File size: 5,195 Bytes
0e1f8ee
 
 
 
 
 
 
 
 
 
 
 
 
 
b28a48b
0e1f8ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2cb044
0e1f8ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "61d4649c-a8ca-494d-8c11-e2aca8faea64",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from pathlib import Path\n",
    "import plotly.graph_objects as go\n",
    "\n",
    "proj_dir = Path.cwd()\n",
    "proj_dir"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a59f2e07-2505-4ad3-978d-2f2a8d4c7f16",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "import os\n",
    "import json\n",
    "import pandas as pd\n",
    "\n",
    "# Define the directory path where your files are located\n",
    "dir_path = proj_dir/'tgi_benchmark_results/'\n",
    "\n",
    "\n",
    "def build_df():\n",
    "    # Initialize an empty list to store the dataframes\n",
    "    dfs = []\n",
    "\n",
    "    # Iterate through the files in the directory\n",
    "    for tgibs_folder in dir_path.glob(\"*/*_tgibs_*\"):\n",
    "        # Check if the file matches the pattern *_summary.json\n",
    "        summary_file = list(tgibs_folder.glob(\"*_summary.json\"))[0]\n",
    "        # Extract the tgibs value from the filename\n",
    "        hw = tgibs_folder.parts[-2]\n",
    "        tgibs_value = tgibs_folder.name.split('_tgibs_')[1].split('__')[0]\n",
    "\n",
    "        # Load the JSON file\n",
    "        with open(summary_file, 'r') as f:\n",
    "            data = json.load(f)\n",
    "\n",
    "        # Convert the JSON data to a pandas dataframe\n",
    "        df = pd.DataFrame([data])\n",
    "\n",
    "        # Add a column with the tgibs value\n",
    "        df['tgibs'] = int(tgibs_value)\n",
    "        df['hw'] = hw\n",
    "        df['id'] = f\"{hw}_{tgibs_value}\"\n",
    "\n",
    "        # Append the dataframe to the list\n",
    "        dfs.append(df)\n",
    "    df = pd.concat(dfs, ignore_index=True)\n",
    "    df = df.sort_values(by=['tgibs', 'num_concurrent_requests'], ascending=[True, True])\n",
    "    return df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d8508fb9-fa31-4e23-80c1-e77a56d3775e",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "df = build_df()\n",
    "\n",
    "# Create a figure\n",
    "fig = go.Figure()\n",
    "\n",
    "# Group the dataframe by batch_size\n",
    "grouped_df = df.groupby('id')\n",
    "\n",
    "# List of specific batch_sizes to label\n",
    "label_batch_sizes = ['nvidia-a100_8', 'nvidia-h100_8', 'nvidia-a100_8', 'nvidia-h100-fp8_8', 'nvidia-a100_medusa_8']\n",
    "\n",
    "# Iterate over each group\n",
    "for batch_size, group in grouped_df:\n",
    "    # Add a line to the figure\n",
    "    fig.add_trace(go.Scatter(\n",
    "        x=group['results_end_to_end_latency_s_mean'],\n",
    "        y=group['results_num_completed_requests_per_min'],\n",
    "        mode='lines+markers',\n",
    "        name=f\"Batch Size: {batch_size}\",  # Formatting batch size in the legend\n",
    "        hovertemplate=(\n",
    "            f\"<b>Batch Size: {batch_size}</b><br>\"\n",
    "            \"VU: %{text}<br>\"\n",
    "            \"Latency: %{x:.2f}s<br>\"\n",
    "            \"Throughput: %{y:.2f} reqs/min\"\n",
    "        ) + \"<extra></extra>\",\n",
    "        text=[f\"{v} VU\" for v in group['num_concurrent_requests']]  # This will only be visible on hover\n",
    "    ))\n",
    "\n",
    "    # Optionally add annotations only for the first point in the specified batch sizes\n",
    "    if batch_size in label_batch_sizes:\n",
    "        fig.add_annotation(\n",
    "            x=group['results_end_to_end_latency_s_mean'].iloc[0],\n",
    "            y=group['results_num_completed_requests_per_min'].iloc[0],\n",
    "            text=f'{batch_size[:-2].replace(\"nvidia-\", \"\")}',\n",
    "            showarrow=False,\n",
    "            ax=0,\n",
    "            # ay=90,  # Offset to move the text down\n",
    "            xanchor='center',\n",
    "            yanchor='top'\n",
    "        )\n",
    "\n",
    "# Update layout for the figure\n",
    "fig.update_layout(\n",
    "    title_text=\"Requests Throughput vs Latency by Batch Size\",\n",
    "    xaxis_title=\"End to End Latency (seconds)\",\n",
    "    yaxis_title=\"Requests/min\",\n",
    "    showlegend=True,\n",
    ")\n",
    "\n",
    "# Show the figure\n",
    "fig.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9d2719fe-b0b5-400f-83a0-7eaffd8f2254",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b2472ada-8215-45cb-9efb-b094f02bb416",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.14"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}