metadata
license: mit
base_model: roberta-base
tags:
- stress
- classification
- glassdoor
metrics:
- accuracy
- f1
- precision
- recall
widget:
- text: >-
They also caused so much stress because some leaders valued optics over
output.
example_title: Stressed 1 Example
- text: Way too much work pressure.
example_title: Stressed 2 Example
- text: Understaffed, lots of deck revisions, unpredictable, terrible technology.
example_title: Stressed 3 Example
- text: Nice environment good work life balance.
example_title: Not Stressed 1 Example
model-index:
- name: roberta-base_topic_classification_nyt_news
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: New_York_Times_Topics
type: News
metrics:
- type: F1
name: F1
value: 0.97
- type: accuracy
name: accuracy
value: 0.97
- type: precision
name: precision
value: 0.97
- type: recall
name: recall
value: 0.97
pipeline_tag: text-classification
roberta-base_stress_classification
This model is a fine-tuned version of roberta-base on the glassdoor dataset based on 100000 employees' reviews. It achieves the following results on the evaluation set:
- Loss: 0.1800
- Accuracy: 0.9647
- F1: 0.9647
- Precision: 0.9647
- Recall: 0.9647
Training data
Training data was classified as follow:
class | Description |
---|---|
0 | Not Stressed |
1 | Stressed |
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.704 | 1.0 | 8000 | 0.6933 | 0.5 | 0.3333 | 0.25 | 0.5 |
0.6926 | 2.0 | 16000 | 0.6980 | 0.5 | 0.3333 | 0.25 | 0.5 |
0.0099 | 3.0 | 24000 | 0.1800 | 0.9647 | 0.9647 | 0.9647 | 0.9647 |
0.2727 | 4.0 | 32000 | 0.2243 | 0.9526 | 0.9526 | 0.9527 | 0.9526 |
0.0618 | 5.0 | 40000 | 0.2128 | 0.9536 | 0.9536 | 0.9546 | 0.9536 |
Model performance
- | precision | recall | f1 | support |
---|---|---|---|---|
Not Stressed | 0.96 | 0.97 | 0.97 | 10000 |
Stressed | 0.97 | 0.96 | 0.97 | 10000 |
accuracy | 0.97 | 20000 | ||
macro avg | 0.97 | 0.97 | 0.97 | 20000 |
weighted avg | 0.97 | 0.97 | 0.97 | 20000 |
How to use roberta-base_topic_classification_nyt_news with HuggingFace
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("dstefa/roberta-base_topic_classification_nyt_news")
model = AutoModelForSequenceClassification.from_pretrained("dstefa/roberta-base_topic_classification_nyt_news")
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, device=0)
text = "They also caused so much stress because some leaders valued optics over output."
pipe(text)
[{'label': 'Stressed', 'score': 0.9959163069725037}]
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2