Model save
Browse files- README.md +113 -167
- adapter_model.safetensors +1 -1
README.md
CHANGED
@@ -1,204 +1,129 @@
|
|
1 |
---
|
|
|
2 |
library_name: peft
|
|
|
|
|
3 |
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
|
|
7 |
|
8 |
-
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
-
|
23 |
-
|
24 |
-
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
|
153 |
-
|
|
|
|
|
154 |
|
155 |
-
|
|
|
156 |
|
157 |
-
|
|
|
158 |
|
159 |
-
|
|
|
|
|
160 |
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
-
#### Hardware
|
164 |
|
165 |
-
|
|
|
|
|
|
|
166 |
|
167 |
-
#### Software
|
168 |
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
-
|
|
|
|
|
|
|
|
|
172 |
|
173 |
-
|
|
|
|
|
174 |
|
175 |
-
|
|
|
176 |
|
177 |
-
|
178 |
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
-
|
182 |
|
183 |
-
|
184 |
|
185 |
-
|
186 |
|
187 |
-
|
188 |
|
189 |
-
|
190 |
|
191 |
-
|
192 |
|
193 |
-
|
194 |
|
195 |
-
|
196 |
|
197 |
-
|
198 |
|
199 |
-
[More Information Needed]
|
200 |
## Training procedure
|
201 |
|
|
|
202 |
The following `bitsandbytes` quantization config was used during training:
|
203 |
- quant_method: QuantizationMethod.BITS_AND_BYTES
|
204 |
- load_in_8bit: False
|
@@ -211,6 +136,27 @@ The following `bitsandbytes` quantization config was used during training:
|
|
211 |
- bnb_4bit_use_double_quant: True
|
212 |
- bnb_4bit_compute_dtype: bfloat16
|
213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
### Framework versions
|
215 |
|
216 |
-
- PEFT 0.7.0
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
library_name: peft
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
|
7 |
+
model-index:
|
8 |
+
- name: empower-functions-more-tools-parallel
|
9 |
+
results: []
|
10 |
---
|
11 |
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
|
15 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
16 |
+
<details><summary>See axolotl config</summary>
|
17 |
|
18 |
+
axolotl version: `0.4.0`
|
19 |
+
```yaml
|
20 |
+
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
|
21 |
+
model_type: AutoModelForCausalLM
|
22 |
+
tokenizer_type: LlamaTokenizer
|
23 |
+
trust_remote_code: true
|
24 |
|
25 |
+
load_in_8bit: false
|
26 |
+
load_in_4bit: true
|
27 |
+
strict: false
|
28 |
+
chat_template: inst
|
29 |
|
30 |
+
datasets:
|
31 |
+
- path: ./data/with_function_response/more_functions/function_used_training.jsonl
|
32 |
+
type: sharegpt
|
33 |
+
conversation: mistral
|
34 |
+
- path: ./data/with_function_response/more_functions/function_not_used_training.jsonl
|
35 |
+
type: sharegpt
|
36 |
+
conversation: mistral
|
37 |
+
- path: ./data/with_function_response/parallel_call/missing_parameter_data_training.jsonl
|
38 |
+
type: sharegpt
|
39 |
+
conversation: mistral
|
40 |
+
- path: ./data/with_function_response/parallel_call/parallel_data_training.jsonl
|
41 |
+
type: sharegpt
|
42 |
+
conversation: mistral
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
dataset_prepared_path: last_run_prepared
|
45 |
+
val_set_size: 0.01
|
46 |
+
output_dir: ../empower-functions-more-tools-parallel
|
47 |
|
48 |
+
model_config:
|
49 |
+
