vlbthambawita's picture
First
7f49ac7
raw
history blame contribute delete
No virus
21 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models
from torchvision.models import inception_v3, Inception3
from torchvision.utils import save_image
try:
from torchvision.models.utils import load_state_dict_from_url
except ImportError:
from torch.utils.model_zoo import load_url as load_state_dict_from_url
import numpy as np
from scipy import linalg
from tqdm import tqdm
import pickle
import os
# Inception weights ported to Pytorch from
# http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth'
class InceptionV3(nn.Module):
"""Pretrained InceptionV3 network returning feature maps"""
# Index of default block of inception to return,
# corresponds to output of final average pooling
DEFAULT_BLOCK_INDEX = 3
# Maps feature dimensionality to their output blocks indices
BLOCK_INDEX_BY_DIM = {
64: 0, # First max pooling features
192: 1, # Second max pooling featurs
768: 2, # Pre-aux classifier features
2048: 3 # Final average pooling features
}
def __init__(self,
output_blocks=[DEFAULT_BLOCK_INDEX],
resize_input=True,
normalize_input=True,
requires_grad=False,
use_fid_inception=True):
"""Build pretrained InceptionV3
Parameters
----------
output_blocks : list of int
Indices of blocks to return features of. Possible values are:
- 0: corresponds to output of first max pooling
- 1: corresponds to output of second max pooling
- 2: corresponds to output which is fed to aux classifier
- 3: corresponds to output of final average pooling
resize_input : bool
If true, bilinearly resizes input to width and height 299 before
feeding input to model. As the network without fully connected
layers is fully convolutional, it should be able to handle inputs
of arbitrary size, so resizing might not be strictly needed
normalize_input : bool
If true, scales the input from range (0, 1) to the range the
pretrained Inception network expects, namely (-1, 1)
requires_grad : bool
If true, parameters of the model require gradients. Possibly useful
for finetuning the network
use_fid_inception : bool
If true, uses the pretrained Inception model used in Tensorflow's
FID implementation. If false, uses the pretrained Inception model
available in torchvision. The FID Inception model has different
weights and a slightly different structure from torchvision's
Inception model. If you want to compute FID scores, you are
strongly advised to set this parameter to true to get comparable
results.
"""
super(InceptionV3, self).__init__()
self.resize_input = resize_input
self.normalize_input = normalize_input
self.output_blocks = sorted(output_blocks)
self.last_needed_block = max(output_blocks)
assert self.last_needed_block <= 3, \
'Last possible output block index is 3'
self.blocks = nn.ModuleList()
if use_fid_inception:
inception = fid_inception_v3()
else:
inception = models.inception_v3(pretrained=True)
# Block 0: input to maxpool1
block0 = [
inception.Conv2d_1a_3x3,
inception.Conv2d_2a_3x3,
inception.Conv2d_2b_3x3,
nn.MaxPool2d(kernel_size=3, stride=2)
]
self.blocks.append(nn.Sequential(*block0))
# Block 1: maxpool1 to maxpool2
if self.last_needed_block >= 1:
block1 = [
inception.Conv2d_3b_1x1,
inception.Conv2d_4a_3x3,
nn.MaxPool2d(kernel_size=3, stride=2)
]
self.blocks.append(nn.Sequential(*block1))
# Block 2: maxpool2 to aux classifier
if self.last_needed_block >= 2:
block2 = [
inception.Mixed_5b,
inception.Mixed_5c,
inception.Mixed_5d,
inception.Mixed_6a,
inception.Mixed_6b,
inception.Mixed_6c,
inception.Mixed_6d,
inception.Mixed_6e,
]
self.blocks.append(nn.Sequential(*block2))
# Block 3: aux classifier to final avgpool
if self.last_needed_block >= 3:
block3 = [
inception.Mixed_7a,
inception.Mixed_7b,
inception.Mixed_7c,
nn.AdaptiveAvgPool2d(output_size=(1, 1))
]
self.blocks.append(nn.Sequential(*block3))
for param in self.parameters():
param.requires_grad = requires_grad
def forward(self, inp):
"""Get Inception feature maps
Parameters
----------
inp : torch.autograd.Variable
Input tensor of shape Bx3xHxW. Values are expected to be in
range (0, 1)
Returns
-------
List of torch.autograd.Variable, corresponding to the selected output
block, sorted ascending by index
"""
outp = []
x = inp
if self.resize_input:
x = F.interpolate(x,
size=(299, 299),
mode='bilinear',
align_corners=False)
if self.normalize_input:
x = 2 * x - 1 # Scale from range (0, 1) to range (-1, 1)
for idx, block in enumerate(self.blocks):
x = block(x)
if idx in self.output_blocks:
outp.append(x)
if idx == self.last_needed_block:
break
return outp
def fid_inception_v3():
"""Build pretrained Inception model for FID computation
The Inception model for FID computation uses a different set of weights
and has a slightly different structure than torchvision's Inception.
