model added.
Browse files- config.json +104 -0
- eval.log +493 -0
- pytorch_model.bin +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +14 -0
- trainer_state.json +232 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
config.json
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bert-base-cased",
|
3 |
+
"architectures": [
|
4 |
+
"BertForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "O",
|
14 |
+
"1": "B-PERSON",
|
15 |
+
"2": "I-PERSON",
|
16 |
+
"3": "B-NORP",
|
17 |
+
"4": "I-NORP",
|
18 |
+
"5": "B-FAC",
|
19 |
+
"6": "I-FAC",
|
20 |
+
"7": "B-ORG",
|
21 |
+
"8": "I-ORG",
|
22 |
+
"9": "B-GPE",
|
23 |
+
"10": "I-GPE",
|
24 |
+
"11": "B-LOC",
|
25 |
+
"12": "I-LOC",
|
26 |
+
"13": "B-PRODUCT",
|
27 |
+
"14": "I-PRODUCT",
|
28 |
+
"15": "B-DATE",
|
29 |
+
"16": "I-DATE",
|
30 |
+
"17": "B-TIME",
|
31 |
+
"18": "I-TIME",
|
32 |
+
"19": "B-PERCENT",
|
33 |
+
"20": "I-PERCENT",
|
34 |
+
"21": "B-MONEY",
|
35 |
+
"22": "I-MONEY",
|
36 |
+
"23": "B-QUANTITY",
|
37 |
+
"24": "I-QUANTITY",
|
38 |
+
"25": "B-ORDINAL",
|
39 |
+
"26": "I-ORDINAL",
|
40 |
+
"27": "B-CARDINAL",
|
41 |
+
"28": "I-CARDINAL",
|
42 |
+
"29": "B-EVENT",
|
43 |
+
"30": "I-EVENT",
|
44 |
+
"31": "B-WORK_OF_ART",
|
45 |
+
"32": "I-WORK_OF_ART",
|
46 |
+
"33": "B-LAW",
|
47 |
+
"34": "I-LAW",
|
48 |
+
"35": "B-LANGUAGE",
|
49 |
+
"36": "I-LANGUAGE"
|
50 |
+
},
|
51 |
+
"initializer_range": 0.02,
|
52 |
+
"intermediate_size": 3072,
|
53 |
+
"label2id": {
|
54 |
+
"B-CARDINAL": 27,
|
55 |
+
"B-DATE": 15,
|
56 |
+
"B-EVENT": 29,
|
57 |
+
"B-FAC": 5,
|
58 |
+
"B-GPE": 9,
|
59 |
+
"B-LANGUAGE": 35,
|
60 |
+
"B-LAW": 33,
|
61 |
+
"B-LOC": 11,
|
62 |
+
"B-MONEY": 21,
|
63 |
+
"B-NORP": 3,
|
64 |
+
"B-ORDINAL": 25,
|
65 |
+
"B-ORG": 7,
|
66 |
+
"B-PERCENT": 19,
|
67 |
+
"B-PERSON": 1,
|
68 |
+
"B-PRODUCT": 13,
|
69 |
+
"B-QUANTITY": 23,
|
70 |
+
"B-TIME": 17,
|
71 |
+
"B-WORK_OF_ART": 31,
|
72 |
+
"I-CARDINAL": 28,
|
73 |
+
"I-DATE": 16,
|
74 |
+
"I-EVENT": 30,
|
75 |
+
"I-FAC": 6,
|
76 |
+
"I-GPE": 10,
|
77 |
+
"I-LANGUAGE": 36,
|
78 |
+
"I-LAW": 34,
|
79 |
+
"I-LOC": 12,
|
80 |
+
"I-MONEY": 22,
|
81 |
+
"I-NORP": 4,
|
82 |
+
"I-ORDINAL": 26,
|
83 |
+
"I-ORG": 8,
|
84 |
+
"I-PERCENT": 20,
|
85 |
+
"I-PERSON": 2,
|
86 |
+
"I-PRODUCT": 14,
|
87 |
+
"I-QUANTITY": 24,
|
88 |
+
"I-TIME": 18,
|
89 |
+
"I-WORK_OF_ART": 32,
|
90 |
+
"O": 0
|
91 |
+
},
|
92 |
+
"layer_norm_eps": 1e-12,
|
93 |
+
"max_position_embeddings": 512,
|
94 |
+
"model_type": "bert",
|
95 |
+
"num_attention_heads": 12,
|
96 |
+
"num_hidden_layers": 12,
|
97 |
+
"pad_token_id": 0,
|
98 |
+
"position_embedding_type": "absolute",
|
99 |
+
"torch_dtype": "float32",
|
100 |
+
"transformers_version": "4.20.0",
|
101 |
+
"type_vocab_size": 2,
|
102 |
+
"use_cache": true,
|
103 |
+
"vocab_size": 28996
|
104 |
+
}
|
eval.log
ADDED
@@ -0,0 +1,493 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2022-07-03 16:16:30,561 - __main__ - INFO - Label List:['O', 'B-PERSON', 'I-PERSON', 'B-NORP', 'I-NORP', 'B-FAC', 'I-FAC', 'B-ORG', 'I-ORG', 'B-GPE', 'I-GPE', 'B-LOC', 'I-LOC', 'B-PRODUCT', 'I-PRODUCT', 'B-DATE', 'I-DATE', 'B-TIME', 'I-TIME', 'B-PERCENT', 'I-PERCENT', 'B-MONEY', 'I-MONEY', 'B-QUANTITY', 'I-QUANTITY', 'B-ORDINAL', 'I-ORDINAL', 'B-CARDINAL', 'I-CARDINAL', 'B-EVENT', 'I-EVENT', 'B-WORK_OF_ART', 'I-WORK_OF_ART', 'B-LAW', 'I-LAW', 'B-LANGUAGE', 'I-LANGUAGE']
|
2 |
+
2022-07-03 16:16:36,880 - __main__ - INFO - Dataset({
|
3 |
+
features: ['id', 'words', 'ner_tags'],
|
4 |
+
num_rows: 75187
|
5 |
+
})
|
6 |
+
2022-07-03 16:16:37,627 - __main__ - INFO - Dataset({
|
7 |
+
features: ['id', 'words', 'ner_tags'],
|
8 |
+
num_rows: 9479
|
9 |
+
})
|
10 |
+
2022-07-03 16:16:37,629 - transformers.tokenization_utils_base - INFO - Didn't find file models/bert-base-cased_1656837168.84538/checkpoint-14100/added_tokens.json. We won't load it.
