--- library_name: peft license: apache-2.0 base_model: - ykacer/bert-base-cased-imdb-sequence-classification tags: - generated_from_trainer metrics: - accuracy model-index: - name: lora_training results: [] language: - en pipeline_tag: token-classification --- # lora_training This model is a fine-tuned version of [ykacer/bert-base-cased-imdb-sequence-classification](https://huggingface.co/ykacer/bert-base-cased-imdb-sequence-classification) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0969 - Accuracy: 0.5975 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6038 | 1.0 | 800 | 1.5082 | 0.4547 | | 1.305 | 2.0 | 1600 | 1.2096 | 0.5466 | | 1.1727 | 3.0 | 2400 | 1.1352 | 0.5775 | | 1.1199 | 4.0 | 3200 | 1.1062 | 0.5947 | | 1.0959 | 5.0 | 4000 | 1.0969 | 0.5975 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3