Simon Andersen commited on
Commit
1a2ec3a
1 Parent(s): d1505d1

End of training

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: ntu-spml/distilhubert
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - augmented_bass_sounds
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: distilhubert-bass9
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: TheDuyx/augmented_bass_sounds
18
+ type: augmented_bass_sounds
19
+ metrics:
20
+ - name: Accuracy
21
+ type: accuracy
22
+ value: 0.9994121105232217
23
+ ---
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ # distilhubert-bass9
29
+
30
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the TheDuyx/augmented_bass_sounds dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 0.0024
33
+ - Accuracy: 0.9994
34
+
35
+ ## Model description
36
+
37
+ More information needed
38
+
39
+ ## Intended uses & limitations
40
+
41
+ More information needed
42
+
43
+ ## Training and evaluation data
44
+
45
+ More information needed
46
+
47
+ ## Training procedure
48
+
49
+ ### Training hyperparameters
50
+
51
+ The following hyperparameters were used during training:
52
+ - learning_rate: 5e-05
53
+ - train_batch_size: 16
54
+ - eval_batch_size: 16
55
+ - seed: 42
56
+ - gradient_accumulation_steps: 5
57
+ - total_train_batch_size: 80
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - lr_scheduler_warmup_ratio: 0.1
61
+ - num_epochs: 3
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
+ | 0.0433 | 1.0 | 382 | 0.0492 | 0.9877 |
68
+ | 0.0022 | 2.0 | 765 | 0.0061 | 0.9982 |
69
+ | 0.0013 | 2.99 | 1146 | 0.0024 | 0.9994 |
70
+
71
+
72
+ ### Framework versions
73
+
74
+ - Transformers 4.39.2
75
+ - Pytorch 2.2.2
76
+ - Datasets 2.18.0
77
+ - Tokenizers 0.15.2