--- language: multilingual datasets: - squad_v2 license: mit thumbnail: https://thumb.tildacdn.com/tild3433-3637-4830-a533-353833613061/-/resize/720x/-/format/webp/germanquad.jpg tags: - exbert --- # deepset/xlm-roberta-base-squad2-distilled - haystack's distillation feature was used for training. deepset/xlm-roberta-large-squad2 was used as the teacher model. ## Overview **Language model:** deepset/xlm-roberta-base-squad2-distilled **Language:** Multilingual **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD 2.0 **Code:** See [an example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/first-qa-system) **Infrastructure**: 1x Tesla v100 ## Hyperparameters ``` batch_size = 56 n_epochs = 4 max_seq_len = 384 learning_rate = 3e-5 lr_schedule = LinearWarmup embeds_dropout_prob = 0.1 temperature = 3 distillation_loss_weight = 0.75 ``` ## Usage ### In Haystack Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/): ```python reader = FARMReader(model_name_or_path="deepset/xlm-roberta-base-squad2-distilled") # or reader = TransformersReader(model_name_or_path="deepset/xlm-roberta-base-squad2-distilled",tokenizer="deepset/xlm-roberta-base-squad2-distilled") ``` For a complete example of ``deepset/xlm-roberta-base-squad2-distilled`` being used for [question answering], check out the [Tutorials in Haystack Documentation](https://haystack.deepset.ai/tutorials/first-qa-system) ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/xlm-roberta-base-squad2-distilled" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Performance Evaluated on the SQuAD 2.0 dev set ``` "exact": 74.06721131980123% "f1": 76.39919553344667% ``` ## Authors - Timo Möller: `timo.moeller [at] deepset.ai` - Julian Risch: `julian.risch [at] deepset.ai` - Malte Pietsch: `malte.pietsch [at] deepset.ai` - Michel Bartels: `michel.bartels [at] deepset.ai` ## About us
For more info on Haystack, visit our GitHub repo and Documentation. We also have a community open to everyone!
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Slack](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai) By the way: [we're hiring!](http://www.deepset.ai/jobs)