|
11 |
+
2022-07-03 16:16:37,631 - transformers.tokenization_utils_base - INFO - loading file models/bert-base-cased_1656837168.84538/checkpoint-14100/vocab.txt
|
12 |
+
2022-07-03 16:16:37,631 - transformers.tokenization_utils_base - INFO - loading file models/bert-base-cased_1656837168.84538/checkpoint-14100/tokenizer.json
|
13 |
+
2022-07-03 16:16:37,631 - transformers.tokenization_utils_base - INFO - loading file None
|
14 |
+
2022-07-03 16:16:37,631 - transformers.tokenization_utils_base - INFO - loading file models/bert-base-cased_1656837168.84538/checkpoint-14100/special_tokens_map.json
|
15 |
+
2022-07-03 16:16:37,632 - transformers.tokenization_utils_base - INFO - loading file models/bert-base-cased_1656837168.84538/checkpoint-14100/tokenizer_config.json
|
16 |
+
2022-07-03 16:16:37,649 - __main__ - INFO - {'input_ids': [[101, 1327, 1912, 1104, 2962, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 1284, 4161, 5834, 13967, 1128, 1106, 2824, 170, 1957, 2596, 1104, 14754, 1975, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 160, 2924, 1563, 18405, 1116, 1113, 1103, 2038, 2746, 1104, 1975, 131, 21342, 19917, 1104, 16191, 17204, 3757, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 9996, 3543, 1113, 16191, 17204, 3757, 1110, 1103, 12267, 1106, 1103, 15090, 3391, 1116, 17354, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 1135, 1110, 2766, 1104, 170, 2425, 188, 7854, 1162, 117, 3718, 188, 7854, 1279, 117, 170, 3321, 1668, 7115, 1105, 25973, 3590, 117, 1105, 1103, 2038, 6250, 117, 1621, 1168, 1614, 119, 102]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}
|
17 |
+
2022-07-03 16:16:37,649 - __main__ - INFO - ['[CLS]', 'What', 'kind', 'of', 'memory', '?', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
|
18 |
+
2022-07-03 16:16:37,651 - __main__ - INFO - ['[CLS]', 'We', 'respect', '##fully', 'invite', 'you', 'to', 'watch', 'a', 'special', 'edition', 'of', 'Across', 'China', '.', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
|
19 |
+
2022-07-03 16:16:37,651 - __main__ - INFO - ['[CLS]', 'W', '##W', 'II', 'Landmark', '##s', 'on', 'the', 'Great', 'Earth', 'of', 'China', ':', 'Eternal', 'Memories', 'of', 'Tai', '##hang', 'Mountain', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
|
20 |
+
2022-07-03 16:16:37,652 - __main__ - INFO - ['[CLS]', 'Standing', 'tall', 'on', 'Tai', '##hang', 'Mountain', 'is', 'the', 'Monument', 'to', 'the', 'Hundred', 'Regiment', '##s', 'Offensive', '.', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
|
21 |
+
2022-07-03 16:16:37,652 - __main__ - INFO - ['[CLS]', 'It', 'is', 'composed', 'of', 'a', 'primary', 's', '##tel', '##e', ',', 'secondary', 's', '##tel', '##es', ',', 'a', 'huge', 'round', 'sculpture', 'and', 'beacon', 'tower', ',', 'and', 'the', 'Great', 'Wall', ',', 'among', 'other', 'things', '.', '[SEP]']
|
22 |
+
2022-07-03 16:16:37,652 - __main__ - INFO - -------------
|
23 |
+
2022-07-03 16:16:37,653 - __main__ - INFO - ['[CLS]', 'We', 'respect', '##fully', 'invite', 'you', 'to', 'watch', 'a', 'special', 'edition', 'of', 'Across', 'China', '.', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
|
24 |
+
2022-07-03 16:16:37,653 - __main__ - INFO - [None, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None]
|
25 |
+
2022-07-03 16:16:37,656 - datasets.fingerprint - WARNING - Parameter 'function'=<function tokenize_and_align_labels at 0x7f4e0440bee0> of the transform datasets.arrow_dataset.Dataset._map_single couldn't be hashed properly, a random hash was used instead. Make sure your transforms and parameters are serializable with pickle or dill for the dataset fingerprinting and caching to work. If you reuse this transform, the caching mechanism will consider it to be different from the previous calls and recompute everything. This warning is only showed once. Subsequent hashing failures won't be showed.
