domenicrosati commited on
Commit
ef24008
1 Parent(s): b8100b7

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - rouge
7
+ model-index:
8
+ - name: led-base-16384-biolaysum-both-umls
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # led-base-16384-biolaysum-both-umls
16
+
17
+ This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 2.1595
20
+ - Rouge1: 0.4549
21
+ - Rouge2: 0.1553
22
+ - Rougel: 0.2425
23
+ - Rougelsum: 0.2425
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 5e-05
43
+ - train_batch_size: 4
44
+ - eval_batch_size: 4
45
+ - seed: 42
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - num_epochs: 4
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
54
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|
55
+ | 2.2745 | 0.69 | 5000 | 2.2222 | 0.4497 | 0.1522 | 0.2420 | 0.2419 |
56
+ | 2.0396 | 1.37 | 10000 | 2.1595 | 0.4549 | 0.1553 | 0.2425 | 0.2425 |
57
+ | 1.9232 | 2.06 | 15000 | 2.1235 | 0.4552 | 0.1532 | 0.2416 | 0.2414 |
58
+ | 1.9027 | 2.75 | 20000 | 2.1110 | 0.4559 | 0.1537 | 0.2402 | 0.2401 |
59
+ | 1.7799 | 3.43 | 25000 | 2.0989 | 0.4544 | 0.1527 | 0.2415 | 0.2414 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.26.0
65
+ - Pytorch 1.13.1
66
+ - Datasets 2.10.1
67
+ - Tokenizers 0.12.1