This method first constructs torchvision's Inception and then patches the
necessary parts that are different in the FID Inception model.
"""
inception = models.inception_v3(num_classes=1008,
aux_logits=False,
pretrained=False)
inception.Mixed_5b = FIDInceptionA(192, pool_features=32)
inception.Mixed_5c = FIDInceptionA(256, pool_features=64)
inception.Mixed_5d = FIDInceptionA(288, pool_features=64)
inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128)
inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160)
inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160)
inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192)
inception.Mixed_7b = FIDInceptionE_1(1280)
inception.Mixed_7c = FIDInceptionE_2(2048)
state_dict = load_state_dict_from_url(FID_WEIGHTS_URL, progress=True)
inception.load_state_dict(state_dict)
return inception
class FIDInceptionA(models.inception.InceptionA):
"""InceptionA block patched for FID computation"""
def __init__(self, in_channels, pool_features):
super(FIDInceptionA, self).__init__(in_channels, pool_features)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch5x5 = self.branch5x5_1(x)
branch5x5 = self.branch5x5_2(branch5x5)
branch3x3dbl = self.branch3x3dbl_1(x)
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
# Patch: Tensorflow's average pool does not use the padded zero's in
# its average calculation
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
count_include_pad=False)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
return torch.cat(outputs, 1)
class FIDInceptionC(models.inception.InceptionC):
"""InceptionC block patched for FID computation"""
def __init__(self, in_channels, channels_7x7):
super(FIDInceptionC, self).__init__(in_channels, channels_7x7)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch7x7 = self.branch7x7_1(x)
branch7x7 = self.branch7x7_2(branch7x7)
branch7x7 = self.branch7x7_3(branch7x7)
branch7x7dbl = self.branch7x7dbl_1(x)
branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
# Patch: Tensorflow's average pool does not use the padded zero's in
# its average calculation
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
count_include_pad=False)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
return torch.cat(outputs, 1)
class FIDInceptionE_1(models.inception.InceptionE):
"""First InceptionE block patched for FID computation"""
def __init__(self, in_channels):
super(FIDInceptionE_1, self).__init__(in_channels)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch3x3 = self.branch3x3_1(x)
branch3x3 = [
self.branch3x3_2a(branch3x3),
self.branch3x3_2b(branch3x3),
]
branch3x3 = torch.cat(branch3x3, 1)
branch3x3dbl = self.branch3x3dbl_1(x)
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
branch3x3dbl = [
self.branch3x3dbl_3a(branch3x3dbl),
self.branch3x3dbl_3b(branch3x3dbl),
]
branch3x3dbl = torch.cat(branch3x3dbl, 1)
# Patch: Tensorflow's average pool does not use the padded zero's in
# its average calculation
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
count_include_pad=False)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
return torch.cat(outputs, 1)
class FIDInceptionE_2(models.inception.InceptionE):
"""Second InceptionE block patched for FID computation"""
def __init__(self, in_channels):
super(FIDInceptionE_2, self).__init__(in_channels)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch3x3 = self.branch3x3_1(x)
branch3x3 = [
self.branch3x3_2a(branch3x3),
self.branch3x3_2b(branch3x3),
]
branch3x3 = torch.cat(branch3x3, 1)
branch3x3dbl = self.branch3x3dbl_1(x)
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
branch3x3dbl = [
self.branch3x3dbl_3a(branch3x3dbl),
self.branch3x3dbl_3b(branch3x3dbl),
]
branch3x3dbl = torch.cat(branch3x3dbl, 1)