|
26 |
+
2022-07-03 16:16:42,938 - __main__ - INFO - {'id': [0, 1, 2, 3, 4], 'words': [['What', 'kind', 'of', 'memory', '?'], ['We', 'respectfully', 'invite', 'you', 'to', 'watch', 'a', 'special', 'edition', 'of', 'Across', 'China', '.'], ['WW', 'II', 'Landmarks', 'on', 'the', 'Great', 'Earth', 'of', 'China', ':', 'Eternal', 'Memories', 'of', 'Taihang', 'Mountain'], ['Standing', 'tall', 'on', 'Taihang', 'Mountain', 'is', 'the', 'Monument', 'to', 'the', 'Hundred', 'Regiments', 'Offensive', '.'], ['It', 'is', 'composed', 'of', 'a', 'primary', 'stele', ',', 'secondary', 'steles', ',', 'a', 'huge', 'round', 'sculpture', 'and', 'beacon', 'tower', ',', 'and', 'the', 'Great', 'Wall', ',', 'among', 'other', 'things', '.']], 'ner_tags': [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0], [31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32], [0, 0, 0, 11, 12, 0, 31, 32, 32, 32, 32, 32, 32, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 32, 32, 0, 0, 0, 0, 0]], 'input_ids': [[101, 1327, 1912, 1104, 2962, 136, 102], [101, 1284, 4161, 5834, 13967, 1128, 1106, 2824, 170, 1957, 2596, 1104, 14754, 1975, 119, 102], [101, 160, 2924, 1563, 18405, 1116, 1113, 1103, 2038, 2746, 1104, 1975, 131, 21342, 19917, 1104, 16191, 17204, 3757, 102], [101, 9996, 3543, 1113, 16191, 17204, 3757, 1110, 1103, 12267, 1106, 1103, 15090, 3391, 1116, 17354, 119, 102], [101, 1135, 1110, 2766, 1104, 170, 2425, 188, 7854, 1162, 117, 3718, 188, 7854, 1279, 117, 170, 3321, 1668, 7115, 1105, 25973, 3590, 117, 1105, 1103, 2038, 6250, 117, 1621, 1168, 1614, 119, 102]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'labels': [[-100, 0, 0, 0, 0, 0, -100], [-100, 0, 0, -100, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0, -100], [-100, 31, -100, 32, 32, -100, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, -100, 32, -100], [-100, 0, 0, 0, 11, -100, 12, 0, 31, 32, 32, 32, 32, 32, -100, 32, 0, -100], [-100, 0, 0, 0, 0, 0, 0, 0, -100, -100, 0, 0, 0, -100, -100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 32, 32, 0, 0, 0, 0, 0, -100]]}
|
27 |
+
2022-07-03 16:16:45,238 - transformers.configuration_utils - INFO - loading configuration file models/bert-base-cased_1656837168.84538/checkpoint-14100/config.json
|
28 |
+
2022-07-03 16:16:45,241 - transformers.configuration_utils - INFO - Model config BertConfig {
|
29 |
+
"_name_or_path": "models/bert-base-cased_1656837168.84538/checkpoint-14100",
|
30 |
+
"architectures": [
|
31 |
+
"BertForTokenClassification"
|
32 |
+
],
|
33 |
+
"attention_probs_dropout_prob": 0.1,
|
34 |
+
"classifier_dropout": null,
|
35 |
+
"gradient_checkpointing": false,
|
36 |
+
"hidden_act": "gelu",
|
37 |
+
"hidden_dropout_prob": 0.1,
|
38 |
+
"hidden_size": 768,
|
39 |
+
"id2label": {
|
40 |
+
"0": "O",
|
41 |
+
"1": "B-PERSON",
|
42 |
+
"2": "I-PERSON",
|
43 |
+
"3": "B-NORP",
|
44 |
+
"4": "I-NORP",
|
45 |
+
"5": "B-FAC",
|
46 |
+
"6": "I-FAC",
|
47 |
+
"7": "B-ORG",
|
48 |
