Add loading script
Browse files
mmarco.py
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""mMARCO dataset."""
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
|
21 |
+
|
22 |
+
_CITATION = """
|
23 |
+
@misc{bonifacio2021mmarco,
|
24 |
+
title={mMARCO: A Multilingual Version of the MS MARCO Passage Ranking Dataset},
|
25 |
+
author={Luiz Henrique Bonifacio and Israel Campiotti and Vitor Jeronymo and Hugo Queiroz Abonizio and Roberto Lotufo and Rodrigo Nogueira},
|
26 |
+
year={2021},
|
27 |
+
eprint={2108.13897},
|
28 |
+
archivePrefix={arXiv},
|
29 |
+
primaryClass={cs.CL}
|
30 |
+
}
|
31 |
+
"""
|
32 |
+
|
33 |
+
_URL = "https://github.com/unicamp-dl/mMARCO"
|
34 |
+
|
35 |
+
_DESCRIPTION = """
|
36 |
+
mMARCO translated datasets
|
37 |
+
"""
|
38 |
+
|
39 |
+
|
40 |
+
def generate_examples_triples(filepath, collection_path, queries_path):
|
41 |
+
collection = {}
|
42 |
+
with open(collection_path, encoding="utf-8") as f:
|
43 |
+
for line in f:
|
44 |
+
doc_id, doc = line.rstrip().split("\t")
|
45 |
+
collection[doc_id] = doc
|
46 |
+
|
47 |
+
queries = {}
|
48 |
+
with open(queries_path, encoding="utf-8") as f:
|
49 |
+
for line in f:
|
50 |
+
query_id, query = line.rstrip().split("\t")
|
51 |
+
queries[query_id] = query
|
52 |
+
|
53 |
+
with open(filepath, encoding="utf-8") as f:
|
54 |
+
for (idx, line) in enumerate(f):
|
55 |
+
query_id, pos_id, neg_id = line.rstrip().split("\t")
|
56 |
+
features = {
|
57 |
+
"query": queries[query_id],
|
58 |
+
"positive": collection[pos_id],
|
59 |
+
"negative": collection[neg_id],
|
60 |
+
}
|
61 |
+
yield idx, features
|
62 |
+
|
63 |
+
|
64 |
+
def generate_examples_tuples(filepath):
|
65 |
+
with open(filepath, encoding="utf-8") as f:
|
66 |
+
for (idx, line) in enumerate(f):
|
67 |
+
idx, text = line.rstrip().split("\t")
|
68 |
+
features = {
|
69 |
+
"id": idx,
|
70 |
+
"text": text,
|
71 |
+
}
|
72 |
+
yield idx, features
|
73 |
+
|
74 |
+
|
75 |
+
def generate_examples_runs(filepath, collection_path, queries_path):
|
76 |
+
collection = {}
|
77 |
+
with open(collection_path, encoding="utf-8") as f:
|
78 |
+
for line in f:
|
79 |
+
doc_id, doc = line.rstrip().split("\t")
|
80 |
+
collection[doc_id] = doc
|
81 |
+
|
82 |
+
queries = {}
|
83 |
+
with open(queries_path, encoding="utf-8") as f:
|
84 |
+
for line in f:
|
85 |
+
query_id, query = line.rstrip().split("\t")
|
86 |
+
queries[query_id] = query
|
87 |
+
|
88 |
+
qid_to_ranked_candidate_passages = {}
|
89 |
+
with open(filepath, encoding="utf-8") as f:
|
90 |
+
for line in f:
|
91 |
+
qid, pid, rank = line.rstrip().split("\t")
|
92 |
+
if qid not in qid_to_ranked_candidate_passages:
|
93 |
+
qid_to_ranked_candidate_passages[qid] = []
|
94 |
+
qid_to_ranked_candidate_passages[qid].append(pid)
|
95 |
+
|
96 |
+
for (idx, qid) in enumerate(qid_to_ranked_candidate_passages):
|
97 |
+
features = {
|
98 |
+
"id": qid,
|
99 |
+
"query": queries[qid],
|
100 |
+
"passages": [
|
101 |
+
{
|
102 |
+
"id": pid,
|
103 |
+
"passage": collection[pid],
|
104 |
+
}
|
105 |
+
for pid in qid_to_ranked_candidate_passages[qid]
|
106 |
+
],
|
107 |
+
}
|
108 |
+
yield idx, features
