repo_name
stringclasses 1
value | pr_number
int64 4.12k
11.2k
| pr_title
stringlengths 9
107
| pr_description
stringlengths 107
5.48k
| author
stringlengths 4
18
| date_created
unknown | date_merged
unknown | previous_commit
stringlengths 40
40
| pr_commit
stringlengths 40
40
| query
stringlengths 118
5.52k
| before_content
stringlengths 0
7.93M
| after_content
stringlengths 0
7.93M
| label
int64 -1
1
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.5.0
hooks:
- id: check-executables-have-shebangs
- id: check-toml
- id: check-yaml
- id: end-of-file-fixer
types: [python]
- id: trailing-whitespace
- id: requirements-txt-fixer
- repo: https://github.com/MarcoGorelli/auto-walrus
rev: v0.2.2
hooks:
- id: auto-walrus
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.1.4
hooks:
- id: ruff
- repo: https://github.com/psf/black
rev: 23.10.1
hooks:
- id: black
- repo: https://github.com/codespell-project/codespell
rev: v2.2.6
hooks:
- id: codespell
additional_dependencies:
- tomli
- repo: https://github.com/tox-dev/pyproject-fmt
rev: "1.4.1"
hooks:
- id: pyproject-fmt
- repo: local
hooks:
- id: validate-filenames
name: Validate filenames
entry: ./scripts/validate_filenames.py
language: script
pass_filenames: false
- repo: https://github.com/abravalheri/validate-pyproject
rev: v0.15
hooks:
- id: validate-pyproject
- repo: https://github.com/pre-commit/mirrors-mypy
rev: v1.6.1
hooks:
- id: mypy
args:
- --ignore-missing-imports
- --install-types # See mirrors-mypy README.md
- --non-interactive
additional_dependencies: [types-requests]
| repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.5.0
hooks:
- id: check-executables-have-shebangs
- id: check-toml
- id: check-yaml
- id: end-of-file-fixer
types: [python]
- id: trailing-whitespace
- id: requirements-txt-fixer
- repo: https://github.com/MarcoGorelli/auto-walrus
rev: v0.2.2
hooks:
- id: auto-walrus
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.1.6
hooks:
- id: ruff
- repo: https://github.com/psf/black
rev: 23.11.0
hooks:
- id: black
- repo: https://github.com/codespell-project/codespell
rev: v2.2.6
hooks:
- id: codespell
additional_dependencies:
- tomli
- repo: https://github.com/tox-dev/pyproject-fmt
rev: "1.5.1"
hooks:
- id: pyproject-fmt
- repo: local
hooks:
- id: validate-filenames
name: Validate filenames
entry: ./scripts/validate_filenames.py
language: script
pass_filenames: false
- repo: https://github.com/abravalheri/validate-pyproject
rev: v0.15
hooks:
- id: validate-pyproject
- repo: https://github.com/pre-commit/mirrors-mypy
rev: v1.7.0
hooks:
- id: mypy
args:
- --ignore-missing-imports
- --install-types # See mirrors-mypy README.md
- --non-interactive
additional_dependencies: [types-requests]
| 1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> |
## Audio Filters
* [Butterworth Filter](audio_filters/butterworth_filter.py)
* [Iir Filter](audio_filters/iir_filter.py)
* [Show Response](audio_filters/show_response.py)
## Backtracking
* [All Combinations](backtracking/all_combinations.py)
* [All Permutations](backtracking/all_permutations.py)
* [All Subsequences](backtracking/all_subsequences.py)
* [Coloring](backtracking/coloring.py)
* [Combination Sum](backtracking/combination_sum.py)
* [Crossword Puzzle Solver](backtracking/crossword_puzzle_solver.py)
* [Generate Parentheses](backtracking/generate_parentheses.py)
* [Hamiltonian Cycle](backtracking/hamiltonian_cycle.py)
* [Knight Tour](backtracking/knight_tour.py)
* [Match Word Pattern](backtracking/match_word_pattern.py)
* [Minimax](backtracking/minimax.py)
* [N Queens](backtracking/n_queens.py)
* [N Queens Math](backtracking/n_queens_math.py)
* [Power Sum](backtracking/power_sum.py)
* [Rat In Maze](backtracking/rat_in_maze.py)
* [Sudoku](backtracking/sudoku.py)
* [Sum Of Subsets](backtracking/sum_of_subsets.py)
* [Word Search](backtracking/word_search.py)
## Bit Manipulation
* [Binary And Operator](bit_manipulation/binary_and_operator.py)
* [Binary Coded Decimal](bit_manipulation/binary_coded_decimal.py)
* [Binary Count Setbits](bit_manipulation/binary_count_setbits.py)
* [Binary Count Trailing Zeros](bit_manipulation/binary_count_trailing_zeros.py)
* [Binary Or Operator](bit_manipulation/binary_or_operator.py)
* [Binary Shifts](bit_manipulation/binary_shifts.py)
* [Binary Twos Complement](bit_manipulation/binary_twos_complement.py)
* [Binary Xor Operator](bit_manipulation/binary_xor_operator.py)
* [Bitwise Addition Recursive](bit_manipulation/bitwise_addition_recursive.py)
* [Count 1S Brian Kernighan Method](bit_manipulation/count_1s_brian_kernighan_method.py)
* [Count Number Of One Bits](bit_manipulation/count_number_of_one_bits.py)
* [Excess 3 Code](bit_manipulation/excess_3_code.py)
* [Find Previous Power Of Two](bit_manipulation/find_previous_power_of_two.py)
* [Gray Code Sequence](bit_manipulation/gray_code_sequence.py)
* [Highest Set Bit](bit_manipulation/highest_set_bit.py)
* [Index Of Rightmost Set Bit](bit_manipulation/index_of_rightmost_set_bit.py)
* [Is Even](bit_manipulation/is_even.py)
* [Is Power Of Two](bit_manipulation/is_power_of_two.py)
* [Largest Pow Of Two Le Num](bit_manipulation/largest_pow_of_two_le_num.py)
* [Missing Number](bit_manipulation/missing_number.py)
* [Numbers Different Signs](bit_manipulation/numbers_different_signs.py)
* [Power Of 4](bit_manipulation/power_of_4.py)
* [Reverse Bits](bit_manipulation/reverse_bits.py)
* [Single Bit Manipulation Operations](bit_manipulation/single_bit_manipulation_operations.py)
* [Swap All Odd And Even Bits](bit_manipulation/swap_all_odd_and_even_bits.py)
## Blockchain
* [Diophantine Equation](blockchain/diophantine_equation.py)
## Boolean Algebra
* [And Gate](boolean_algebra/and_gate.py)
* [Imply Gate](boolean_algebra/imply_gate.py)
* [Karnaugh Map Simplification](boolean_algebra/karnaugh_map_simplification.py)
* [Multiplexer](boolean_algebra/multiplexer.py)
* [Nand Gate](boolean_algebra/nand_gate.py)
* [Nimply Gate](boolean_algebra/nimply_gate.py)
