Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
intent-classification
Languages:
English
Size:
1K - 10K
License:
Update files from the datasets library (from 1.8.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.8.0
- dataset_infos.json +1 -1
- sms_spam.py +2 -0
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"plain_text": {"description": "The SMS Spam Collection v.1 is a public set of SMS labeled messages that have been collected for mobile phone spam research
|
|
|
1 |
+
{"plain_text": {"description": "The SMS Spam Collection v.1 is a public set of SMS labeled messages that have been collected for mobile phone spam research.\nIt has one collection composed by 5,574 English, real and non-enconded messages, tagged according being legitimate (ham) or spam.\n", "citation": "@inproceedings{Almeida2011SpamFiltering,\n title={Contributions to the Study of SMS Spam Filtering: New Collection and Results},\n author={Tiago A. Almeida and Jose Maria Gomez Hidalgo and Akebo Yamakami},\n year={2011},\n booktitle = \"Proceedings of the 2011 ACM Symposium on Document Engineering (DOCENG'11)\",\n}\n", "homepage": "http://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection", "license": "", "features": {"sms": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["ham", "spam"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": {"input": "sms", "output": "label"}, "task_templates": [{"task": "text-classification", "text_column": "sms", "label_column": "label", "labels": ["ham", "spam"]}], "builder_name": "sms_spam", "config_name": "plain_text", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 521756, "num_examples": 5574, "dataset_name": "sms_spam"}}, "download_checksums": {"http://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip": {"num_bytes": 203415, "checksum": "1587ea43e58e82b14ff1f5425c88e17f8496bfcdb67a583dbff9eefaf9963ce3"}}, "download_size": 203415, "post_processing_size": null, "dataset_size": 521756, "size_in_bytes": 725171}}
|
sms_spam.py
CHANGED
@@ -20,6 +20,7 @@
|
|
20 |
import os
|
21 |
|
22 |
import datasets
|
|
|
23 |
|
24 |
|
25 |
_CITATION = """\
|
@@ -62,6 +63,7 @@ class SmsSpam(datasets.GeneratorBasedBuilder):
|
|
62 |
supervised_keys=("sms", "label"),
|
63 |
homepage="http://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection",
|
64 |
citation=_CITATION,
|
|
|
65 |
)
|
66 |
|
67 |
def _split_generators(self, dl_manager):
|
|
|
20 |
import os
|
21 |
|
22 |
import datasets
|
23 |
+
from datasets.tasks import TextClassification
|
24 |
|
25 |
|
26 |
_CITATION = """\
|
|
|
63 |
supervised_keys=("sms", "label"),
|
64 |
homepage="http://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection",
|
65 |
citation=_CITATION,
|
66 |
+
task_templates=[TextClassification(text_column="sms", label_column="label")],
|
67 |
)
|
68 |
|
69 |
def _split_generators(self, dl_manager):
|