File size: 2,885 Bytes
1ef7f42 28af6bc 1ef7f42 d0ceb75 1ef7f42 9df00cf 1ef7f42 f3a3de4 9184f53 1ef7f42 a11969a 1ef7f42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
---
tags:
- token-classification
datasets:
- djagatiya/ner-ontonotes-v5-eng-v4
widget:
- text: "On September 1st George won 1 dollar while watching Game of Thrones."
---
# (NER) roberta-base : conll2012_ontonotesv5-english-v4
This `roberta-base` NER model was finetuned on `conll2012_ontonotesv5` version `english-v4` dataset. <br>
Check out [NER-System Repository](https://github.com/djagatiya/NER-System) for more information.
## Dataset
- conll2012_ontonotesv5
- Language : English
- Version : v4
| Dataset | Examples |
| --- | --- |
| Training | 75187 |
| Testing | 9479 |
## Evaluation
- Precision: 88.88
- Recall: 90.69
- F1-Score: 89.78
> check out this [eval.log](eval.log) file for evaluation metrics and classification report.
```
precision recall f1-score support
CARDINAL 0.84 0.85 0.85 935
DATE 0.85 0.90 0.87 1602
EVENT 0.67 0.76 0.71 63
FAC 0.74 0.72 0.73 135
GPE 0.97 0.96 0.96 2240
LANGUAGE 0.83 0.68 0.75 22
LAW 0.66 0.62 0.64 40
LOC 0.74 0.80 0.77 179
MONEY 0.85 0.89 0.87 314
NORP 0.93 0.96 0.95 841
ORDINAL 0.81 0.89 0.85 195
ORG 0.90 0.91 0.91 1795
PERCENT 0.90 0.92 0.91 349
PERSON 0.95 0.95 0.95 1988
PRODUCT 0.74 0.83 0.78 76
QUANTITY 0.76 0.80 0.78 105
TIME 0.62 0.67 0.65 212
WORK_OF_ART 0.58 0.69 0.63 166
micro avg 0.89 0.91 0.90 11257
macro avg 0.80 0.82 0.81 11257
weighted avg 0.89 0.91 0.90 11257
```
## Usage
```
from transformers import pipeline
ner_pipeline = pipeline(
'token-classification',
model=r'djagatiya/ner-roberta-base-ontonotesv5-englishv4',
aggregation_strategy='simple'
)
```
TEST 1
```
ner_pipeline("India is a beautiful country")
```
```
# Output
[{'entity_group': 'GPE',
'score': 0.99186057,
'word': ' India',
'start': 0,
'end': 5}]
```
TEST 2
```
ner_pipeline("On September 1st George won 1 dollar while watching Game of Thrones.")
```
```
# Output
[{'entity_group': 'DATE',
'score': 0.99720246,
'word': ' September 1st',
'start': 3,
'end': 16},
{'entity_group': 'PERSON',
'score': 0.99071586,
'word': ' George',
'start': 17,
'end': 23},
{'entity_group': 'MONEY',
'score': 0.9872978,
'word': ' 1 dollar',
'start': 28,
'end': 36},
{'entity_group': 'WORK_OF_ART',
'score': 0.9946732,
'word': ' Game of Thrones',
'start': 52,
'end': 67}]
``` |