File size: 1,916 Bytes
7dba568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03f2724
 
 
 
 
7dba568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03f2724
 
 
 
 
7dba568
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: led-base-16384-biolaysum-both-wiki_lucene
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# led-base-16384-biolaysum-both-wiki_lucene

This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1548
- Rouge1: 0.4543
- Rouge2: 0.1550
- Rougel: 0.2425
- Rougelsum: 0.2425

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|
| 2.2704        | 0.69  | 5000  | 2.2177          | 0.4481 | 0.1522 | 0.2414 | 0.2415    |
| 2.0364        | 1.37  | 10000 | 2.1548          | 0.4543 | 0.1550 | 0.2425 | 0.2425    |
| 1.9201        | 2.06  | 15000 | 2.1200          | 0.4551 | 0.1530 | 0.2410 | 0.2410    |
| 1.9007        | 2.75  | 20000 | 2.1060          | 0.4554 | 0.1540 | 0.2400 | 0.2400    |
| 1.7766        | 3.43  | 25000 | 2.0941          | 0.4536 | 0.1513 | 0.2397 | 0.2399    |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.13.1
- Datasets 2.10.1
- Tokenizers 0.12.1