--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - mechanicalkeystrokes metrics: - accuracy model-index: - name: distilhubert-finetuned-mechanicalkeystrokes results: - task: name: Audio Classification type: audio-classification dataset: name: MechanicalKeystrokes type: mechanicalkeystrokes config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9666666666666667 --- # distilhubert-finetuned-mechanicalkeystrokes This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the MechanicalKeystrokes dataset. It achieves the following results on the evaluation set: - Loss: 0.1155 - Accuracy: 0.9667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2923 | 1.0 | 30 | 2.3063 | 0.0333 | | 2.2788 | 2.0 | 60 | 2.2863 | 0.1333 | | 2.1377 | 3.0 | 90 | 2.1583 | 0.35 | | 1.8769 | 4.0 | 120 | 1.8170 | 0.6167 | | 1.5083 | 5.0 | 150 | 1.4282 | 0.7833 | | 1.0911 | 6.0 | 180 | 1.0241 | 0.9333 | | 0.7235 | 7.0 | 210 | 0.7131 | 0.9667 | | 0.4517 | 8.0 | 240 | 0.4509 | 0.9667 | | 0.2529 | 9.0 | 270 | 0.2682 | 0.9833 | | 0.14 | 10.0 | 300 | 0.1799 | 0.9833 | | 0.0791 | 11.0 | 330 | 0.1155 | 0.9667 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1 - Datasets 2.19.0 - Tokenizers 0.19.1