* [Nor Gate](boolean_algebra/nor_gate.py)
* [Not Gate](boolean_algebra/not_gate.py)
* [Or Gate](boolean_algebra/or_gate.py)
* [Quine Mc Cluskey](boolean_algebra/quine_mc_cluskey.py)
* [Xnor Gate](boolean_algebra/xnor_gate.py)
* [Xor Gate](boolean_algebra/xor_gate.py)
## Cellular Automata
* [Conways Game Of Life](cellular_automata/conways_game_of_life.py)
* [Game Of Life](cellular_automata/game_of_life.py)
* [Langtons Ant](cellular_automata/langtons_ant.py)
* [Nagel Schrekenberg](cellular_automata/nagel_schrekenberg.py)
* [One Dimensional](cellular_automata/one_dimensional.py)
* [Wa Tor](cellular_automata/wa_tor.py)
## Ciphers
* [A1Z26](ciphers/a1z26.py)
* [Affine Cipher](ciphers/affine_cipher.py)
* [Atbash](ciphers/atbash.py)
* [Autokey](ciphers/autokey.py)
* [Baconian Cipher](ciphers/baconian_cipher.py)
* [Base16](ciphers/base16.py)
* [Base32](ciphers/base32.py)
* [Base64](ciphers/base64.py)
* [Base85](ciphers/base85.py)
* [Beaufort Cipher](ciphers/beaufort_cipher.py)
* [Bifid](ciphers/bifid.py)
* [Brute Force Caesar Cipher](ciphers/brute_force_caesar_cipher.py)
* [Caesar Cipher](ciphers/caesar_cipher.py)
* [Cryptomath Module](ciphers/cryptomath_module.py)
* [Decrypt Caesar With Chi Squared](ciphers/decrypt_caesar_with_chi_squared.py)
* [Deterministic Miller Rabin](ciphers/deterministic_miller_rabin.py)
* [Diffie](ciphers/diffie.py)
* [Diffie Hellman](ciphers/diffie_hellman.py)
* [Elgamal Key Generator](ciphers/elgamal_key_generator.py)
* [Enigma Machine2](ciphers/enigma_machine2.py)
* [Fractionated Morse Cipher](ciphers/fractionated_morse_cipher.py)
* [Hill Cipher](ciphers/hill_cipher.py)
* [Mixed Keyword Cypher](ciphers/mixed_keyword_cypher.py)
* [Mono Alphabetic Ciphers](ciphers/mono_alphabetic_ciphers.py)
* [Morse Code](ciphers/morse_code.py)
* [Onepad Cipher](ciphers/onepad_cipher.py)
* [Permutation Cipher](ciphers/permutation_cipher.py)
* [Playfair Cipher](ciphers/playfair_cipher.py)
* [Polybius](ciphers/polybius.py)
* [Porta Cipher](ciphers/porta_cipher.py)
* [Rabin Miller](ciphers/rabin_miller.py)
* [Rail Fence Cipher](ciphers/rail_fence_cipher.py)
* [Rot13](ciphers/rot13.py)
* [Rsa Cipher](ciphers/rsa_cipher.py)
* [Rsa Factorization](ciphers/rsa_factorization.py)
* [Rsa Key Generator](ciphers/rsa_key_generator.py)
* [Running Key Cipher](ciphers/running_key_cipher.py)
* [Shuffled Shift Cipher](ciphers/shuffled_shift_cipher.py)
* [Simple Keyword Cypher](ciphers/simple_keyword_cypher.py)
* [Simple Substitution Cipher](ciphers/simple_substitution_cipher.py)
* [Transposition Cipher](ciphers/transposition_cipher.py)
* [Transposition Cipher Encrypt Decrypt File](ciphers/transposition_cipher_encrypt_decrypt_file.py)
* [Trifid Cipher](ciphers/trifid_cipher.py)
* [Vernam Cipher](ciphers/vernam_cipher.py)
* [Vigenere Cipher](ciphers/vigenere_cipher.py)
* [Xor Cipher](ciphers/xor_cipher.py)
## Compression
* [Burrows Wheeler](compression/burrows_wheeler.py)
* [Huffman](compression/huffman.py)
* [Lempel Ziv](compression/lempel_ziv.py)
* [Lempel Ziv Decompress](compression/lempel_ziv_decompress.py)
* [Lz77](compression/lz77.py)
* [Peak Signal To Noise Ratio](compression/peak_signal_to_noise_ratio.py)
* [Run Length Encoding](compression/run_length_encoding.py)
## Computer Vision
* [Flip Augmentation](computer_vision/flip_augmentation.py)
* [Haralick Descriptors](computer_vision/haralick_descriptors.py)
* [Harris Corner](computer_vision/harris_corner.py)
* [Horn Schunck](computer_vision/horn_schunck.py)
* [Mean Threshold](computer_vision/mean_threshold.py)
* [Mosaic Augmentation](computer_vision/mosaic_augmentation.py)
* [Pooling Functions](computer_vision/pooling_functions.py)
## Conversions
* [Astronomical Length Scale Conversion](conversions/astronomical_length_scale_conversion.py)
* [Binary To Decimal](conversions/binary_to_decimal.py)
* [Binary To Hexadecimal](conversions/binary_to_hexadecimal.py)
* [Binary To Octal](conversions/binary_to_octal.py)
* [Convert Number To Words](conversions/convert_number_to_words.py)
* [Decimal To Any](conversions/decimal_to_any.py)
* [Decimal To Binary](conversions/decimal_to_binary.py)
* [Decimal To Hexadecimal](conversions/decimal_to_hexadecimal.py)
* [Decimal To Octal](conversions/decimal_to_octal.py)
* [Energy Conversions](conversions/energy_conversions.py)
* [Excel Title To Column](conversions/excel_title_to_column.py)
* [Hex To Bin](conversions/hex_to_bin.py)
* [Hexadecimal To Decimal](conversions/hexadecimal_to_decimal.py)
* [Ipv4 Conversion](conversions/ipv4_conversion.py)
* [Length Conversion](conversions/length_conversion.py)
* [Molecular Chemistry](conversions/molecular_chemistry.py)
* [Octal To Binary](conversions/octal_to_binary.py)
* [Octal To Decimal](conversions/octal_to_decimal.py)
* [Octal To Hexadecimal](conversions/octal_to_hexadecimal.py)
* [Prefix Conversions](conversions/prefix_conversions.py)
* [Prefix Conversions String](conversions/prefix_conversions_string.py)
* [Pressure Conversions](conversions/pressure_conversions.py)
* [Rgb Cmyk Conversion](conversions/rgb_cmyk_conversion.py)
* [Rgb Hsv Conversion](conversions/rgb_hsv_conversion.py)
* [Roman Numerals](conversions/roman_numerals.py)
* [Speed Conversions](conversions/speed_conversions.py)
* [Temperature Conversions](conversions/temperature_conversions.py)
* [Time Conversions](conversions/time_conversions.py)
* [Volume Conversions](conversions/volume_conversions.py)
* [Weight Conversion](conversions/weight_conversion.py)
## Data Structures
* Arrays
* [Equilibrium Index In Array](data_structures/arrays/equilibrium_index_in_array.py)
* [Find Triplets With 0 Sum](data_structures/arrays/find_triplets_with_0_sum.py)
* [Index 2D Array In 1D](data_structures/arrays/index_2d_array_in_1d.py)
* [Kth Largest Element](data_structures/arrays/kth_largest_element.py)
* [Median Two Array](data_structures/arrays/median_two_array.py)
* [Monotonic Array](data_structures/arrays/monotonic_array.py)
* [Pairs With Given Sum](data_structures/arrays/pairs_with_given_sum.py)
* [Permutations](data_structures/arrays/permutations.py)
* [Prefix Sum](data_structures/arrays/prefix_sum.py)
* [Product Sum](data_structures/arrays/product_sum.py)
* [Sparse Table](data_structures/arrays/sparse_table.py)
* [Sudoku Solver](data_structures/arrays/sudoku_solver.py)
* Binary Tree
* [Avl Tree](data_structures/binary_tree/avl_tree.py)
* [Basic Binary Tree](data_structures/binary_tree/basic_binary_tree.py)
* [Binary Search Tree](data_structures/binary_tree/binary_search_tree.py)
* [Binary Search Tree Recursive](data_structures/binary_tree/binary_search_tree_recursive.py)
* [Binary Tree Mirror](data_structures/binary_tree/binary_tree_mirror.py)
* [Binary Tree Node Sum](data_structures/binary_tree/binary_tree_node_sum.py)
* [Binary Tree Path Sum](data_structures/binary_tree/binary_tree_path_sum.py)
* [Binary Tree Traversals](data_structures/binary_tree/binary_tree_traversals.py)
* [Diameter Of Binary Tree](data_structures/binary_tree/diameter_of_binary_tree.py)
* [Diff Views Of Binary Tree](data_structures/binary_tree/diff_views_of_binary_tree.py)
* [Distribute Coins](data_structures/binary_tree/distribute_coins.py)
* [Fenwick Tree](data_structures/binary_tree/fenwick_tree.py)
* [Flatten Binarytree To Linkedlist](data_structures/binary_tree/flatten_binarytree_to_linkedlist.py)
* [Floor And Ceiling](data_structures/binary_tree/floor_and_ceiling.py)
* [Inorder Tree Traversal 2022](data_structures/binary_tree/inorder_tree_traversal_2022.py)
* [Is Sorted](data_structures/binary_tree/is_sorted.py)
* [Is Sum Tree](data_structures/binary_tree/is_sum_tree.py)
* [Lazy Segment Tree](data_structures/binary_tree/lazy_segment_tree.py)
* [Lowest Common Ancestor](data_structures/binary_tree/lowest_common_ancestor.py)
* [Maximum Fenwick Tree](data_structures/binary_tree/maximum_fenwick_tree.py)
* [Merge Two Binary Trees](data_structures/binary_tree/merge_two_binary_trees.py)
* [Mirror Binary Tree](data_structures/binary_tree/mirror_binary_tree.py)
* [Non Recursive Segment Tree](data_structures/binary_tree/non_recursive_segment_tree.py)
* [Number Of Possible Binary Trees](data_structures/binary_tree/number_of_possible_binary_trees.py)
* [Red Black Tree](data_structures/binary_tree/red_black_tree.py)
* [Segment Tree](data_structures/binary_tree/segment_tree.py)
* [Segment Tree Other](data_structures/binary_tree/segment_tree_other.py)
* [Serialize Deserialize Binary Tree](data_structures/binary_tree/serialize_deserialize_binary_tree.py)
* [Symmetric Tree](data_structures/binary_tree/symmetric_tree.py)
* [Treap](data_structures/binary_tree/treap.py)
* [Wavelet Tree](data_structures/binary_tree/wavelet_tree.py)
* Disjoint Set
* [Alternate Disjoint Set](data_structures/disjoint_set/alternate_disjoint_set.py)
* [Disjoint Set](data_structures/disjoint_set/disjoint_set.py)
* Hashing
* [Bloom Filter](data_structures/hashing/bloom_filter.py)
* [Double Hash](data_structures/hashing/double_hash.py)
* [Hash Map](data_structures/hashing/hash_map.py)
* [Hash Table](data_structures/hashing/hash_table.py)
* [Hash Table With Linked List](data_structures/hashing/hash_table_with_linked_list.py)
* Number Theory
* [Prime Numbers](data_structures/hashing/number_theory/prime_numbers.py)
* [Quadratic Probing](data_structures/hashing/quadratic_probing.py)
* Tests
* [Test Hash Map](data_structures/hashing/tests/test_hash_map.py)
* Heap
* [Binomial Heap](data_structures/heap/binomial_heap.py)
* [Heap](data_structures/heap/heap.py)
* [Heap Generic](data_structures/heap/heap_generic.py)
* [Max Heap](data_structures/heap/max_heap.py)
* [Min Heap](data_structures/heap/min_heap.py)
* [Randomized Heap](data_structures/heap/randomized_heap.py)
* [Skew Heap](data_structures/heap/skew_heap.py)
* Linked List
* [Circular Linked List](data_structures/linked_list/circular_linked_list.py)
* [Deque Doubly](data_structures/linked_list/deque_doubly.py)
* [Doubly Linked List](data_structures/linked_list/doubly_linked_list.py)
* [Doubly Linked List Two](data_structures/linked_list/doubly_linked_list_two.py)
* [Floyds Cycle Detection](data_structures/linked_list/floyds_cycle_detection.py)
* [From Sequence](data_structures/linked_list/from_sequence.py)
* [Has Loop](data_structures/linked_list/has_loop.py)
* [Is Palindrome](data_structures/linked_list/is_palindrome.py)
* [Merge Two Lists](data_structures/linked_list/merge_two_lists.py)
* [Middle Element Of Linked List](data_structures/linked_list/middle_element_of_linked_list.py)
* [Print Reverse](data_structures/linked_list/print_reverse.py)
* [Reverse K Group](data_structures/linked_list/reverse_k_group.py)
* [Rotate To The Right](data_structures/linked_list/rotate_to_the_right.py)
* [Singly Linked List](data_structures/linked_list/singly_linked_list.py)
* [Skip List](data_structures/linked_list/skip_list.py)
* [Swap Nodes](data_structures/linked_list/swap_nodes.py)
* Queue
* [Circular Queue](data_structures/queue/circular_queue.py)
* [Circular Queue Linked List](data_structures/queue/circular_queue_linked_list.py)
* [Double Ended Queue](data_structures/queue/double_ended_queue.py)
* [Linked Queue](data_structures/queue/linked_queue.py)
* [Priority Queue Using List](data_structures/queue/priority_queue_using_list.py)
* [Queue By List](data_structures/queue/queue_by_list.py)
* [Queue By Two Stacks](data_structures/queue/queue_by_two_stacks.py)
* [Queue On Pseudo Stack](data_structures/queue/queue_on_pseudo_stack.py)
* Stacks
* [Balanced Parentheses](data_structures/stacks/balanced_parentheses.py)
* [Dijkstras Two Stack Algorithm](data_structures/stacks/dijkstras_two_stack_algorithm.py)
* [Infix To Postfix Conversion](data_structures/stacks/infix_to_postfix_conversion.py)
* [Infix To Prefix Conversion](data_structures/stacks/infix_to_prefix_conversion.py)
* [Next Greater Element](data_structures/stacks/next_greater_element.py)
* [Postfix Evaluation](data_structures/stacks/postfix_evaluation.py)
* [Prefix Evaluation](data_structures/stacks/prefix_evaluation.py)
* [Stack](data_structures/stacks/stack.py)
* [Stack Using Two Queues](data_structures/stacks/stack_using_two_queues.py)
* [Stack With Doubly Linked List](data_structures/stacks/stack_with_doubly_linked_list.py)
* [Stack With Singly Linked List](data_structures/stacks/stack_with_singly_linked_list.py)
* [Stock Span Problem](data_structures/stacks/stock_span_problem.py)
* Trie
* [Radix Tree](data_structures/trie/radix_tree.py)
* [Trie](data_structures/trie/trie.py)
## Digital Image Processing
* [Change Brightness](digital_image_processing/change_brightness.py)
* [Change Contrast](digital_image_processing/change_contrast.py)
* [Convert To Negative](digital_image_processing/convert_to_negative.py)
* Dithering
* [Burkes](digital_image_processing/dithering/burkes.py)
* Edge Detection
* [Canny](digital_image_processing/edge_detection/canny.py)
* Filters
* [Bilateral Filter](digital_image_processing/filters/bilateral_filter.py)
* [Convolve](digital_image_processing/filters/convolve.py)
* [Gabor Filter](digital_image_processing/filters/gabor_filter.py)
* [Gaussian Filter](digital_image_processing/filters/gaussian_filter.py)
* [Laplacian Filter](digital_image_processing/filters/laplacian_filter.py)
* [Local Binary Pattern](digital_image_processing/filters/local_binary_pattern.py)
* [Median Filter](digital_image_processing/filters/median_filter.py)
* [Sobel Filter](digital_image_processing/filters/sobel_filter.py)
* Histogram Equalization
* [Histogram Stretch](digital_image_processing/histogram_equalization/histogram_stretch.py)
* [Index Calculation](digital_image_processing/index_calculation.py)
* Morphological Operations
* [Dilation Operation](digital_image_processing/morphological_operations/dilation_operation.py)
* [Erosion Operation](digital_image_processing/morphological_operations/erosion_operation.py)
* Resize
* [Resize](digital_image_processing/resize/resize.py)
* Rotation
* [Rotation](digital_image_processing/rotation/rotation.py)
* [Sepia](digital_image_processing/sepia.py)
* [Test Digital Image Processing](digital_image_processing/test_digital_image_processing.py)
## Divide And Conquer
* [Closest Pair Of Points](divide_and_conquer/closest_pair_of_points.py)
* [Convex Hull](divide_and_conquer/convex_hull.py)
* [Heaps Algorithm](divide_and_conquer/heaps_algorithm.py)
* [Heaps Algorithm Iterative](divide_and_conquer/heaps_algorithm_iterative.py)
* [Inversions](divide_and_conquer/inversions.py)
* [Kth Order Statistic](divide_and_conquer/kth_order_statistic.py)
* [Max Difference Pair](divide_and_conquer/max_difference_pair.py)
* [Max Subarray](divide_and_conquer/max_subarray.py)
* [Mergesort](divide_and_conquer/mergesort.py)
* [Peak](divide_and_conquer/peak.py)
* [Power](divide_and_conquer/power.py)
* [Strassen Matrix Multiplication](divide_and_conquer/strassen_matrix_multiplication.py)
## Dynamic Programming
* [Abbreviation](dynamic_programming/abbreviation.py)
* [All Construct](dynamic_programming/all_construct.py)
* [Bitmask](dynamic_programming/bitmask.py)
* [Catalan Numbers](dynamic_programming/catalan_numbers.py)
* [Climbing Stairs](dynamic_programming/climbing_stairs.py)
* [Combination Sum Iv](dynamic_programming/combination_sum_iv.py)
* [Edit Distance](dynamic_programming/edit_distance.py)
* [Factorial](dynamic_programming/factorial.py)
* [Fast Fibonacci](dynamic_programming/fast_fibonacci.py)
* [Fibonacci](dynamic_programming/fibonacci.py)
* [Fizz Buzz](dynamic_programming/fizz_buzz.py)
* [Floyd Warshall](dynamic_programming/floyd_warshall.py)
* [Integer Partition](dynamic_programming/integer_partition.py)
* [Iterating Through Submasks](dynamic_programming/iterating_through_submasks.py)
* [Knapsack](dynamic_programming/knapsack.py)
* [Largest Divisible Subset](dynamic_programming/largest_divisible_subset.py)
* [Longest Common Subsequence](dynamic_programming/longest_common_subsequence.py)
* [Longest Common Substring](dynamic_programming/longest_common_substring.py)
* [Longest Increasing Subsequence](dynamic_programming/longest_increasing_subsequence.py)
* [Longest Increasing Subsequence O(Nlogn)](dynamic_programming/longest_increasing_subsequence_o(nlogn).py)
* [Longest Palindromic Subsequence](dynamic_programming/longest_palindromic_subsequence.py)
* [Matrix Chain Multiplication](dynamic_programming/matrix_chain_multiplication.py)
* [Matrix Chain Order](dynamic_programming/matrix_chain_order.py)
* [Max Non Adjacent Sum](dynamic_programming/max_non_adjacent_sum.py)
* [Max Product Subarray](dynamic_programming/max_product_subarray.py)
* [Max Subarray Sum](dynamic_programming/max_subarray_sum.py)
* [Min Distance Up Bottom](dynamic_programming/min_distance_up_bottom.py)
* [Minimum Coin Change](dynamic_programming/minimum_coin_change.py)
* [Minimum Cost Path](dynamic_programming/minimum_cost_path.py)
* [Minimum Partition](dynamic_programming/minimum_partition.py)
* [Minimum Size Subarray Sum](dynamic_programming/minimum_size_subarray_sum.py)
* [Minimum Squares To Represent A Number](dynamic_programming/minimum_squares_to_represent_a_number.py)
* [Minimum Steps To One](dynamic_programming/minimum_steps_to_one.py)
* [Minimum Tickets Cost](dynamic_programming/minimum_tickets_cost.py)
* [Optimal Binary Search Tree](dynamic_programming/optimal_binary_search_tree.py)
* [Palindrome Partitioning](dynamic_programming/palindrome_partitioning.py)
* [Regex Match](dynamic_programming/regex_match.py)
* [Rod Cutting](dynamic_programming/rod_cutting.py)
* [Smith Waterman](dynamic_programming/smith_waterman.py)
* [Subset Generation](dynamic_programming/subset_generation.py)
* [Sum Of Subset](dynamic_programming/sum_of_subset.py)
* [Trapped Water](dynamic_programming/trapped_water.py)
* [Tribonacci](dynamic_programming/tribonacci.py)
* [Viterbi](dynamic_programming/viterbi.py)
* [Wildcard Matching](dynamic_programming/wildcard_matching.py)
* [Word Break](dynamic_programming/word_break.py)
## Electronics
* [Apparent Power](electronics/apparent_power.py)
* [Builtin Voltage](electronics/builtin_voltage.py)
* [Capacitor Equivalence](electronics/capacitor_equivalence.py)
* [Carrier Concentration](electronics/carrier_concentration.py)
* [Charging Capacitor](electronics/charging_capacitor.py)
* [Charging Inductor](electronics/charging_inductor.py)
* [Circular Convolution](electronics/circular_convolution.py)
* [Coulombs Law](electronics/coulombs_law.py)
* [Electric Conductivity](electronics/electric_conductivity.py)
* [Electric Power](electronics/electric_power.py)
* [Electrical Impedance](electronics/electrical_impedance.py)
* [Ic 555 Timer](electronics/ic_555_timer.py)
* [Ind Reactance](electronics/ind_reactance.py)
* [Ohms Law](electronics/ohms_law.py)
* [Real And Reactive Power](electronics/real_and_reactive_power.py)
* [Resistor Color Code](electronics/resistor_color_code.py)
* [Resistor Equivalence](electronics/resistor_equivalence.py)
* [Resonant Frequency](electronics/resonant_frequency.py)
* [Wheatstone Bridge](electronics/wheatstone_bridge.py)
## File Transfer
* [Receive File](file_transfer/receive_file.py)
* [Send File](file_transfer/send_file.py)
* Tests
* [Test Send File](file_transfer/tests/test_send_file.py)
## Financial
* [Equated Monthly Installments](financial/equated_monthly_installments.py)
* [Exponential Moving Average](financial/exponential_moving_average.py)
* [Interest](financial/interest.py)
* [Present Value](financial/present_value.py)
* [Price Plus Tax](financial/price_plus_tax.py)
* [Simple Moving Average](financial/simple_moving_average.py)
## Fractals
* [Julia Sets](fractals/julia_sets.py)
* [Koch Snowflake](fractals/koch_snowflake.py)
* [Mandelbrot](fractals/mandelbrot.py)
* [Sierpinski Triangle](fractals/sierpinski_triangle.py)
## Fuzzy Logic
* [Fuzzy Operations](fuzzy_logic/fuzzy_operations.py)
## Genetic Algorithm
* [Basic String](genetic_algorithm/basic_string.py)
## Geodesy
* [Haversine Distance](geodesy/haversine_distance.py)
* [Lamberts Ellipsoidal Distance](geodesy/lamberts_ellipsoidal_distance.py)
## Graphics
* [Bezier Curve](graphics/bezier_curve.py)
* [Vector3 For 2D Rendering](graphics/vector3_for_2d_rendering.py)
## Graphs
* [A Star](graphs/a_star.py)
* [Articulation Points](graphs/articulation_points.py)
* [Basic Graphs](graphs/basic_graphs.py)
* [Bellman Ford](graphs/bellman_ford.py)
* [Bi Directional Dijkstra](graphs/bi_directional_dijkstra.py)
* [Bidirectional A Star](graphs/bidirectional_a_star.py)
* [Bidirectional Breadth First Search](graphs/bidirectional_breadth_first_search.py)
* [Boruvka](graphs/boruvka.py)
* [Breadth First Search](graphs/breadth_first_search.py)
* [Breadth First Search 2](graphs/breadth_first_search_2.py)
* [Breadth First Search Shortest Path](graphs/breadth_first_search_shortest_path.py)
* [Breadth First Search Shortest Path 2](graphs/breadth_first_search_shortest_path_2.py)
* [Breadth First Search Zero One Shortest Path](graphs/breadth_first_search_zero_one_shortest_path.py)
* [Check Bipatrite](graphs/check_bipatrite.py)
* [Check Cycle](graphs/check_cycle.py)
* [Connected Components](graphs/connected_components.py)
* [Deep Clone Graph](graphs/deep_clone_graph.py)
* [Depth First Search](graphs/depth_first_search.py)
* [Depth First Search 2](graphs/depth_first_search_2.py)
* [Dijkstra](graphs/dijkstra.py)
* [Dijkstra 2](graphs/dijkstra_2.py)
* [Dijkstra Algorithm](graphs/dijkstra_algorithm.py)
* [Dijkstra Alternate](graphs/dijkstra_alternate.py)
* [Dijkstra Binary Grid](graphs/dijkstra_binary_grid.py)
* [Dinic](graphs/dinic.py)
* [Directed And Undirected (Weighted) Graph](graphs/directed_and_undirected_(weighted)_graph.py)
* [Edmonds Karp Multiple Source And Sink](graphs/edmonds_karp_multiple_source_and_sink.py)
* [Eulerian Path And Circuit For Undirected Graph](graphs/eulerian_path_and_circuit_for_undirected_graph.py)
* [Even Tree](graphs/even_tree.py)
* [Finding Bridges](graphs/finding_bridges.py)
* [Frequent Pattern Graph Miner](graphs/frequent_pattern_graph_miner.py)
* [G Topological Sort](graphs/g_topological_sort.py)
* [Gale Shapley Bigraph](graphs/gale_shapley_bigraph.py)
* [Graph Adjacency List](graphs/graph_adjacency_list.py)
* [Graph Adjacency Matrix](graphs/graph_adjacency_matrix.py)
* [Graph List](graphs/graph_list.py)
* [Graphs Floyd Warshall](graphs/graphs_floyd_warshall.py)
* [Greedy Best First](graphs/greedy_best_first.py)
* [Greedy Min Vertex Cover](graphs/greedy_min_vertex_cover.py)
* [Kahns Algorithm Long](graphs/kahns_algorithm_long.py)
* [Kahns Algorithm Topo](graphs/kahns_algorithm_topo.py)
* [Karger](graphs/karger.py)
* [Markov Chain](graphs/markov_chain.py)
* [Matching Min Vertex Cover](graphs/matching_min_vertex_cover.py)
* [Minimum Path Sum](graphs/minimum_path_sum.py)
* [Minimum Spanning Tree Boruvka](graphs/minimum_spanning_tree_boruvka.py)
* [Minimum Spanning Tree Kruskal](graphs/minimum_spanning_tree_kruskal.py)
* [Minimum Spanning Tree Kruskal2](graphs/minimum_spanning_tree_kruskal2.py)
* [Minimum Spanning Tree Prims](graphs/minimum_spanning_tree_prims.py)
* [Minimum Spanning Tree Prims2](graphs/minimum_spanning_tree_prims2.py)
* [Multi Heuristic Astar](graphs/multi_heuristic_astar.py)
* [Page Rank](graphs/page_rank.py)
* [Prim](graphs/prim.py)
* [Random Graph Generator](graphs/random_graph_generator.py)
* [Scc Kosaraju](graphs/scc_kosaraju.py)
* [Strongly Connected Components](graphs/strongly_connected_components.py)
* [Tarjans Scc](graphs/tarjans_scc.py)
* Tests
* [Test Min Spanning Tree Kruskal](graphs/tests/test_min_spanning_tree_kruskal.py)
* [Test Min Spanning Tree Prim](graphs/tests/test_min_spanning_tree_prim.py)
## Greedy Methods
* [Best Time To Buy And Sell Stock](greedy_methods/best_time_to_buy_and_sell_stock.py)
* [Fractional Cover Problem](greedy_methods/fractional_cover_problem.py)
* [Fractional Knapsack](greedy_methods/fractional_knapsack.py)
* [Fractional Knapsack 2](greedy_methods/fractional_knapsack_2.py)
* [Gas Station](greedy_methods/gas_station.py)
* [Minimum Coin Change](greedy_methods/minimum_coin_change.py)
* [Minimum Waiting Time](greedy_methods/minimum_waiting_time.py)
* [Optimal Merge Pattern](greedy_methods/optimal_merge_pattern.py)
## Hashes
* [Adler32](hashes/adler32.py)
* [Chaos Machine](hashes/chaos_machine.py)
* [Djb2](hashes/djb2.py)
* [Elf](hashes/elf.py)
* [Enigma Machine](hashes/enigma_machine.py)
* [Fletcher16](hashes/fletcher16.py)
* [Hamming Code](hashes/hamming_code.py)
* [Luhn](hashes/luhn.py)
* [Md5](hashes/md5.py)
* [Sdbm](hashes/sdbm.py)
* [Sha1](hashes/sha1.py)
* [Sha256](hashes/sha256.py)
## Knapsack
* [Greedy Knapsack](knapsack/greedy_knapsack.py)
* [Knapsack](knapsack/knapsack.py)
* [Recursive Approach Knapsack](knapsack/recursive_approach_knapsack.py)
* Tests
* [Test Greedy Knapsack](knapsack/tests/test_greedy_knapsack.py)
* [Test Knapsack](knapsack/tests/test_knapsack.py)
## Linear Algebra
* [Gaussian Elimination](linear_algebra/gaussian_elimination.py)
* [Jacobi Iteration Method](linear_algebra/jacobi_iteration_method.py)
* [Lu Decomposition](linear_algebra/lu_decomposition.py)
* Src
* [Conjugate Gradient](linear_algebra/src/conjugate_gradient.py)
* Gaussian Elimination Pivoting
* [Gaussian Elimination Pivoting](linear_algebra/src/gaussian_elimination_pivoting/gaussian_elimination_pivoting.py)
* [Lib](linear_algebra/src/lib.py)
* [Polynom For Points](linear_algebra/src/polynom_for_points.py)
* [Power Iteration](linear_algebra/src/power_iteration.py)
* [Rank Of Matrix](linear_algebra/src/rank_of_matrix.py)
* [Rayleigh Quotient](linear_algebra/src/rayleigh_quotient.py)
* [Schur Complement](linear_algebra/src/schur_complement.py)
* [Test Linear Algebra](linear_algebra/src/test_linear_algebra.py)
* [Transformations 2D](linear_algebra/src/transformations_2d.py)
## Linear Programming
* [Simplex](linear_programming/simplex.py)
## Machine Learning
* [Apriori Algorithm](machine_learning/apriori_algorithm.py)
* [Astar](machine_learning/astar.py)
* [Automatic Differentiation](machine_learning/automatic_differentiation.py)
* [Data Transformations](machine_learning/data_transformations.py)
* [Decision Tree](machine_learning/decision_tree.py)
* [Dimensionality Reduction](machine_learning/dimensionality_reduction.py)
* Forecasting
* [Run](machine_learning/forecasting/run.py)
* [Frequent Pattern Growth](machine_learning/frequent_pattern_growth.py)
* [Gradient Boosting Classifier](machine_learning/gradient_boosting_classifier.py)
* [Gradient Descent](machine_learning/gradient_descent.py)
* [K Means Clust](machine_learning/k_means_clust.py)
* [K Nearest Neighbours](machine_learning/k_nearest_neighbours.py)
* [Linear Discriminant Analysis](machine_learning/linear_discriminant_analysis.py)
* [Linear Regression](machine_learning/linear_regression.py)
* Local Weighted Learning
* [Local Weighted Learning](machine_learning/local_weighted_learning/local_weighted_learning.py)
* [Logistic Regression](machine_learning/logistic_regression.py)
* [Loss Functions](machine_learning/loss_functions.py)
* [Mfcc](machine_learning/mfcc.py)
* [Multilayer Perceptron Classifier](machine_learning/multilayer_perceptron_classifier.py)
* [Polynomial Regression](machine_learning/polynomial_regression.py)
* [Scoring Functions](machine_learning/scoring_functions.py)
* [Self Organizing Map](machine_learning/self_organizing_map.py)
* [Sequential Minimum Optimization](machine_learning/sequential_minimum_optimization.py)
* [Similarity Search](machine_learning/similarity_search.py)
* [Support Vector Machines](machine_learning/support_vector_machines.py)
* [Word Frequency Functions](machine_learning/word_frequency_functions.py)
* [Xgboost Classifier](machine_learning/xgboost_classifier.py)
* [Xgboost Regressor](machine_learning/xgboost_regressor.py)
## Maths
* [Abs](maths/abs.py)
* [Addition Without Arithmetic](maths/addition_without_arithmetic.py)
* [Aliquot Sum](maths/aliquot_sum.py)
* [Allocation Number](maths/allocation_number.py)
* [Arc Length](maths/arc_length.py)
* [Area](maths/area.py)
* [Area Under Curve](maths/area_under_curve.py)
* [Average Absolute Deviation](maths/average_absolute_deviation.py)
* [Average Mean](maths/average_mean.py)
* [Average Median](maths/average_median.py)
* [Average Mode](maths/average_mode.py)
* [Bailey Borwein Plouffe](maths/bailey_borwein_plouffe.py)
* [Base Neg2 Conversion](maths/base_neg2_conversion.py)
* [Basic Maths](maths/basic_maths.py)
* [Binary Exponentiation](maths/binary_exponentiation.py)
* [Binary Multiplication](maths/binary_multiplication.py)
* [Binomial Coefficient](maths/binomial_coefficient.py)
* [Binomial Distribution](maths/binomial_distribution.py)
* [Ceil](maths/ceil.py)
* [Chebyshev Distance](maths/chebyshev_distance.py)
* [Check Polygon](maths/check_polygon.py)
* [Chinese Remainder Theorem](maths/chinese_remainder_theorem.py)
* [Chudnovsky Algorithm](maths/chudnovsky_algorithm.py)
* [Collatz Sequence](maths/collatz_sequence.py)
* [Combinations](maths/combinations.py)
* [Continued Fraction](maths/continued_fraction.py)
* [Decimal Isolate](maths/decimal_isolate.py)
* [Decimal To Fraction](maths/decimal_to_fraction.py)
* [Dodecahedron](maths/dodecahedron.py)
* [Double Factorial](maths/double_factorial.py)
* [Dual Number Automatic Differentiation](maths/dual_number_automatic_differentiation.py)
* [Entropy](maths/entropy.py)
* [Euclidean Distance](maths/euclidean_distance.py)
* [Euler Method](maths/euler_method.py)
* [Euler Modified](maths/euler_modified.py)
* [Eulers Totient](maths/eulers_totient.py)
* [Extended Euclidean Algorithm](maths/extended_euclidean_algorithm.py)
* [Factorial](maths/factorial.py)
* [Factors](maths/factors.py)
* [Fast Inverse Sqrt](maths/fast_inverse_sqrt.py)
* [Fermat Little Theorem](maths/fermat_little_theorem.py)
* [Fibonacci](maths/fibonacci.py)
* [Find Max](maths/find_max.py)
* [Find Min](maths/find_min.py)
* [Floor](maths/floor.py)
* [Gamma](maths/gamma.py)
* [Gaussian](maths/gaussian.py)
* [Gaussian Error Linear Unit](maths/gaussian_error_linear_unit.py)
* [Gcd Of N Numbers](maths/gcd_of_n_numbers.py)
* [Germain Primes](maths/germain_primes.py)
* [Greatest Common Divisor](maths/greatest_common_divisor.py)
* [Hardy Ramanujanalgo](maths/hardy_ramanujanalgo.py)
* [Integer Square Root](maths/integer_square_root.py)
* [Interquartile Range](maths/interquartile_range.py)
* [Is Int Palindrome](maths/is_int_palindrome.py)
* [Is Ip V4 Address Valid](maths/is_ip_v4_address_valid.py)
* [Is Square Free](maths/is_square_free.py)
* [Jaccard Similarity](maths/jaccard_similarity.py)
* [Joint Probability Distribution](maths/joint_probability_distribution.py)
* [Josephus Problem](maths/josephus_problem.py)
* [Juggler Sequence](maths/juggler_sequence.py)
* [Karatsuba](maths/karatsuba.py)
* [Kth Lexicographic Permutation](maths/kth_lexicographic_permutation.py)
* [Largest Of Very Large Numbers](maths/largest_of_very_large_numbers.py)
* [Least Common Multiple](maths/least_common_multiple.py)
* [Line Length](maths/line_length.py)
* [Liouville Lambda](maths/liouville_lambda.py)
* [Lucas Lehmer Primality Test](maths/lucas_lehmer_primality_test.py)
* [Lucas Series](maths/lucas_series.py)
* [Maclaurin Series](maths/maclaurin_series.py)
* [Manhattan Distance](maths/manhattan_distance.py)
* [Matrix Exponentiation](maths/matrix_exponentiation.py)
* [Max Sum Sliding Window](maths/max_sum_sliding_window.py)
* [Median Of Two Arrays](maths/median_of_two_arrays.py)
* [Minkowski Distance](maths/minkowski_distance.py)
* [Mobius Function](maths/mobius_function.py)
* [Modular Division](maths/modular_division.py)
* [Modular Exponential](maths/modular_exponential.py)
* [Monte Carlo](maths/monte_carlo.py)
* [Monte Carlo Dice](maths/monte_carlo_dice.py)
* [Number Of Digits](maths/number_of_digits.py)
* Numerical Analysis
* [Adams Bashforth](maths/numerical_analysis/adams_bashforth.py)
* [Bisection](maths/numerical_analysis/bisection.py)
* [Bisection 2](maths/numerical_analysis/bisection_2.py)
* [Integration By Simpson Approx](maths/numerical_analysis/integration_by_simpson_approx.py)
* [Intersection](maths/numerical_analysis/intersection.py)
* [Nevilles Method](maths/numerical_analysis/nevilles_method.py)
* [Newton Forward Interpolation](maths/numerical_analysis/newton_forward_interpolation.py)
* [Newton Raphson](maths/numerical_analysis/newton_raphson.py)
* [Numerical Integration](maths/numerical_analysis/numerical_integration.py)
* [Runge Kutta](maths/numerical_analysis/runge_kutta.py)
* [Runge Kutta Fehlberg 45](maths/numerical_analysis/runge_kutta_fehlberg_45.py)
* [Runge Kutta Gills](maths/numerical_analysis/runge_kutta_gills.py)
* [Secant Method](maths/numerical_analysis/secant_method.py)
* [Simpson Rule](maths/numerical_analysis/simpson_rule.py)
* [Square Root](maths/numerical_analysis/square_root.py)
* [Odd Sieve](maths/odd_sieve.py)
* [Perfect Cube](maths/perfect_cube.py)
* [Perfect Number](maths/perfect_number.py)
* [Perfect Square](maths/perfect_square.py)
* [Persistence](maths/persistence.py)
* [Pi Generator](maths/pi_generator.py)
* [Pi Monte Carlo Estimation](maths/pi_monte_carlo_estimation.py)
* [Points Are Collinear 3D](maths/points_are_collinear_3d.py)
* [Pollard Rho](maths/pollard_rho.py)
* [Polynomial Evaluation](maths/polynomial_evaluation.py)
* Polynomials
* [Single Indeterminate Operations](maths/polynomials/single_indeterminate_operations.py)
* [Power Using Recursion](maths/power_using_recursion.py)
* [Prime Check](maths/prime_check.py)
* [Prime Factors](maths/prime_factors.py)
* [Prime Numbers](maths/prime_numbers.py)
* [Prime Sieve Eratosthenes](maths/prime_sieve_eratosthenes.py)
* [Primelib](maths/primelib.py)
* [Print Multiplication Table](maths/print_multiplication_table.py)
* [Pythagoras](maths/pythagoras.py)
* [Qr Decomposition](maths/qr_decomposition.py)
* [Quadratic Equations Complex Numbers](maths/quadratic_equations_complex_numbers.py)
* [Radians](maths/radians.py)
* [Radix2 Fft](maths/radix2_fft.py)
* [Remove Digit](maths/remove_digit.py)
* [Segmented Sieve](maths/segmented_sieve.py)
* Series
* [Arithmetic](maths/series/arithmetic.py)
* [Geometric](maths/series/geometric.py)
* [Geometric Series](maths/series/geometric_series.py)
* [Harmonic](maths/series/harmonic.py)
* [Harmonic Series](maths/series/harmonic_series.py)
* [Hexagonal Numbers](maths/series/hexagonal_numbers.py)
* [P Series](maths/series/p_series.py)
* [Sieve Of Eratosthenes](maths/sieve_of_eratosthenes.py)
* [Sigmoid](maths/sigmoid.py)
* [Signum](maths/signum.py)
* [Simultaneous Linear Equation Solver](maths/simultaneous_linear_equation_solver.py)
* [Sin](maths/sin.py)
* [Sock Merchant](maths/sock_merchant.py)
* [Softmax](maths/softmax.py)
* [Solovay Strassen Primality Test](maths/solovay_strassen_primality_test.py)
* Special Numbers
* [Armstrong Numbers](maths/special_numbers/armstrong_numbers.py)
* [Automorphic Number](maths/special_numbers/automorphic_number.py)
* [Bell Numbers](maths/special_numbers/bell_numbers.py)
* [Carmichael Number](maths/special_numbers/carmichael_number.py)
* [Catalan Number](maths/special_numbers/catalan_number.py)
* [Hamming Numbers](maths/special_numbers/hamming_numbers.py)
* [Happy Number](maths/special_numbers/happy_number.py)
* [Harshad Numbers](maths/special_numbers/harshad_numbers.py)
* [Hexagonal Number](maths/special_numbers/hexagonal_number.py)
* [Krishnamurthy Number](maths/special_numbers/krishnamurthy_number.py)
* [Perfect Number](maths/special_numbers/perfect_number.py)
* [Polygonal Numbers](maths/special_numbers/polygonal_numbers.py)
* [Pronic Number](maths/special_numbers/pronic_number.py)
* [Proth Number](maths/special_numbers/proth_number.py)
* [Triangular Numbers](maths/special_numbers/triangular_numbers.py)
* [Ugly Numbers](maths/special_numbers/ugly_numbers.py)
* [Weird Number](maths/special_numbers/weird_number.py)
* [Sum Of Arithmetic Series](maths/sum_of_arithmetic_series.py)
* [Sum Of Digits](maths/sum_of_digits.py)
* [Sum Of Geometric Progression](maths/sum_of_geometric_progression.py)
