File size: 6,519 Bytes
6c39e80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
- precision
- recall
model-index:
- name: 009-microsoft-deberta-v3-base-finetuned-yahoo-800_200
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 009-microsoft-deberta-v3-base-finetuned-yahoo-800_200

This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1599
- F1: 0.6588
- Accuracy: 0.66
- Precision: 0.6659
- Recall: 0.66
- System Ram Used: 5.0546
- System Ram Total: 83.4807
- Gpu Ram Allocated: 4.1727
- Gpu Ram Cached: 26.7715
- Gpu Ram Total: 39.5640
- Gpu Utilization: 56
- Disk Space Used: 40.6642
- Disk Space Total: 78.1898

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Accuracy | Precision | Recall | System Ram Used | System Ram Total | Gpu Ram Allocated | Gpu Ram Cached | Gpu Ram Total | Gpu Utilization | Disk Space Used | Disk Space Total |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|:---------------:|:----------------:|:-----------------:|:--------------:|:-------------:|:---------------:|:---------------:|:----------------:|
| 2.3022        | 0.76  | 19   | 2.3012          | 0.0182 | 0.1      | 0.01      | 0.1    | 4.4456          | 83.4807          | 4.1727            | 26.7598        | 39.5640       | 45              | 33.7570         | 78.1898          |
| 2.2979        | 1.52  | 38   | 2.2854          | 0.0635 | 0.155    | 0.0449    | 0.155  | 5.0347          | 83.4807          | 4.1727            | 26.7715        | 39.5640       | 43              | 38.5922         | 78.1898          |
| 2.2316        | 2.28  | 57   | 2.1098          | 0.2285 | 0.305    | 0.2806    | 0.305  | 5.1781          | 83.4807          | 4.1727            | 26.7715        | 39.5640       | 44              | 40.6639         | 78.1898          |
| 1.9915        | 3.04  | 76   | 1.8477          | 0.4148 | 0.43     | 0.5040    | 0.43   | 5.1741          | 83.4807          | 4.1727            | 26.7715        | 39.5640       | 50              | 40.6639         | 78.1898          |
| 1.684         | 3.8   | 95   | 1.6027          | 0.5272 | 0.55     | 0.5666    | 0.55   | 5.1766          | 83.4807          | 4.1728            | 26.7715        | 39.5640       | 47              | 40.6639         | 78.1898          |
| 1.3911        | 4.56  | 114  | 1.4365          | 0.6060 | 0.615    | 0.6199    | 0.615  | 5.1746          | 83.4807          | 4.1728            | 26.7715        | 39.5640       | 49              | 40.6640         | 78.1898          |
| 1.1477        | 5.32  | 133  | 1.2565          | 0.6215 | 0.615    | 0.6419    | 0.615  | 5.1586          | 83.4807          | 4.1728            | 26.7715        | 39.5640       | 52              | 40.6640         | 78.1898          |
| 0.9198        | 6.08  | 152  | 1.1759          | 0.6400 | 0.64     | 0.6532    | 0.64   | 5.1810          | 83.4807          | 4.1727            | 26.7715        | 39.5640       | 55              | 40.6640         | 78.1898          |
| 0.7605        | 6.84  | 171  | 1.1128          | 0.6418 | 0.645    | 0.6564    | 0.645  | 5.1415          | 83.4807          | 4.1727            | 26.7715        | 39.5640       | 45              | 40.6640         | 78.1898          |
| 0.6093        | 7.6   | 190  | 1.0767          | 0.6678 | 0.67     | 0.6758    | 0.67   | 5.1347          | 83.4807          | 4.1728            | 26.7715        | 39.5640       | 43              | 40.6640         | 78.1898          |
| 0.5111        | 8.36  | 209  | 1.1033          | 0.6552 | 0.655    | 0.6742    | 0.655  | 5.1206          | 83.4807          | 4.1728            | 26.7715        | 39.5640       | 52              | 40.6641         | 78.1898          |
| 0.3828        | 9.12  | 228  | 1.1063          | 0.6875 | 0.69     | 0.6927    | 0.69   | 5.1484          | 83.4807          | 4.1727            | 26.7715        | 39.5640       | 44              | 40.6641         | 78.1898          |
| 0.3082        | 9.88  | 247  | 1.1240          | 0.6573 | 0.665    | 0.6595    | 0.665  | 5.1437          | 83.4807          | 4.1728            | 26.7715        | 39.5640       | 45              | 40.6641         | 78.1898          |
| 0.2716        | 10.64 | 266  | 1.1572          | 0.6604 | 0.665    | 0.6665    | 0.665  | 5.0689          | 83.4807          | 4.1728            | 26.7715        | 39.5640       | 45              | 40.6641         | 78.1898          |
| 0.2442        | 11.4  | 285  | 1.1058          | 0.6765 | 0.675    | 0.6827    | 0.675  | 5.0316          | 83.4807          | 4.1728            | 26.7715        | 39.5640       | 42              | 40.6641         | 78.1898          |
| 0.1791        | 12.16 | 304  | 1.1455          | 0.6445 | 0.645    | 0.6515    | 0.645  | 5.0715          | 83.4807          | 4.1728            | 26.7715        | 39.5640       | 46              | 40.6641         | 78.1898          |
| 0.1604        | 12.92 | 323  | 1.1514          | 0.6578 | 0.66     | 0.6686    | 0.66   | 5.0728          | 83.4807          | 4.1728            | 26.7715        | 39.5640       | 57              | 40.6641         | 78.1898          |
| 0.1389        | 13.68 | 342  | 1.1600          | 0.6715 | 0.675    | 0.6808    | 0.675  | 5.0655          | 83.4807          | 4.1727            | 26.7715        | 39.5640       | 48              | 40.6642         | 78.1898          |
| 0.151         | 14.44 | 361  | 1.1573          | 0.6626 | 0.665    | 0.6687    | 0.665  | 5.0588          | 83.4807          | 4.1727            | 26.7715        | 39.5640       | 48              | 40.6642         | 78.1898          |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3