--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model_index: - name: bert-base-uncased-finetuned-sst2 results: - dataset: name: glue type: glue args: sst2 metric: name: Accuracy type: accuracy value: 0.926605504587156 base_model: bert-base-uncased --- # bert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2716 - Accuracy: 0.9266 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1666 | 1.0 | 2105 | 0.2403 | 0.9232 | | 0.1122 | 2.0 | 4210 | 0.2716 | 0.9266 | | 0.0852 | 3.0 | 6315 | 0.3150 | 0.9232 | | 0.056 | 4.0 | 8420 | 0.3209 | 0.9163 | | 0.0344 | 5.0 | 10525 | 0.3740 | 0.9243 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.1