output_router_logits: true
|
50 |
|
51 |
+
adapter: qlora
|
52 |
+
lora_model_dir:
|
53 |
|
54 |
+
sequence_len: 4096
|
55 |
+
sample_packing: true
|
56 |
+
pad_to_sequence_len: true
|
57 |
|
58 |
+
lora_r: 32
|
59 |
+
lora_alpha: 64
|
60 |
+
lora_dropout: 0.05
|
61 |
+
lora_target_modules:
|
62 |
+
- q_proj
|
63 |
+
- k_proj
|
64 |
+
- v_proj
|
65 |
+
- o_proj
|
66 |
|
|
|
67 |
|
68 |
+
wandb_project: empower-functions
|
69 |
+
wandb_name: empower-functions-more-tools-parallel
|
70 |
+
wandb_log_model: end
|
71 |
+
hub_model_id: dyang415/empower-functions-more-tools-parallel
|
72 |
|
|
|
73 |
|
74 |
+
gradient_accumulation_steps: 4
|
75 |
+
micro_batch_size: 2
|
76 |
+
num_epochs: 4
|
77 |
+
optimizer: paged_adamw_8bit
|
78 |
+
lr_scheduler: cosine
|
79 |
+
learning_rate: 0.0002
|
80 |
|
81 |
+
train_on_inputs: false
|
82 |
+
group_by_length: false
|
83 |
+
bf16: true
|
84 |
+
fp16: false
|
85 |
+
tf32: false
|
86 |
|
87 |
+
gradient_checkpointing: true
|
88 |
+
logging_steps: 1
|
89 |
+
flash_attention: true
|
90 |
|
91 |
+
loss_watchdog_threshold: 5.0
|
92 |
+
loss_watchdog_patience: 3
|
93 |
|
94 |
+
warmup_steps: 10
|
95 |
|
96 |
+
eval_table_size:
|
97 |
+
eval_max_new_tokens: 256
|
98 |
+
eval_steps: 0.05
|
99 |
+
save_steps: 0.1
|
100 |
+
debug:
|
101 |
+
weight_decay: 0.0
|
102 |
+
fsdp:
|
103 |
+
fsdp_config:
|
104 |
+
```
|
105 |
|
106 |
+
</details><br>
|
107 |
|
108 |
+
# empower-functions-more-tools-parallel
|
109 |
|
110 |
+
This model is a fine-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) on an unknown dataset.
|
111 |
|
112 |
+
## Model description
|
113 |
|
114 |
+
More information needed
|
115 |
|
116 |
+
## Intended uses & limitations
|
117 |
|
118 |
+
More information needed
|
119 |
|
120 |
+
## Training and evaluation data
|
121 |
|
122 |
+
More information needed
|
123 |
|
|
|
124 |
## Training procedure
|
125 |
|
126 |
+
|
127 |
The following `bitsandbytes` quantization config was used during training:
|
128 |
- quant_method: QuantizationMethod.BITS_AND_BYTES
|
129 |
- load_in_8bit: False
|
|
|
136 |
- bnb_4bit_use_double_quant: True
|
137 |
- bnb_4bit_compute_dtype: bfloat16
|
138 |
|
139 |
+
### Training hyperparameters
|
140 |
+
|
141 |
+
The following hyperparameters were used during training:
|
142 |
+
- learning_rate: 0.0002
|
143 |
+
- train_batch_size: 2
|
144 |
+
- eval_batch_size: 2
|
145 |
+
- seed: 42
|
146 |
+
- distributed_type: multi-GPU
|
147 |
+
- num_devices: 2
|
148 |
+
- gradient_accumulation_steps: 4
|
149 |
+
- total_train_batch_size: 16
|
150 |
+
- total_eval_batch_size: 4
|
151 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
152 |
+
- lr_scheduler_type: cosine
|
153 |
+
- lr_scheduler_warmup_steps: 10
|
154 |
+
- num_epochs: 4
|
155 |
+
|
156 |
### Framework versions
|
157 |
|
158 |
+
- PEFT 0.7.0
|
159 |
+
- Transformers 4.37.0
|
160 |
+
- Pytorch 2.0.1+cu117
|
161 |
+
- Datasets 2.17.1
|
162 |
+
- Tokenizers 0.15.0
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 109086416
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4c73cafb961cb8103ef191f331b9cc32c93b6d707b000edce4448e240adeaa7
|
3 |
size 109086416
|