File size: 1,763 Bytes
64b6838
895cab8
 
64b6838
 
 
 
 
895cab8
 
 
 
 
 
 
 
64b6838
 
895cab8
64b6838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
language:
- en
tags:
- autotrain
- text-classification
datasets:
- davanstrien/autotrain-data-dataset-mentions
widget:
- text: ' frases-bertimbau-v0.4 This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased)
    on an unknown dataset.'
- text: Model description BERTa is a transformer-based masked language model for the
    Catalan language. It is based on the [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta)
    base model and has been trained on a medium-size corpus collected from publicly
    available corpora and crawlers
- text: Model description More information needed
co2_eq_emissions:
  emissions: 0.008999666562870793
base_model: neuralmind/bert-base-portuguese-cased
---

# Model Trained Using AutoTrain

- Problem type: Binary Classification
- Model ID: 3390592983
- CO2 Emissions (in grams): 0.0090

## Validation Metrics

- Loss: 0.014
- Accuracy: 0.997
- Precision: 0.998
- Recall: 0.997
- AUC: 1.000
- F1: 0.998

## Usage

You can use cURL to access this model:

```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/davanstrien/autotrain-dataset-mentions-3390592983
```

Or Python API:

```
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("davanstrien/autotrain-dataset-mentions-3390592983", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("davanstrien/autotrain-dataset-mentions-3390592983", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)
```