punctuation_uk_bert / pipeline.py
Dmitry Chaplinsky
Trying to enable model pipeline
09b4276
raw
history blame
1.96 kB
from typing import Dict, List, Any
from nemo.collections.nlp.models import PunctuationCapitalizationModel
class PreTrainedPipeline():
def __init__(self, path=""):
# IMPLEMENT_THIS
# Preload all the elements you are going to need at inference.
# For instance your model, processors, tokenizer that might be needed.
# This function is only called once, so do all the heavy processing I/O here"""
self.model = PunctuationCapitalizationModel.from_pretrained("dchaplinsky/punctuation_uk_bert")
def __call__(self, inputs: str) -> List[Dict[str, Any]]:
"""
Args:
inputs (:obj:`str`):
a string containing some text
Return:
A :obj:`list`:. The object returned should be like [{"entity_group": "XXX", "word": "some word", "start": 3, "end": 6, "score": 0.82}] containing :
- "entity_group": A string representing what the entity is.
- "word": A substring of the original string that was detected as an entity.
- "start": the offset within `input` leading to `answer`. context[start:stop] == word
- "end": the ending offset within `input` leading to `answer`. context[start:stop] === word
- "score": A score between 0 and 1 describing how confident the model is for this entity.
"""
inputs = inputs.strip()
labels = self.model.add_punctuation_capitalization([inputs], return_labels=True)[0].split()
tokens = inputs.split()
res: List[Dict[str, Any]] = []
offset = 0
for tok, lab in zip(tokens, labels):
if lab != "OO":
res.append({
"entity_group": lab,
"word": tok,
"start": offset,
"end": offset + len(tok),
"score": 1
})
offset += len(tok) + 1
return res