+
"8": "I-ORG",
|
49 |
+
"9": "B-GPE",
|
50 |
+
"10": "I-GPE",
|
51 |
+
"11": "B-LOC",
|
52 |
+
"12": "I-LOC",
|
53 |
+
"13": "B-PRODUCT",
|
54 |
+
"14": "I-PRODUCT",
|
55 |
+
"15": "B-DATE",
|
56 |
+
"16": "I-DATE",
|
57 |
+
"17": "B-TIME",
|
58 |
+
"18": "I-TIME",
|
59 |
+
"19": "B-PERCENT",
|
60 |
+
"20": "I-PERCENT",
|
61 |
+
"21": "B-MONEY",
|
62 |
+
"22": "I-MONEY",
|
63 |
+
"23": "B-QUANTITY",
|
64 |
+
"24": "I-QUANTITY",
|
65 |
+
"25": "B-ORDINAL",
|
66 |
+
"26": "I-ORDINAL",
|
67 |
+
"27": "B-CARDINAL",
|
68 |
+
"28": "I-CARDINAL",
|
69 |
+
"29": "B-EVENT",
|
70 |
+
"30": "I-EVENT",
|
71 |
+
"31": "B-WORK_OF_ART",
|
72 |
+
"32": "I-WORK_OF_ART",
|
73 |
+
"33": "B-LAW",
|
74 |
+
"34": "I-LAW",
|
75 |
+
"35": "B-LANGUAGE",
|
76 |
+
"36": "I-LANGUAGE"
|
77 |
+
},
|
78 |
+
"initializer_range": 0.02,
|
79 |
+
"intermediate_size": 3072,
|
80 |
+
"label2id": {
|
81 |
+
"B-CARDINAL": 27,
|
82 |
+
"B-DATE": 15,
|
83 |
+
"B-EVENT": 29,
|
84 |
+
"B-FAC": 5,
|
85 |
+
"B-GPE": 9,
|
86 |
+
"B-LANGUAGE": 35,
|
87 |
+
"B-LAW": 33,
|
88 |
+
"B-LOC": 11,
|
89 |
+
"B-MONEY": 21,
|
90 |
+
"B-NORP": 3,
|
91 |
+
"B-ORDINAL": 25,
|
92 |
+
"B-ORG": 7,
|
93 |
+
"B-PERCENT": 19,
|
94 |
+
"B-PERSON": 1,
|
95 |
+
"B-PRODUCT": 13,
|
96 |
+
"B-QUANTITY": 23,
|
97 |
+
"B-TIME": 17,
|
98 |
+
"B-WORK_OF_ART": 31,
|
99 |
+
"I-CARDINAL": 28,
|
100 |
+
"I-DATE": 16,
|
101 |
+
"I-EVENT": 30,
|
102 |
+
"I-FAC": 6,
|
103 |
+
"I-GPE": 10,
|
104 |
+
"I-LANGUAGE": 36,
|
105 |
+
"I-LAW": 34,
|
106 |
+
"I-LOC": 12,
|
107 |
+
"I-MONEY": 22,
|
108 |
+
"I-NORP": 4,
|
109 |
+
"I-ORDINAL": 26,
|
110 |
+
"I-ORG": 8,
|
111 |
+
"I-PERCENT": 20,
|
112 |
+
"I-PERSON": 2,
|
113 |
+
"I-PRODUCT": 14,
|
114 |
+
"I-QUANTITY": 24,
|
115 |
+
"I-TIME": 18,
|
116 |
+
"I-WORK_OF_ART": 32,
|
117 |
+
"O": 0
|
118 |
+
},
|
119 |
+
"layer_norm_eps": 1e-12,
|
120 |
+
"max_position_embeddings": 512,
|
121 |
+
"model_type": "bert",
|
122 |
+
"num_attention_heads": 12,
|
123 |
+
"num_hidden_layers": 12,
|
124 |
+
"pad_token_id": 0,
|
125 |
+
"position_embedding_type": "absolute",
|
126 |
+
"torch_dtype": "float32",
|
127 |
+
"transformers_version": "4.20.0",
|
128 |
+
"type_vocab_size": 2,
|
129 |
+
"use_cache": true,
|
130 |
+
"vocab_size": 28996
|
131 |
+
}
|
132 |
+
|
133 |
+
2022-07-03 16:16:45,304 - transformers.modeling_utils - INFO - loading weights file models/bert-base-cased_1656837168.84538/checkpoint-14100/pytorch_model.bin
|
134 |
+
2022-07-03 16:16:46,439 - transformers.modeling_utils - INFO - All model checkpoint weights were used when initializing BertForTokenClassification.
|
135 |
+
|
136 |
+
2022-07-03 16:16:46,439 - transformers.modeling_utils - INFO - All the weights of BertForTokenClassification were initialized from the model checkpoint at models/bert-base-cased_1656837168.84538/checkpoint-14100.
|
137 |
+
If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForTokenClassification for predictions without further training.
