# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pclue dataset.""" import json import py7zr import datasets _CITATION = """https://github.com/CLUEbenchmark/pCLUE""" _DESCRIPTION = """https://github.com/CLUEbenchmark/pCLUE""" _HOMEPAGE = "https://github.com/CLUEbenchmark/pCLUE" _LICENSE = "apache-2.0" _URL = "https://huggingface.co/datasets/wbbbbb/pclue/resolve/main/pclue.7z" class Pclue(datasets.GeneratorBasedBuilder): """Pclue Corpus dataset.""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="pclue"), ] def _info(self): features = datasets.Features( { "input": datasets.Value("string"), "target": datasets.Value("string"), "type": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" path = dl_manager.download_and_extract(_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": path+"train.json", "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": path+"test.json", "split": "test", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": path+"dev.json", "split": "val", }, ), ] def _generate_examples(self, filepath, split): """Yields examples.""" with open(filepath, encoding="utf-8") as f: for idx, row in enumerate(f): yield idx, json.load(row)