431
+ "trial_name": null,
1432
+ "trial_params": null
1433
+ }
checkpoint-200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43d033efd662a8a45a3612dd98272e5bd1a161947f423340e92b2ec66e5de383
3
+ size 5176
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43d033efd662a8a45a3612dd98272e5bd1a161947f423340e92b2ec66e5de383
3
+ size 5176