|
138 |
+
2022-07-03 16:16:46,442 - __main__ - INFO - BertForTokenClassification(
|
139 |
+
(bert): BertModel(
|
140 |
+
(embeddings): BertEmbeddings(
|
141 |
+
(word_embeddings): Embedding(28996, 768, padding_idx=0)
|
142 |
+
(position_embeddings): Embedding(512, 768)
|
143 |
+
(token_type_embeddings): Embedding(2, 768)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
(encoder): BertEncoder(
|
148 |
+
(layer): ModuleList(
|
149 |
+
(0): BertLayer(
|
150 |
+
(attention): BertAttention(
|
151 |
+
(self): BertSelfAttention(
|
152 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
153 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
154 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
(output): BertSelfOutput(
|
158 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
159 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
160 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
161 |
+
)
|
162 |
+
)
|
163 |
+
(intermediate): BertIntermediate(
|
164 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
165 |
+
(intermediate_act_fn): GELUActivation()
|
166 |
+
)
|
167 |
+
(output): BertOutput(
|
168 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
169 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
170 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
171 |
+
)
|
172 |
+
)
|
173 |
+
(1): BertLayer(
|
174 |
+
(attention): BertAttention(
|
175 |
+
(self): BertSelfAttention(
|
176 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
177 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
178 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
(output): BertSelfOutput(
|
182 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
183 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
184 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
185 |
+
)
|
186 |
+
)
|
187 |
+
(intermediate): BertIntermediate(
|
188 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
189 |
+
(intermediate_act_fn): GELUActivation()
|
190 |
+
)
|
191 |
+
(output): BertOutput(
|
192 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
193 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
194 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
195 |
+
)
|
196 |
+
)
|
197 |
+
(2): BertLayer(
|
198 |
+
(attention): BertAttention(
|
199 |
+
(self): BertSelfAttention(
|
200 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
201 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
202 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
(output): BertSelfOutput(
|
206 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
207 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
208 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
209 |
+
)
|
210 |
+
)
|
211 |
+
(intermediate): BertIntermediate(
|
212 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
213 |
+
(intermediate_act_fn): GELUActivation()
|
214 |
+
)
|
215 |
+
(output): BertOutput(
|
216 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
217 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
218 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
219 |
+
)
|
220 |
+
)
|
221 |
+
(3): BertLayer(
|
222 |
+
(attention): BertAttention(
|
223 |
+
(self): BertSelfAttention(
|
224 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
225 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
226 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
(output): BertSelfOutput(
|
230 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
231 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
232 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
233 |
+
)
|
234 |
+
)
|
235 |
+
(intermediate): BertIntermediate(
|
236 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
237 |
+
(intermediate_act_fn): GELUActivation()
|
238 |
+
)
|
239 |
+
(output): BertOutput(
|
240 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
241 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
242 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
243 |
+
)
|
244 |
+
)
|
245 |
+
(4): BertLayer(
|
246 |
+
(attention): BertAttention(
|
247 |
+
(self): BertSelfAttention(
|
248 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
249 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
250 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
(output): BertSelfOutput(
|
254 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
255 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
256 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
257 |
+
)
|
258 |
+
)
|
259 |
+
(intermediate): BertIntermediate(
|
260 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
261 |
+
(intermediate_act_fn): GELUActivation()
|
262 |
+
)
|
263 |
+
(output): BertOutput(
|
264 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
265 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
266 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
267 |
+
)
|
268 |
+
)
|
269 |
+
(5): BertLayer(
|
270 |
+
(attention): BertAttention(
|
271 |
+
(self): BertSelfAttention(
|
272 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
273 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
274 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
(output): BertSelfOutput(
|
278 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
279 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
280 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
281 |
+
)
|
282 |
+
)
|
283 |
+
(intermediate): BertIntermediate(
|
284 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
285 |
+
(intermediate_act_fn): GELUActivation()
|
286 |
