File size: 1,767 Bytes
9d4b3ab
 
 
 
 
 
 
 
 
 
 
90b0ec5
9d4b3ab
 
 
 
 
 
1a302ea
9d4b3ab
 
 
 
 
 
 
 
 
1a302ea
 
9d4b3ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a302ea
 
9d4b3ab
 
 
 
 
 
 
 
 
1a302ea
 
 
 
 
9d4b3ab
 
 
 
1a302ea
 
9d4b3ab
1a302ea
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model_index:
- name: bert-base-uncased-finetuned-sst2
  results:
  - dataset:
      name: glue
      type: glue
      args: sst2
    metric:
      name: Accuracy
      type: accuracy
      value: 0.930045871559633
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-uncased-finetuned-sst2

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2485
- Accuracy: 0.9300

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.1662        | 1.0   | 2105  | 0.2485          | 0.9300   |
| 0.1102        | 2.0   | 4210  | 0.2777          | 0.9266   |
| 0.0835        | 3.0   | 6315  | 0.3368          | 0.9232   |
| 0.0529        | 4.0   | 8420  | 0.3310          | 0.9255   |
| 0.035         | 5.0   | 10525 | 0.3855          | 0.9278   |


### Framework versions

- Transformers 4.9.1
- Pytorch 1.8.1
- Datasets 1.11.0
- Tokenizers 0.10.1