# Patch: The FID Inception model uses max pooling instead of average
# pooling. This is likely an error in this specific Inception
# implementation, as other Inception models use average pooling here
# (which matches the description in the paper).
branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
return torch.cat(outputs, 1)
class Inception3Feature(Inception3):
def forward(self, x):
if x.shape[2] != 299 or x.shape[3] != 299:
x = F.interpolate(x, size=(299, 299), mode='bilinear', align_corners=True)
x = self.Conv2d_1a_3x3(x) # 299 x 299 x 3
x = self.Conv2d_2a_3x3(x) # 149 x 149 x 32
x = self.Conv2d_2b_3x3(x) # 147 x 147 x 32
x = F.max_pool2d(x, kernel_size=3, stride=2) # 147 x 147 x 64
x = self.Conv2d_3b_1x1(x) # 73 x 73 x 64
x = self.Conv2d_4a_3x3(x) # 73 x 73 x 80
x = F.max_pool2d(x, kernel_size=3, stride=2) # 71 x 71 x 192
x = self.Mixed_5b(x) # 35 x 35 x 192
x = self.Mixed_5c(x) # 35 x 35 x 256
x = self.Mixed_5d(x) # 35 x 35 x 288
x = self.Mixed_6a(x) # 35 x 35 x 288
x = self.Mixed_6b(x) # 17 x 17 x 768
x = self.Mixed_6c(x) # 17 x 17 x 768
x = self.Mixed_6d(x) # 17 x 17 x 768
x = self.Mixed_6e(x) # 17 x 17 x 768
x = self.Mixed_7a(x) # 17 x 17 x 768
x = self.Mixed_7b(x) # 8 x 8 x 1280
x = self.Mixed_7c(x) # 8 x 8 x 2048
x = F.avg_pool2d(x, kernel_size=8) # 8 x 8 x 2048
return x.view(x.shape[0], x.shape[1]) # 1 x 1 x 2048
def load_patched_inception_v3():
# inception = inception_v3(pretrained=True)
# inception_feat = Inception3Feature()
# inception_feat.load_state_dict(inception.state_dict())
inception_feat = InceptionV3([3], normalize_input=False)
return inception_feat
@torch.no_grad()
def extract_features(loader, inception, device):
pbar = tqdm(loader)
feature_list = []
for img in pbar:
img = img.to(device)
feature = inception(img)[0].view(img.shape[0], -1)
feature_list.append(feature.to('cpu'))
features = torch.cat(feature_list, 0)
return features
@torch.no_grad()
def extract_feature_from_samples(generator, inception, device='cuda'):
n_batch = n_sample // batch_size
resid = n_sample - (n_batch * batch_size)
batch_sizes = [batch_size] * n_batch + [resid]
features = []
for batch in tqdm(batch_sizes):
latent = torch.randn(batch, 512, device=device)
img, _ = g([latent], truncation=truncation, truncation_latent=truncation_latent)
feat = inception(img)[0].view(img.shape[0], -1)
features.append(feat.to('cpu'))
features = torch.cat(features, 0)
return features
@torch.no_grad()
def extract_feature_from_generator_fn(generator_fn, inception, device='cuda', total=1000):
features = []
for batch in tqdm(generator_fn, total=total):
feat = inception(batch)[0].view(batch.shape[0], -1)
features.append(feat.to('cpu'))
features = torch.cat(features, 0).detach()
return features.numpy()
def calc_fid(sample_features, real_features=None, real_mean=None, real_cov=None, eps=1e-6):
sample_mean = np.mean(sample_features, 0)
sample_cov = np.cov(sample_features, rowvar=False)
if real_features is not None:
real_mean = np.mean(real_features, 0)
real_cov = np.cov(real_features, rowvar=False)
cov_sqrt, _ = linalg.sqrtm(sample_cov @ real_cov, disp=False)
if not np.isfinite(cov_sqrt).all():
print('product of cov matrices is singular')
offset = np.eye(sample_cov.shape[0]) * eps
cov_sqrt = linalg.sqrtm((sample_cov + offset) @ (real_cov + offset))
if np.iscomplexobj(cov_sqrt):
if not np.allclose(np.diagonal(cov_sqrt).imag, 0, atol=1e-3):
m = np.max(np.abs(cov_sqrt.imag))
raise ValueError(f'Imaginary component {m}')
cov_sqrt = cov_sqrt.real
mean_diff = sample_mean - real_mean
mean_norm = mean_diff @ mean_diff
trace = np.trace(sample_cov) + np.trace(real_cov) - 2 * np.trace(cov_sqrt)
fid = mean_norm + trace
return fid
if __name__ == "__main__":
#from utils import PairedMultiDataset, InfiniteSamplerWrapper, make_folders, AverageMeter
from torch.utils.data import DataLoader
from torchvision import utils as vutils
IM_SIZE = 1024
BATCH_SIZE = 16
DATALOADER_WORKERS = 8
NBR_CLS = 2000
TRIAL_NAME = 'trial_vae_512_1'
SAVE_FOLDER = './'
from torchvision.datasets import ImageFolder
'''
data_root_colorful = '../images/celebA/CelebA_512/img'