+
)
|
287 |
+
(output): BertOutput(
|
288 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
289 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
290 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
291 |
+
)
|
292 |
+
)
|
293 |
+
(6): BertLayer(
|
294 |
+
(attention): BertAttention(
|
295 |
+
(self): BertSelfAttention(
|
296 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
297 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
298 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
(output): BertSelfOutput(
|
302 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
303 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
304 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
305 |
+
)
|
306 |
+
)
|
307 |
+
(intermediate): BertIntermediate(
|
308 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
309 |
+
(intermediate_act_fn): GELUActivation()
|
310 |
+
)
|
311 |
+
(output): BertOutput(
|
312 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
313 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
314 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
315 |
+
)
|
316 |
+
)
|
317 |
+
(7): BertLayer(
|
318 |
+
(attention): BertAttention(
|
319 |
+
(self): BertSelfAttention(
|
320 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
321 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
322 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
323 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
324 |
+
)
|
325 |
+
(output): BertSelfOutput(
|
326 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
327 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
328 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
329 |
+
)
|
330 |
+
)
|
331 |
+
(intermediate): BertIntermediate(
|
332 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
333 |
+
(intermediate_act_fn): GELUActivation()
|
334 |
+
)
|
335 |
+
(output): BertOutput(
|
336 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
337 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
338 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
339 |
+
)
|
340 |
+
)
|
341 |
+
(8): BertLayer(
|
342 |
+
(attention): BertAttention(
|
343 |
+
(self): BertSelfAttention(
|
344 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
345 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
346 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
347 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
348 |
+
)
|
349 |
+
(output): BertSelfOutput(
|
350 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
351 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
352 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
353 |
+
)
|
354 |
+
)
|
355 |
+
(intermediate): BertIntermediate(
|
356 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
357 |
+
(intermediate_act_fn): GELUActivation()
|
358 |
+
)
|
359 |
+
(output): BertOutput(
|
360 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
361 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
362 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
363 |
+
)
|
364 |
+
)
|
365 |
+
(9): BertLayer(
|
366 |
+
(attention): BertAttention(
|
367 |
+
(self): BertSelfAttention(
|
368 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
369 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
370 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
371 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
372 |
+
)
|
373 |
+
(output): BertSelfOutput(
|
374 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
375 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
376 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
377 |
+
)
|
378 |
+
)
|
379 |
+
(intermediate): BertIntermediate(
|
380 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
381 |
+
(intermediate_act_fn): GELUActivation()
|
382 |
+
)
|
383 |
+
(output): BertOutput(
|
384 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
385 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
386 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
387 |
+
)
|
388 |
+
)
|
389 |
+
(10): BertLayer(
|
390 |
+
(attention): BertAttention(
|
391 |
+
(self): BertSelfAttention(
|
392 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
393 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
394 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
395 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
396 |
+
)
|
397 |
+
(output): BertSelfOutput(
|
398 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
399 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
400 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
401 |
+
)
|
402 |
+
)
|
403 |
+
(intermediate): BertIntermediate(
|
404 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
405 |
+
(intermediate_act_fn): GELUActivation()
|
406 |
+
)
|
407 |
+
(output): BertOutput(
|
408 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
409 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
410 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
411 |
+
)
|
412 |
+
)
|
413 |
+
(11): BertLayer(
|
414 |
+
(attention): BertAttention(
|
415 |
+
(self): BertSelfAttention(
|
416 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
417 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
418 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
419 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
420 |
+
)
|
421 |
+
(output): BertSelfOutput(
|
422 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
423 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
424 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
