Deepa commited on
Commit
125921e
1 Parent(s): 867b2cd

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: part-of-speech ( pos ) tagging is a fundamental language analysis task---part-of-speech
12
+ ( pos ) tagging is a fundamental nlp task , used by a wide variety of applications
13
+ - text: the two baseline methods were implemented using scikit-learn in python---the
14
+ models were implemented using scikit-learn module
15
+ - text: semantic parsing is the task of converting a sentence into a representation
16
+ of its meaning , usually in a logical form grounded in the symbols of some fixed
17
+ ontology or relational database ( cite-p-21-3-3 , cite-p-21-3-4 , cite-p-21-1-11
18
+ )---for this language model , we built a trigram language model with kneser-ney
19
+ smoothing using srilm from the same automatically segmented corpus
20
+ - text: the results show that our model can clearly outperform the baselines in terms
21
+ of three evaluation metrics---for the extractive or abstractive summaries , we
22
+ use rouge scores , a metric used to evaluate automatic summarization performance
23
+ , to measure the pairwise agreement of summaries from different annotators
24
+ - text: language models were built with srilm , modified kneser-ney smoothing , default
25
+ pruning , and order 5---the language model used was a 5-gram with modified kneserney
26
+ smoothing , built with srilm toolkit
27
+ pipeline_tag: text-classification
28
+ inference: true
29
+ base_model: sentence-transformers/paraphrase-TinyBERT-L6-v2
30
+ ---
31
+
32
+ # SetFit with sentence-transformers/paraphrase-TinyBERT-L6-v2
33
+
34
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-TinyBERT-L6-v2](https://huggingface.co/sentence-transformers/paraphrase-TinyBERT-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
35
+
36
+ The model has been trained using an efficient few-shot learning technique that involves:
37
+
38
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
39
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
40
+
41
+ ## Model Details
42
+
43
+ ### Model Description
44
+ - **Model Type:** SetFit
45
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-TinyBERT-L6-v2](https://huggingface.co/sentence-transformers/paraphrase-TinyBERT-L6-v2)
46
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
47
+ - **Maximum Sequence Length:** 128 tokens
48
+ - **Number of Classes:** 2 classes
49
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
50
+ <!-- - **Language:** Unknown -->
51
+ <!-- - **License:** Unknown -->
52
+
53
+ ### Model Sources
54
+
55
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
56
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
57
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
58
+
59
+ ### Model Labels
60
+ | Label | Examples |
61
+ |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
62
+ | 0 | <ul><li>'the defacto standard metric in machine translation is bleu---from character representations , we propose to generate vector representations of entire tweets from characters in our tweet2vec model'</li><li>'arabic is a highly inflectional language with 85 % of words derived from trilateral roots ( alfedaghi and al-anzi 1989 )---chen et al derive bilingual subtree constraints with auto-parsed source-language sentences'</li><li>'labeling of sentence boundaries is a necessary prerequisite for many natural language processing tasks , including part-of-speech tagging and sentence alignment---we have proposed a model for video description which uses neural networks for the entire pipeline from pixels to sentences'</li></ul> |
63
+ | 1 | <ul><li>'in this paper , we present a comprehensive analysis of the relationship between personal traits and brand preferences---in previous research , in this study , we want to systematically investigate the relationship between a comprehensive set of personal traits and brand preferences'</li><li>'the 50-dimensional pre-trained word embeddings are provided by glove , which are fixed during our model training---we use glove vectors with 200 dimensions as pre-trained word embeddings , which are tuned during training'</li><li>'we use glove vectors with 100 dimensions trained on wikipedia and gigaword as word embeddings , which we do not optimize during training---we use glove vectors with 100 dimensions trained on wikipedia and gigaword as word embeddings'</li></ul> |
64
+
65
+ ## Uses
66
+
67
+ ### Direct Use for Inference
68
+
69
+ First install the SetFit library:
70
+
71
+ ```bash
72
+ pip install setfit
73
+ ```
74
+
75
+ Then you can load this model and run inference.
