--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - augmented_bass_sounds metrics: - accuracy model-index: - name: distilhubert-bass9 results: - task: name: Audio Classification type: audio-classification dataset: name: TheDuyx/augmented_bass_sounds type: augmented_bass_sounds metrics: - name: Accuracy type: accuracy value: 0.9994121105232217 --- # distilhubert-bass9 This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the TheDuyx/augmented_bass_sounds dataset. It achieves the following results on the evaluation set: - Loss: 0.0024 - Accuracy: 0.9994 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 5 - total_train_batch_size: 80 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0433 | 1.0 | 382 | 0.0492 | 0.9877 | | 0.0022 | 2.0 | 765 | 0.0061 | 0.9982 | | 0.0013 | 2.99 | 1146 | 0.0024 | 0.9994 | ### Framework versions - Transformers 4.39.2 - Pytorch 2.2.2 - Datasets 2.18.0 - Tokenizers 0.15.2