425 |
+
)
|
426 |
+
)
|
427 |
+
(intermediate): BertIntermediate(
|
428 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
429 |
+
(intermediate_act_fn): GELUActivation()
|
430 |
+
)
|
431 |
+
(output): BertOutput(
|
432 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
433 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
434 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
435 |
+
)
|
436 |
+
)
|
437 |
+
)
|
438 |
+
)
|
439 |
+
)
|
440 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
441 |
+
(classifier): Linear(in_features=768, out_features=37, bias=True)
|
442 |
+
)
|
443 |
+
2022-07-03 16:16:46,443 - __main__ - INFO - CONFIGS:{
|
444 |
+
"output_dir": "./models/finetuned-base-uncased_1656845190.560204",
|
445 |
+
"per_device_train_batch_size": 16,
|
446 |
+
"per_device_eval_batch_size": 16,
|
447 |
+
"save_total_limit": 2,
|
448 |
+
"num_train_epochs": 3,
|
449 |
+
"seed": 1,
|
450 |
+
"load_best_model_at_end": true,
|
451 |
+
"evaluation_strategy": "epoch",
|
452 |
+
"save_strategy": "epoch",
|
453 |
+
"learning_rate": 2e-05,
|
454 |
+
"weight_decay": 0.01,
|
455 |
+
"logging_steps": 469.0
|
456 |
+
}
|
457 |
+
2022-07-03 16:16:46,444 - transformers.training_args - INFO - PyTorch: setting up devices
|
458 |
+
2022-07-03 16:16:46,488 - transformers.training_args - INFO - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
|
459 |
+
2022-07-03 16:16:46,494 - __main__ - INFO - [[ MODEL EVALUATION ]]
|
460 |
+
2022-07-03 16:16:46,494 - transformers.trainer - INFO - The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: ner_tags, id, words. If ner_tags, id, words are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
|
461 |
+
2022-07-03 16:16:46,497 - transformers.trainer - INFO - ***** Running Evaluation *****
|
462 |
+
2022-07-03 16:16:46,497 - transformers.trainer - INFO - Num examples = 9479
|
463 |
+
2022-07-03 16:16:46,498 - transformers.trainer - INFO - Batch size = 16
|
464 |
+
2022-07-03 16:25:59,032 - __main__ - INFO - {'eval_loss': 0.06829366087913513, 'eval_precision': 0.8785372224640836, 'eval_recall': 0.8963311717153771, 'eval_f1': 0.8873450004397152, 'eval_accuracy': 0.9835533880964035, 'eval_runtime': 552.5236, 'eval_samples_per_second': 17.156, 'eval_steps_per_second': 1.073, 'step': 0}
|
465 |
+
2022-07-03 16:25:59,032 - transformers.trainer - INFO - The following columns in the test set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: ner_tags, id, words. If ner_tags, id, words are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
|
466 |
+
2022-07-03 16:25:59,034 - transformers.trainer - INFO - ***** Running Prediction *****
|
467 |
+
2022-07-03 16:25:59,035 - transformers.trainer - INFO - Num examples = 9479
|
468 |
+
2022-07-03 16:25:59,035 - transformers.trainer - INFO - Batch size = 16
|
469 |
+
2022-07-03 16:34:58,579 - __main__ - INFO - precision recall f1-score support
|
470 |
+
|
471 |
+
CARDINAL 0.86 0.87 0.86 935
|
472 |
+
DATE 0.84 0.88 0.86 1602
|
473 |
+
EVENT 0.65 0.67 0.66 63
|
474 |
+
FAC 0.69 0.71 0.70 135
|
475 |
+
GPE 0.97 0.93 0.95 2240
|
476 |
+
LANGUAGE 0.76 0.73 0.74 22
|
477 |
+
LAW 0.54 0.55 0.54 40
|
478 |
+
LOC 0.73 0.80 0.76 179
|
479 |
+
MONEY 0.87 0.90 0.88 314
|
480 |
+
NORP 0.93 0.96 0.94 841
|
481 |
+
ORDINAL 0.80 0.87 0.83 195
|
482 |
+
ORG 0.88 0.90 0.89 1795
|
483 |
+
PERCENT 0.88 0.90 0.89 349
|
484 |
+
PERSON 0.94 0.95 0.94 1988
|
485 |
+
PRODUCT 0.62 0.76 0.69 76
|
486 |
+
QUANTITY 0.74 0.81 0.77 105
|
487 |
+
TIME 0.61 0.67 0.64 212
|
488 |
+
WORK_OF_ART 0.56 0.66 0.61 166
|
489 |
+
|
490 |
+
micro avg 0.88 0.90 0.89 11257
|
491 |
+
macro avg 0.77 0.81 0.79 11257
|
492 |
+
weighted avg 0.88 0.90 0.89 11257
|
493 |
+
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:536f64240cd0606727dcfdb286546def5f6d86562cf88b1e5d905044d14c7914
|
3 |
+
size 431062961
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da9c3c7b790cd5b6872d6314c6e11475995e4ff06527b2101d80e1805497175f
|
3 |
+
size 14503
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0271a42487a5a379bf223d761cfc585dcba1a6069b012d2a634c31973187a24e
|
3 |
+
size 623
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"do_lower_case": false,
|
4 |
+
"mask_token": "[MASK]",
|
5 |
+
"model_max_length": 512,
|
6 |
+
"name_or_path": "bert-base-cased",
|
7 |
+
"pad_token": "[PAD]",
|
8 |
+
"sep_token": "[SEP]",
|
9 |
+
"special_tokens_map_file": null,
|
10 |
+
"strip_accents": null,
|
11 |
+
"tokenize_chinese_chars": true,
|
12 |
+
"tokenizer_class": "BertTokenizer",
|
13 |
+
"unk_token": "[UNK]"
|
14 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.06504358351230621,
|
3 |
+
"best_model_checkpoint": "./models/bert-base-cased_1656837168.84538/checkpoint-9400",
|
4 |
+
"epoch": 3.0,
|
5 |
+
"global_step": 14100,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.1,
|
12 |
+
"learning_rate": 1.9334751773049647e-05,
|
13 |
+
"loss": 0.2895,
|
14 |
+
"step": 469
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.2,
|
18 |
+
"learning_rate": 1.866950354609929e-05,
|
19 |
+
"loss": 0.11,
|
20 |
+
"step": 938
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.3,
|
24 |
+
"learning_rate": 1.8004255319148936e-05,
|
25 |
+
"loss": 0.0845,
|
26 |
+
"step": 1407
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.4,
|
30 |
+
"learning_rate": 1.7339007092198585e-05,
|
31 |
+
"loss": 0.0832,
|
32 |
+
"step": 1876
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.5,
|
36 |
+
"learning_rate": 1.667375886524823e-05,
|
37 |
+
"loss": 0.0775,
|
38 |
+
"step": 2345
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.6,
