File size: 2,471 Bytes
b84ed2c
a75ac21
b84ed2c
9fdd591
b84ed2c
 
 
 
8adbba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b84ed2c
 
36ec0f8
 
b84ed2c
9fdd591
 
 
b84ed2c
 
 
 
9fdd591
b84ed2c
 
 
75e1ff4
 
b84ed2c
 
 
 
75e1ff4
b84ed2c
 
 
9fdd591
b84ed2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
language: multilingual
datasets:
- squad_v2
license: mit
thumbnail: https://thumb.tildacdn.com/tild3433-3637-4830-a533-353833613061/-/resize/720x/-/format/webp/germanquad.jpg
tags:
- exbert
model-index:
- name: deepset/xlm-roberta-base-squad2-distilled
  results:
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squad_v2
      type: squad_v2
      config: squad_v2
      split: validation
    metrics:
    - name: Exact Match
      type: exact_match
      value: 75.2485
      verified: true
    - name: F1
      type: f1
      value: 78.3094
      verified: true
---

![bert_image](https://thumb.tildacdn.com/tild3433-3637-4830-a533-353833613061/-/resize/720x/-/format/webp/germanquad.jpg)

## Overview
**Language model:** deepset/roberta-base-squad2-distilled   
**Language:** Multilingual  
**Training data:** SQuAD 2.0 training set  
**Infrastructure**: 1x V100 GPU  
**Published**: Apr 21st, 2021

## Details
- haystack's distillation feature was used for training. deepset/xlm-roberta-large-squad2 was used as the teacher model.

## Hyperparameters
```
batch_size = 56
n_epochs = 4
max_seq_len = 384
learning_rate = 3e-5
lr_schedule = LinearWarmup
embeds_dropout_prob = 0.1
temperature = 3
distillation_loss_weight = 0.75
```
## Performance
SQuAD v2 dev set:
```
"exact": 79.8366040596311%
"f1": 83.916407079888%
```

## Authors
- Timo Möller: `timo.moeller [at] deepset.ai`
- Julian Risch: `julian.risch [at] deepset.ai`
- Malte Pietsch: `malte.pietsch [at] deepset.ai`
- Michel Bartels: `michel.bartels [at] deepset.ai`
## About us
![deepset logo](https://workablehr.s3.amazonaws.com/uploads/account/logo/476306/logo)
We bring NLP to the industry via open source!  
Our focus: Industry specific language models & large scale QA systems.  
  
Some of our work: 
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)
- [FARM](https://github.com/deepset-ai/FARM)
- [Haystack](https://github.com/deepset-ai/haystack/)

Get in touch:
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Slack](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)

By the way: [we're hiring!](http://www.deepset.ai/jobs)