--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model_index: - name: bert-base-uncased-finetuned-sst2 results: - dataset: name: glue type: glue args: sst2 metric: name: Accuracy type: accuracy value: 0.930045871559633 --- # bert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4079 - Accuracy: 0.9300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1793 | 1.0 | 4210 | 0.3598 | 0.9094 | | 0.1243 | 2.0 | 8420 | 0.3021 | 0.9243 | | 0.0799 | 3.0 | 12630 | 0.3473 | 0.9220 | | 0.0641 | 4.0 | 16840 | 0.3309 | 0.9289 | | 0.0346 | 5.0 | 21050 | 0.4079 | 0.9300 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3