76
+
77
+ ```python
78
+ from setfit import SetFitModel
79
+
80
+ # Download from the 🤗 Hub
81
+ model = SetFitModel.from_pretrained("whateverweird17/parasci3_1")
82
+ # Run inference
83
+ preds = model("the two baseline methods were implemented using scikit-learn in python---the models were implemented using scikit-learn module")
84
+ ```
85
+
86
+ <!--
87
+ ### Downstream Use
88
+
89
+ *List how someone could finetune this model on their own dataset.*
90
+ -->
91
+
92
+ <!--
93
+ ### Out-of-Scope Use
94
+
95
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
96
+ -->
97
+
98
+ <!--
99
+ ## Bias, Risks and Limitations
100
+
101
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
102
+ -->
103
+
104
+ <!--
105
+ ### Recommendations
106
+
107
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
108
+ -->
109
+
110
+ ## Training Details
111
+
112
+ ### Training Set Metrics
113
+ | Training set | Min | Median | Max |
114
+ |:-------------|:----|:--------|:----|
115
+ | Word count | 27 | 35.8125 | 54 |
116
+
117
+ | Label | Training Sample Count |
118
+ |:------|:----------------------|
119
+ | 0 | 8 |
120
+ | 1 | 8 |
121
+
122
+ ### Training Hyperparameters
123
+ - batch_size: (8, 8)
124
+ - num_epochs: (10, 10)
125
+ - max_steps: -1
126
+ - sampling_strategy: oversampling
127
+ - num_iterations: 10
128
+ - body_learning_rate: (2e-05, 2e-05)
129
+ - head_learning_rate: 2e-05
130
+ - loss: CosineSimilarityLoss
131
+ - distance_metric: cosine_distance
132
+ - margin: 0.25
133
+ - end_to_end: False
134
+ - use_amp: False
135
+ - warmup_proportion: 0.1
136
+ - seed: 42
137
+ - eval_max_steps: -1
138
+ - load_best_model_at_end: False
139
+
140
+ ### Training Results
141
+ | Epoch | Step | Training Loss | Validation Loss |
142
+ |:-----:|:----:|:-------------:|:---------------:|
143
+ | 0.025 | 1 | 0.1715 | - |
144
+ | 1.25 | 50 | 0.0028 | - |
145
+ | 2.5 | 100 | 0.0005 | - |
146
+ | 3.75 | 150 | 0.0002 | - |
147
+ | 5.0 | 200 | 0.0003 | - |
148
+ | 6.25 | 250 | 0.0001 | - |
149
+ | 7.5 | 300 | 0.0002 | - |
150
+ | 8.75 | 350 | 0.0001 | - |
151
+ | 10.0 | 400 | 0.0001 | - |
152
+
153
+ ### Framework Versions
154
+ - Python: 3.10.12
155
+ - SetFit: 1.0.1
156
+ - Sentence Transformers: 2.2.2
157
+ - Transformers: 4.33.0
158
+ - PyTorch: 2.0.0
159
+ - Datasets: 2.16.0
160
+ - Tokenizers: 0.13.3
161
+
162
+ ## Citation
163
+
164
+ ### BibTeX
165
+ ```bibtex
166
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
167
+ doi = {10.48550/ARXIV.2209.11055},
168
+ url = {https://arxiv.org/abs/2209.11055},
169
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
170
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
171
+ title = {Efficient Few-Shot Learning Without Prompts},
172
+ publisher = {arXiv},
173
+ year = {2022},
174
+ copyright = {Creative Commons Attribution 4.0 International}
175
+ }
176
+ ```
177
+
178
+ <!--
179
+ ## Glossary
180
+
181
+ *Clearly define terms in order to be accessible across audiences.*
182
+ -->
183
+
184
+ <!--
185
+ ## Model Card Authors
186
+
187
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
188
+ -->
189
+
190
+ <!--
191
+ ## Model Card Contact
192
+
193
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
194
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-TinyBERT-L6-v2/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.33.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6fb4290f7d09e8d16a45ab7cfcc0fdc6e315c00b65abee77e9de03a45ba011a
3
+ size 6991
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31c0d56a2b0e8c03eceb17327b08dbc609e29a569251fa55541985b3b2594e81
3
+ size 267854313
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "cls_token": "[CLS]",
4
+ "do_basic_tokenize": true,
5
+ "do_lower_case": true,
6
+ "mask_token": "[MASK]",
7
+ "max_length": 128,
8
+ "model_max_length": 512,
9
+ "never_split": null,
10
+ "pad_to_multiple_of": null,
11
+ "pad_token": "[PAD]",
12
+ "pad_token_type_id": 0,
13
+ "padding_side": "right",
14
+ "sep_token": "[SEP]",
15
+ "stride": 0,
16
+ "strip_accents": null,
17
+ "tokenize_chinese_chars": true,
18
+ "tokenizer_class": "BertTokenizer",
19
+ "truncation_side": "right",
20
+ "truncation_strategy": "longest_first",
21
+ "unk_token": "[UNK]"
22
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff