File size: 5,383 Bytes
8b1f8cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
LCCC: Large-scale Cleaned Chinese Conversation corpus (LCCC) is a large corpus of Chinese conversations.
A rigorous data cleaning pipeline is designed to ensure the quality of the corpus.
This pipeline involves a set of rules and several classifier-based filters.
Noises such as offensive or sensitive words, special symbols, emojis,
grammatically incorrect sentences, and incoherent conversations are filtered.
"""
import json
import os
import datasets
# BibTeX citation
_CITATION = """\
@inproceedings{wang2020chinese,
title={A Large-Scale Chinese Short-Text Conversation Dataset},
author={Wang, Yida and Ke, Pei and Zheng, Yinhe and Huang, Kaili and Jiang, Yong and Zhu, Xiaoyan and Huang, Minlie},
booktitle={NLPCC},
year={2020},
url={https://arxiv.org/abs/2008.03946}
}
"""
# Description of the dataset here
_DESCRIPTION = """\
LCCC: Large-scale Cleaned Chinese Conversation corpus (LCCC) is a large corpus of Chinese conversations.
A rigorous data cleaning pipeline is designed to ensure the quality of the corpus.
This pipeline involves a set of rules and several classifier-based filters.
Noises such as offensive or sensitive words, special symbols, emojis,
grammatically incorrect sentences, and incoherent conversations are filtered.
"""
_HOMEPAGE = "https://github.com/thu-coai/CDial-GPT"
_LICENSE = "MIT"
_URLS = {
"large": "https://huggingface.co/datasets/silver/lccc/resolve/main/lccc_large.jsonl.gz",
"base": {
"train": "https://huggingface.co/datasets/silver/lccc/resolve/main/lccc_base_train.jsonl.gz",
"valid": "https://huggingface.co/datasets/silver/lccc/resolve/main/lccc_base_valid.jsonl.gz",
"test": "https://huggingface.co/datasets/silver/lccc/resolve/main/lccc_base_test.jsonl.gz",
},
}
class LCCC(datasets.GeneratorBasedBuilder):
"""Large-scale Cleaned Chinese Conversation corpus."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="large", version=VERSION, description="The large version of LCCC"),
datasets.BuilderConfig(name="base", version=VERSION, description="The base version of LCCC"),
]
def _info(self):
features = datasets.Features(
{
"dialog": [datasets.Value("string")],
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls = _URLS[self.config.name]
downloaded_data = dl_manager.download_and_extract(urls)
if self.config.name == "large":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(downloaded_data),
},
)
]
elif self.config.name == "base":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(downloaded_data["train"]),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": os.path.join(downloaded_data["test"])},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(downloaded_data["valid"]),
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath):
with open(filepath, encoding="utf-8") as f:
for key, row in enumerate(f):
row = row.strip()
if row:
yield key, {
"dialog": json.loads(row),
}
|