|
109 |
+
|
110 |
+
|
111 |
+
_BASE_URLS = {
|
112 |
+
"collections": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/v2/collections/",
|
113 |
+
"queries-train": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/v2/queries/train/",
|
114 |
+
"queries-dev": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/v2/queries/dev/",
|
115 |
+
"runs": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/v2/runs/",
|
116 |
+
"train": "https://huggingface.co/datasets/unicamp-dl/mmarco/resolve/main/data/triples.train.ids.small.tsv",
|
117 |
+
}
|
118 |
+
|
119 |
+
LANGUAGES = [
|
120 |
+
"chinese",
|
121 |
+
"english",
|
122 |
+
"french",
|
123 |
+
"german",
|
124 |
+
"indonesian",
|
125 |
+
"italian",
|
126 |
+
"portuguese",
|
127 |
+
"russian",
|
128 |
+
"spanish",
|
129 |
+
]
|
130 |
+
|
131 |
+
|
132 |
+
class MMarco(datasets.GeneratorBasedBuilder):
|
133 |
+
|
134 |
+
BUILDER_CONFIGS = (
|
135 |
+
[
|
136 |
+
datasets.BuilderConfig(
|
137 |
+
name=language,
|
138 |
+
description=f"{language.capitalize()} version v2",
|
139 |
+
version=datasets.Version("2.0.0"),
|
140 |
+
)
|
141 |
+
for language in LANGUAGES
|
142 |
+
]
|
143 |
+
+ [
|
144 |
+
datasets.BuilderConfig(
|
145 |
+
name=f"collection-{language}",
|
146 |
+
description=f"{language.capitalize()} collection version v2",
|
147 |
+
version=datasets.Version("2.0.0"),
|
148 |
+
)
|
149 |
+
for language in LANGUAGES
|
150 |
+
]
|
151 |
+
+ [
|
152 |
+
datasets.BuilderConfig(
|
153 |
+
name=f"queries-{language}",
|
154 |
+
description=f"{language.capitalize()} queries version v2",
|
155 |
+
version=datasets.Version("2.0.0"),
|
156 |
+
)
|
157 |
+
for language in LANGUAGES
|
158 |
+
]
|
159 |
+
+ [
|
160 |
+
datasets.BuilderConfig(
|
161 |
+
name=f"runs-{language}",
|
162 |
+
description=f"{language.capitalize()} runs version v2",
|
163 |
+
version=datasets.Version("2.0.0"),
|
164 |
+
)
|
165 |
+
for language in LANGUAGES
|
166 |
+
]
|
167 |
+
)
|
168 |
+
|
169 |
+
DEFAULT_CONFIG_NAME = "english"
|
170 |
+
|
171 |
+
def _info(self):
|
172 |
+
name = self.config.name
|
173 |
+
if name.startswith("collection") or name.startswith("queries"):
|
174 |
+
features = {
|
175 |
+
"id": datasets.Value("int32"),
|
176 |
+
"text": datasets.Value("string"),
|
177 |
+
}
|
178 |
+
elif name.startswith("runs"):
|
179 |
+
features = {
|
180 |
+
"id": datasets.Value("int32"),
|
181 |
+
"query": datasets.Value("string"),
|
182 |
+
"passages": datasets.Sequence(
|
183 |
+
{
|
184 |
+
"id": datasets.Value("int32"),
|
185 |
+
"passage": datasets.Value("string"),
|
186 |
+
}
|
187 |
+
),
|
188 |
+
}
|
189 |
+
else:
|
190 |
+
features = {
|
191 |
+
"query": datasets.Value("string"),
|
192 |
+
"positive": datasets.Value("string"),
|
193 |
+
"negative": datasets.Value("string"),
|
194 |
+
}
|
195 |
+
|
196 |
+
return datasets.DatasetInfo(
|
197 |
+
description=f"{_DESCRIPTION}\n{self.config.description}",
|
198 |
+
features=datasets.Features(features),
|
199 |
+
supervised_keys=None,
|
200 |
+
homepage=_URL,
|
201 |
+
citation=_CITATION,
|
202 |
+
)
|
203 |
+
|
204 |
+
def _split_generators(self, dl_manager):
|
205 |
+
"""Returns SplitGenerators."""
