Branden Chan
commited on
Commit
•
deedc3e
1
Parent(s):
390d6ae
Update to v2
Browse files- README.md +120 -0
- config.json +1 -1
- pytorch_model.bin +2 -2
- special_tokens_map.json +1 -1
- tokenizer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- squad_v2
|
4 |
+
---
|
5 |
+
|
6 |
+
# roberta-base for QA
|
7 |
+
|
8 |
+
NOTE: This is version 2 of the model. See [this github issue](https://github.com/deepset-ai/FARM/issues/552) from the FARM repository for an explanation of why we updated.
|
9 |
+
|
10 |
+
## Overview
|
11 |
+
**Language model:** roberta-base
|
12 |
+
**Language:** English
|
13 |
+
**Downstream-task:** Extractive QA
|
14 |
+
**Training data:** SQuAD 2.0
|
15 |
+
**Eval data:** SQuAD 2.0
|
16 |
+
**Code:** See [example](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py) in [FARM](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py)
|
17 |
+
**Infrastructure**: 4x Tesla v100
|
18 |
+
|
19 |
+
## Hyperparameters
|
20 |
+
|
21 |
+
```
|
22 |
+
batch_size = 96
|
23 |
+
n_epochs = 2
|
24 |
+
base_LM_model = "roberta-base"
|
25 |
+
max_seq_len = 386
|
26 |
+
learning_rate = 3e-5
|
27 |
+
lr_schedule = LinearWarmup
|
28 |
+
warmup_proportion = 0.2
|
29 |
+
doc_stride=128
|
30 |
+
max_query_length=64
|
31 |
+
```
|
32 |
+
|
33 |
+
## Performance
|
34 |
+
Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).
|
35 |
+
|
36 |
+
```
|
37 |
+
"exact": 79.97136359807968
|
38 |
+
"f1": 83.00449234495325
|
39 |
+
|
40 |
+
"total": 11873
|
41 |
+
"HasAns_exact": 78.03643724696356
|
42 |
+
"HasAns_f1": 84.11139298441825
|
43 |
+
"HasAns_total": 5928
|
44 |
+
"NoAns_exact": 81.90075693860386
|
45 |
+
"NoAns_f1": 81.90075693860386
|
46 |
+
"NoAns_total": 5945
|
47 |
+
```
|
48 |
+
|
49 |
+
## Usage
|
50 |
+
|
51 |
+
### In Transformers
|
52 |
+
```python
|
53 |
+
from transformers.pipelines import pipeline
|
54 |
+
from transformers.modeling_auto import AutoModelForQuestionAnswering
|
55 |
+
from transformers.tokenization_auto import AutoTokenizer
|
56 |
+
|
57 |
+
model_name = "deepset/roberta-base-squad2-v2"
|
58 |
+
|
59 |
+
# a) Get predictions
|
60 |
+
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
61 |
+
QA_input = {
|
62 |
+
'question': 'Why is model conversion important?',
|
63 |
+
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
|
64 |
+
}
|
65 |
+
res = nlp(QA_input)
|
66 |
+
|
67 |
+
# b) Load model & tokenizer
|
68 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
69 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
70 |
+
```
|
71 |
+
|
72 |
+
### In FARM
|
73 |
+
|
74 |
+
```python
|
75 |
+
from farm.modeling.adaptive_model import AdaptiveModel
|
76 |
+
from farm.modeling.tokenization import Tokenizer
|
77 |
+
from farm.infer import Inferencer
|
78 |
+
|
79 |
+
model_name = "deepset/roberta-base-squad2-v2"
|
80 |
+
|
81 |
+
# a) Get predictions
|
82 |
+
nlp = Inferencer.load(model_name, task_type="question_answering")
|
83 |
+
QA_input = [{"questions": ["Why is model conversion important?"],
|
84 |
+
"text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}]
|
85 |
+
res = nlp.inference_from_dicts(dicts=QA_input, rest_api_schema=True)
|
86 |
+
|
87 |
+
# b) Load model & tokenizer
|
88 |
+
model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering")
|
89 |
+
tokenizer = Tokenizer.load(model_name)
|
90 |
+
```
|
91 |
+
|
92 |
+
### In haystack
|
93 |
+
For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/):
|
94 |
+
```python
|
95 |
+
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2")
|
96 |
+
# or
|
97 |
+
reader = TransformersReader(model="deepset/roberta-base-squad2",tokenizer="deepset/roberta-base-squad2")
|
98 |
+
```
|
99 |
+
|
100 |
+
|
101 |
+
## Authors
|
102 |
+
Branden Chan: `branden.chan [at] deepset.ai`
|
103 |
+
Timo Möller: `timo.moeller [at] deepset.ai`
|
104 |
+
Malte Pietsch: `malte.pietsch [at] deepset.ai`
|
105 |
+
Tanay Soni: `tanay.soni [at] deepset.ai`
|
106 |
+
|
107 |
+
## About us
|
108 |
+
![deepset logo](https://raw.githubusercontent.com/deepset-ai/FARM/master/docs/img/deepset_logo.png)
|
109 |
+
|
110 |
+
We bring NLP to the industry via open source!
|
111 |
+
Our focus: Industry specific language models & large scale QA systems.
|
112 |
+
|
113 |
+
Some of our work:
|
114 |
+
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
|
115 |
+
- [FARM](https://github.com/deepset-ai/FARM)
|
116 |
+
- [Haystack](https://github.com/deepset-ai/haystack/)
|
117 |
+
|
118 |
+
Get in touch:
|
119 |
+
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Website](https://deepset.ai)
|
120 |
+
|
config.json
CHANGED
@@ -5,6 +5,7 @@
|
|
5 |
"attention_probs_dropout_prob": 0.1,
|
6 |
"bos_token_id": 0,
|
7 |
"eos_token_id": 2,
|
|
|
8 |
"hidden_act": "gelu",
|
9 |
"hidden_dropout_prob": 0.1,
|
10 |
"hidden_size": 768,
|
@@ -17,7 +18,6 @@
|
|
17 |
"name": "Roberta",
|
18 |
"num_attention_heads": 12,
|
19 |
"num_hidden_layers": 12,
|
20 |
-
"output_past": true,
|
21 |
"pad_token_id": 1,
|
22 |
"type_vocab_size": 1,
|
23 |
"vocab_size": 50265
|
|
|
5 |
"attention_probs_dropout_prob": 0.1,
|
6 |
"bos_token_id": 0,
|
7 |
"eos_token_id": 2,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
"hidden_act": "gelu",
|
10 |
"hidden_dropout_prob": 0.1,
|
11 |
"hidden_size": 768,
|
|
|
18 |
"name": "Roberta",
|
19 |
"num_attention_heads": 12,
|
20 |
"num_hidden_layers": 12,
|
|
|
21 |
"pad_token_id": 1,
|
22 |
"type_vocab_size": 1,
|
23 |
"vocab_size": 50265
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0b64ccefc1bcb569b604baea27eb873e5482fdf6eb3ceff1fb5368397db5aed
|
3 |
+
size 496313727
|
special_tokens_map.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": "<mask>"}
|
|
|
1 |
+
{"bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true}}
|
tokenizer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"do_lower_case":
|
|
|
1 |
+
{"do_lower_case": false, "model_max_length": 512, "full_tokenizer_file": null}
|