File size: 1,661 Bytes
dc80401 f46e6ba dc80401 21fa98e dc80401 21fa98e dc80401 21fa98e 2287ad4 21fa98e dc80401 3fa2f85 dc80401 42b3dc0 2287ad4 dc80401 2287ad4 dc80401 42b3dc0 dc80401 163dcbe 9e8f7da 163dcbe 9e8f7da 76fefb9 7f8381a 76fefb9 7f8381a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
tags:
- distilbert
- health
- tweet
datasets:
- custom-phm-tweets
metrics:
- accuracy
base_model: distilbert-base-uncased
model-index:
- name: distilbert-phmtweets-sutd
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: custom-phm-tweets
type: labelled
metrics:
- type: accuracy
value: 0.877
name: Accuracy
---
# distilbert-phmtweets-sutd
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) for text classification to identify public health events through tweets. The project was based on an [Emory University Study on Detection of Personal Health Mentions in Social Media paper](https://arxiv.org/pdf/1802.09130v2.pdf), that worked with this [custom dataset](https://github.com/emory-irlab/PHM2017).
It achieves the following results on the evaluation set:
- Accuracy: 0.877
## Usage
```Python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("dibsondivya/distilbert-phmtweets-sutd")
model = AutoModelForSequenceClassification.from_pretrained("dibsondivya/distilbert-phmtweets-sutd")
```
### Model Evaluation Results
With Validation Set
- Accuracy: 0.8708661417322835
With Test Set
- Accuracy: 0.8772961058045555
# Reference for distilbert-base-uncased Model
```bibtex
@article{Sanh2019DistilBERTAD,
title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},
author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf},
journal={ArXiv},
year={2019},
volume={abs/1910.01108}
}
```
|