|
206 |
+
|
207 |
+
if self.config.name.startswith("collection"):
|
208 |
+
url = _BASE_URLS["collections"] + self.config.name[11:] + "_collection.tsv"
|
209 |
+
dl_path = dl_manager.download_and_extract(url)
|
210 |
+
return (datasets.SplitGenerator(name="collection", gen_kwargs={"filepath": dl_path}),)
|
211 |
+
elif self.config.name.startswith("queries"):
|
212 |
+
urls = {
|
213 |
+
"train": _BASE_URLS["queries-train"] + self.config.name[8:] + "_queries.train.tsv",
|
214 |
+
"dev": _BASE_URLS["queries-dev"] + self.config.name[8:] + "_queries.dev.tsv",
|
215 |
+
}
|
216 |
+
dl_path = dl_manager.download_and_extract(urls)
|
217 |
+
return [
|
218 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),
|
219 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["dev"]}),
|
220 |
+
]
|
221 |
+
elif self.config.name.startswith("runs"):
|
222 |
+
urls = {
|
223 |
+
"collection": _BASE_URLS["collections"] + self.config.name[5:] + "_collection.tsv",
|
224 |
+
"queries": _BASE_URLS["queries-dev"] + self.config.name[5:] + "_queries.dev.tsv",
|
225 |
+
"run": _BASE_URLS["runs"] + "run.bm25_" + self.config.name[5:] + ".txt",
|
226 |
+
}
|
227 |
+
|
228 |
+
dl_path = dl_manager.download_and_extract(urls)
|
229 |
+
return (
|
230 |
+
datasets.SplitGenerator(
|
231 |
+
name="bm25",
|
232 |
+
gen_kwargs={
|
233 |
+
"filepath": dl_path["run"],
|
234 |
+
"args": {
|
235 |
+
"collection": dl_path["collection"],
|
236 |
+
"queries": dl_path["queries"],
|
237 |
+
},
|
238 |
+
},
|
239 |
+
),
|
240 |
+
)
|
241 |
+
else:
|
242 |
+
urls = {
|
243 |
+
"collection": _BASE_URLS["collections"] + self.config.name + "_collection.tsv",
|
244 |
+
"queries": _BASE_URLS["queries-train"] + self.config.name + "_queries.train.tsv",
|
245 |
+
"train": _BASE_URLS["train"],
|
246 |
+
}
|
247 |
+
dl_path = dl_manager.download_and_extract(urls)
|
248 |
+
|
249 |
+
return [
|
250 |
+
datasets.SplitGenerator(
|
251 |
+
name=datasets.Split.TRAIN,
|
252 |
+
gen_kwargs={
|
253 |
+
"filepath": dl_path["train"],
|
254 |
+
"args": {
|
255 |
+
"collection": dl_path["collection"],
|
256 |
+
"queries": dl_path["queries"],
|
257 |
+
},
|
258 |
+
},
|
259 |
+
)
|
260 |
+
]
|
261 |
+
|
262 |
+
def _generate_examples(self, filepath, args=None):
|
263 |
+
"""Yields examples."""
|
264 |
+
|
265 |
+
if self.config.name.startswith("collection") or self.config.name.startswith("queries"):
|
266 |
+
return generate_examples_tuples(filepath)
|
267 |
+
if self.config.name.startswith("runs"):
|
268 |
+
return generate_examples_runs(filepath, args["collection"], args["queries"])
|
269 |
+
else:
|
270 |
+
return generate_examples_triples(filepath, args["collection"], args["queries"])
|