data_root_sketch_1 = './sketch_simplification/vggadin_iter_700'
data_root_sketch_2 = './sketch_simplification/vggadin_iter_1900'
data_root_sketch_3 = './sketch_simplification/vggadin_iter_2300'
dataset = PairedMultiDataset(data_root_colorful, data_root_sketch_1, data_root_sketch_2, data_root_sketch_3, im_size=IM_SIZE, rand_crop=False)
dataloader = iter(DataLoader(dataset, BATCH_SIZE, shuffle=False, num_workers=DATALOADER_WORKERS, pin_memory=True))
from pretrain_ae import StyleEncoder, ContentEncoder, Decoder
import pickle
from refine_ae_as_gan import AE, RefineGenerator
from utils import load_params
net_ig = RefineGenerator().cuda()
net_ig = nn.DataParallel(net_ig)
ckpt = './train_results/trial_refine_ae_as_gan_1024_2/models/4.pth'
if ckpt is not None:
ckpt = torch.load(ckpt)
#net_ig.load_state_dict(ckpt['ig'])
#net_id.load_state_dict(ckpt['id'])
net_ig_ema = ckpt['ig_ema']
load_params(net_ig, net_ig_ema)
net_ig = net_ig.module
#net_ig.eval()
net_ae = AE()
net_ae.load_state_dicts('./train_results/trial_vae_512_1/models/176000.pth')
net_ae.cuda()
net_ae.eval()
#style_encoder = StyleEncoder(nbr_cls=NBR_CLS).cuda()
#content_encoder = ContentEncoder().cuda()
#decoder = Decoder().cuda()
'''
def real_image_loader(dataloader, n_batches=10):
counter = 0
while counter < n_batches:
counter += 1
rgb_img, _ = next(dataloader)
if counter == 1:
vutils.save_image(0.5*(rgb_img+1), 'tmp_real.jpg')
yield rgb_img.cuda()
'''
@torch.no_grad()
def image_generator_1(dataloader, n_batches=10):
counter = 0
while counter < n_batches:
counter += 1
rgb_img, _, _, skt_img = next(dataloader)
rgb_img = rgb_img.cuda()
skt_img = skt_img.cuda()
style_feat, _ = style_encoder(rgb_img)
content_feats = content_encoder( F.interpolate( skt_img , size=512 ) )
gimg = decoder(content_feats, style_feat)
vutils.save_image(0.5*(gimg+1), 'tmp.jpg')
yield gimg
from utils import true_randperm
@torch.no_grad()
def image_generator(dataset, net_ae, net_ig, n_batches=500):
counter = 0
dataloader = iter(DataLoader(dataset, BATCH_SIZE, shuffle=False, num_workers=DATALOADER_WORKERS, pin_memory=False))
while counter < n_batches:
counter += 1
rgb_img, _, _, skt_img = next(dataloader)
rgb_img = F.interpolate( rgb_img, size=512 ).cuda()
skt_img = F.interpolate( skt_img, size=512 ).cuda()
#perm = true_randperm(rgb_img.shape[0], device=rgb_img.device)
gimg_ae, style_feat = net_ae(skt_img, rgb_img)
g_image = net_ig(gimg_ae, style_feat, skt_img)
if counter == 1:
vutils.save_image(0.5*(g_image+1), 'tmp.jpg')
yield g_image
'''
inception = load_patched_inception_v3().cuda()
inception.eval()
path_a = '../../../database/images/celebaMask/CelebA_1024'
path_b = '../../stylegan/celebahq_samples'
from torchvision import transforms
transform = transforms.Compose(
[
transforms.Resize( (299, 299) ),
#transforms.RandomHorizontalFlip(p=0.5 if args.flip else 0),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
dset_a = ImageFolder(path_a, transform)
loader_a = iter(DataLoader(dset_a, batch_size=16, num_workers=4))
real_features = extract_feature_from_generator_fn(
real_image_loader(loader_a, n_batches=900), inception )
real_mean = np.mean(real_features, 0)
real_cov = np.cov(real_features, rowvar=False)
#pickle.dump({'feats': real_features, 'mean': real_mean, 'cov': real_cov}, open('celeba_fid_feats.npy','wb') )
#real_features = pickle.load( open('celeba_fid_feats.npy', 'rb') )
#real_mean = real_features['mean']
#real_cov = real_features['cov']
#sample_features = extract_feature_from_generator_fn( real_image_loader(dataloader, n_batches=100), inception )
dset_b = ImageFolder(path_b, transform)
loader_b = iter(DataLoader(dset_b, batch_size=16, num_workers=4))
sample_features = extract_feature_from_generator_fn(
real_image_loader(loader_b, n_batches=900), inception )
#sample_features = extract_feature_from_generator_fn(
# image_generator(dataset, net_ae, net_ig, n_batches=1800), inception,
# total=1800 )
#fid = calc_fid(sample_features, real_mean=real_features['mean'], real_cov=real_features['cov'])
fid = calc_fid(sample_features, real_mean=real_mean, real_cov=real_cov)
print(fid)