|
42 |
+
"learning_rate": 1.6008510638297874e-05,
|
43 |
+
"loss": 0.0666,
|
44 |
+
"step": 2814
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.7,
|
48 |
+
"learning_rate": 1.534326241134752e-05,
|
49 |
+
"loss": 0.0703,
|
50 |
+
"step": 3283
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.8,
|
54 |
+
"learning_rate": 1.4678014184397164e-05,
|
55 |
+
"loss": 0.0587,
|
56 |
+
"step": 3752
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.9,
|
60 |
+
"learning_rate": 1.401276595744681e-05,
|
61 |
+
"loss": 0.0617,
|
62 |
+
"step": 4221
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 1.0,
|
66 |
+
"learning_rate": 1.3347517730496456e-05,
|
67 |
+
"loss": 0.0558,
|
68 |
+
"step": 4690
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 1.0,
|
72 |
+
"eval_accuracy": 0.981902240253805,
|
73 |
+
"eval_f1": 0.8711506586408444,
|
74 |
+
"eval_loss": 0.06536950916051865,
|
75 |
+
"eval_precision": 0.8557717028022966,
|
76 |
+
"eval_recall": 0.88709247579284,
|
77 |
+
"eval_runtime": 31.2315,
|
78 |
+
"eval_samples_per_second": 303.507,
|
79 |
+
"eval_steps_per_second": 18.987,
|
80 |
+
"step": 4700
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 1.1,
|
84 |
+
"learning_rate": 1.26822695035461e-05,
|
85 |
+
"loss": 0.0434,
|
86 |
+
"step": 5159
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 1.2,
|
90 |
+
"learning_rate": 1.2017021276595745e-05,
|
91 |
+
"loss": 0.0441,
|
92 |
+
"step": 5628
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 1.3,
|
96 |
+
"learning_rate": 1.1351773049645392e-05,
|
97 |
+
"loss": 0.0428,
|
98 |
+
"step": 6097
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 1.4,
|
102 |
+
"learning_rate": 1.0686524822695037e-05,
|
103 |
+
"loss": 0.0426,
|
104 |
+
"step": 6566
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 1.5,
|
108 |
+
"learning_rate": 1.0021276595744682e-05,
|
109 |
+
"loss": 0.0433,
|
110 |
+
"step": 7035
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 1.6,
|
114 |
+
"learning_rate": 9.356028368794327e-06,
|
115 |
+
"loss": 0.0402,
|
116 |
+
"step": 7504
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 1.7,
|
120 |
+
"learning_rate": 8.690780141843971e-06,
|
121 |
+
"loss": 0.0375,
|
122 |
+
"step": 7973
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 1.8,
|
126 |
+
"learning_rate": 8.025531914893618e-06,
|
127 |
+
"loss": 0.04,
|
128 |
+
"step": 8442
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 1.9,
|
132 |
+
"learning_rate": 7.360283687943263e-06,
|
133 |
+
"loss": 0.0359,
|
134 |
+
"step": 8911
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 2.0,
|
138 |
+
"learning_rate": 6.695035460992908e-06,
|
139 |
+
"loss": 0.0403,
|
140 |
+
"step": 9380
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 2.0,
|
144 |
+
"eval_accuracy": 0.9830639407002046,
|
145 |
+
"eval_f1": 0.8834252924299271,
|
146 |
+
"eval_loss": 0.06504358351230621,
|
147 |
+
"eval_precision": 0.8779610457975083,
|
148 |
+
"eval_recall": 0.8889579817002754,
|
149 |
+
"eval_runtime": 30.5614,
|
150 |
+
"eval_samples_per_second": 310.162,
|
151 |
+
"eval_steps_per_second": 19.404,
|
152 |
+
"step": 9400
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 2.1,
|
156 |
+
"learning_rate": 6.029787234042554e-06,
|
157 |
+
"loss": 0.0263,
|
158 |
+
"step": 9849
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 2.2,
|
162 |
+
"learning_rate": 5.3645390070921985e-06,
|
163 |
+
"loss": 0.0239,
|
164 |
+
"step": 10318
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 2.3,
|
168 |
+
"learning_rate": 4.699290780141844e-06,
|
169 |
+
"loss": 0.0254,
|
170 |
+
"step": 10787
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 2.39,
|
174 |
+
"learning_rate": 4.03404255319149e-06,
|
175 |
+
"loss": 0.0272,
|
176 |
+
"step": 11256
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 2.49,
|
180 |
+
"learning_rate": 3.368794326241135e-06,
|
181 |
+
"loss": 0.024,
|
182 |
+
"step": 11725
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 2.59,
|
186 |
+
"learning_rate": 2.70354609929078e-06,
|
187 |
+
"loss": 0.0242,
|
188 |
+
"step": 12194
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 2.69,
|
192 |
+
"learning_rate": 2.0382978723404254e-06,
|
193 |
+
"loss": 0.0282,
|
194 |
+
"step": 12663
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 2.79,
|
198 |
+
"learning_rate": 1.373049645390071e-06,
|
199 |
+
"loss": 0.0246,
|
200 |
+
"step": 13132
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 2.89,
|
204 |
+
"learning_rate": 7.078014184397164e-07,
|
205 |
+
"loss": 0.0261,
|
206 |
+
"step": 13601
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 2.99,
|
210 |
+
"learning_rate": 4.2553191489361707e-08,
|
211 |
+
"loss": 0.0262,
|
212 |
+
"step": 14070
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 3.0,
|
216 |
+
"eval_accuracy": 0.9835533880964035,
|
217 |
+
"eval_f1": 0.8873450004397152,
|
218 |
+
"eval_loss": 0.06829366087913513,
|
219 |
+
"eval_precision": 0.8785372224640836,
|
220 |
+
"eval_recall": 0.8963311717153771,
|
221 |
+
"eval_runtime": 30.6109,
|
222 |
+
"eval_samples_per_second": 309.661,
|
223 |
+
"eval_steps_per_second": 19.372,
|
224 |
+
"step": 14100
|
225 |
+
}
|
226 |
+
],
|
227 |
+
"max_steps": 14100,
|
228 |
+
"num_train_epochs": 3,
|
229 |
+
"total_flos": 6310359757516614.0,
|
230 |
+
"trial_name": null,
|
231 |
+
"trial_params": null
|
232 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc6ed93427ba78924ececb965897327eb535b317ba258fdcb96bfdec03c51566
|
3 |
+
size 3311
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|