File size: 1,775 Bytes
9d4b3ab a78505c 9d4b3ab 90b0ec5 9d4b3ab e3a1145 9d4b3ab e3a1145 9d4b3ab 1a302ea 9d4b3ab e3a1145 9d4b3ab e3a1145 1a302ea 9d4b3ab 1a302ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- nyu-mll/glue
metrics:
- accuracy
model_index:
- name: bert-base-uncased-finetuned-sst2
results:
- dataset:
name: glue
type: glue
args: sst2
metric:
name: Accuracy
type: accuracy
value: 0.926605504587156
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-sst2
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2716
- Accuracy: 0.9266
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.1666 | 1.0 | 2105 | 0.2403 | 0.9232 |
| 0.1122 | 2.0 | 4210 | 0.2716 | 0.9266 |
| 0.0852 | 3.0 | 6315 | 0.3150 | 0.9232 |
| 0.056 | 4.0 | 8420 | 0.3209 | 0.9163 |
| 0.0344 | 5.0 | 10525 | 0.3740 | 0.9243 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.8.1
- Datasets 1.11.0
- Tokenizers 0.10.1
|