* [Sum Of Harmonic Series](maths/sum_of_harmonic_series.py)
* [Sumset](maths/sumset.py)
* [Sylvester Sequence](maths/sylvester_sequence.py)
* [Tanh](maths/tanh.py)
* [Test Prime Check](maths/test_prime_check.py)
* [Three Sum](maths/three_sum.py)
* [Trapezoidal Rule](maths/trapezoidal_rule.py)
* [Triplet Sum](maths/triplet_sum.py)
* [Twin Prime](maths/twin_prime.py)
* [Two Pointer](maths/two_pointer.py)
* [Two Sum](maths/two_sum.py)
* [Volume](maths/volume.py)
* [Zellers Congruence](maths/zellers_congruence.py)
## Matrix
* [Binary Search Matrix](matrix/binary_search_matrix.py)
* [Count Islands In Matrix](matrix/count_islands_in_matrix.py)
* [Count Negative Numbers In Sorted Matrix](matrix/count_negative_numbers_in_sorted_matrix.py)
* [Count Paths](matrix/count_paths.py)
* [Cramers Rule 2X2](matrix/cramers_rule_2x2.py)
* [Inverse Of Matrix](matrix/inverse_of_matrix.py)
* [Largest Square Area In Matrix](matrix/largest_square_area_in_matrix.py)
* [Matrix Class](matrix/matrix_class.py)
* [Matrix Multiplication Recursion](matrix/matrix_multiplication_recursion.py)
* [Matrix Operation](matrix/matrix_operation.py)
* [Max Area Of Island](matrix/max_area_of_island.py)
* [Median Matrix](matrix/median_matrix.py)
* [Nth Fibonacci Using Matrix Exponentiation](matrix/nth_fibonacci_using_matrix_exponentiation.py)
* [Pascal Triangle](matrix/pascal_triangle.py)
* [Rotate Matrix](matrix/rotate_matrix.py)
* [Searching In Sorted Matrix](matrix/searching_in_sorted_matrix.py)
* [Sherman Morrison](matrix/sherman_morrison.py)
* [Spiral Print](matrix/spiral_print.py)
* Tests
* [Test Matrix Operation](matrix/tests/test_matrix_operation.py)
* [Validate Sudoku Board](matrix/validate_sudoku_board.py)
## Networking Flow
* [Ford Fulkerson](networking_flow/ford_fulkerson.py)
* [Minimum Cut](networking_flow/minimum_cut.py)
## Neural Network
* [2 Hidden Layers Neural Network](neural_network/2_hidden_layers_neural_network.py)
* Activation Functions
* [Binary Step](neural_network/activation_functions/binary_step.py)
* [Exponential Linear Unit](neural_network/activation_functions/exponential_linear_unit.py)
* [Leaky Rectified Linear Unit](neural_network/activation_functions/leaky_rectified_linear_unit.py)
* [Mish](neural_network/activation_functions/mish.py)
* [Rectified Linear Unit](neural_network/activation_functions/rectified_linear_unit.py)
* [Scaled Exponential Linear Unit](neural_network/activation_functions/scaled_exponential_linear_unit.py)
* [Soboleva Modified Hyperbolic Tangent](neural_network/activation_functions/soboleva_modified_hyperbolic_tangent.py)
* [Softplus](neural_network/activation_functions/softplus.py)
* [Squareplus](neural_network/activation_functions/squareplus.py)
* [Swish](neural_network/activation_functions/swish.py)
* [Back Propagation Neural Network](neural_network/back_propagation_neural_network.py)
* [Convolution Neural Network](neural_network/convolution_neural_network.py)
* [Simple Neural Network](neural_network/simple_neural_network.py)
## Other
* [Activity Selection](other/activity_selection.py)
* [Alternative List Arrange](other/alternative_list_arrange.py)
* [Bankers Algorithm](other/bankers_algorithm.py)
* [Davis Putnam Logemann Loveland](other/davis_putnam_logemann_loveland.py)
* [Doomsday](other/doomsday.py)
* [Fischer Yates Shuffle](other/fischer_yates_shuffle.py)
* [Gauss Easter](other/gauss_easter.py)
* [Graham Scan](other/graham_scan.py)
* [Greedy](other/greedy.py)
* [Guess The Number Search](other/guess_the_number_search.py)
* [H Index](other/h_index.py)
* [Least Recently Used](other/least_recently_used.py)
* [Lfu Cache](other/lfu_cache.py)
* [Linear Congruential Generator](other/linear_congruential_generator.py)
* [Lru Cache](other/lru_cache.py)
* [Magicdiamondpattern](other/magicdiamondpattern.py)
* [Majority Vote Algorithm](other/majority_vote_algorithm.py)
* [Maximum Subsequence](other/maximum_subsequence.py)
* [Nested Brackets](other/nested_brackets.py)
* [Number Container System](other/number_container_system.py)
* [Password](other/password.py)
* [Quine](other/quine.py)
* [Scoring Algorithm](other/scoring_algorithm.py)
* [Sdes](other/sdes.py)
* [Tower Of Hanoi](other/tower_of_hanoi.py)
* [Word Search](other/word_search.py)
## Physics
* [Altitude Pressure](physics/altitude_pressure.py)
* [Archimedes Principle Of Buoyant Force](physics/archimedes_principle_of_buoyant_force.py)
* [Basic Orbital Capture](physics/basic_orbital_capture.py)
* [Casimir Effect](physics/casimir_effect.py)
* [Center Of Mass](physics/center_of_mass.py)
* [Centripetal Force](physics/centripetal_force.py)
* [Coulombs Law](physics/coulombs_law.py)
* [Doppler Frequency](physics/doppler_frequency.py)
* [Grahams Law](physics/grahams_law.py)
* [Horizontal Projectile Motion](physics/horizontal_projectile_motion.py)
* [Hubble Parameter](physics/hubble_parameter.py)
* [Ideal Gas Law](physics/ideal_gas_law.py)
* [In Static Equilibrium](physics/in_static_equilibrium.py)
* [Kinetic Energy](physics/kinetic_energy.py)
* [Lens Formulae](physics/lens_formulae.py)
* [Lorentz Transformation Four Vector](physics/lorentz_transformation_four_vector.py)
* [Malus Law](physics/malus_law.py)
* [Mass Energy Equivalence](physics/mass_energy_equivalence.py)
* [Mirror Formulae](physics/mirror_formulae.py)
* [N Body Simulation](physics/n_body_simulation.py)
* [Newtons Law Of Gravitation](physics/newtons_law_of_gravitation.py)
* [Newtons Second Law Of Motion](physics/newtons_second_law_of_motion.py)
* [Photoelectric Effect](physics/photoelectric_effect.py)
* [Potential Energy](physics/potential_energy.py)
* [Reynolds Number](physics/reynolds_number.py)
* [Rms Speed Of Molecule](physics/rms_speed_of_molecule.py)
* [Shear Stress](physics/shear_stress.py)
* [Speed Of Sound](physics/speed_of_sound.py)
* [Speeds Of Gas Molecules](physics/speeds_of_gas_molecules.py)
* [Terminal Velocity](physics/terminal_velocity.py)
## Project Euler
* Problem 001
* [Sol1](project_euler/problem_001/sol1.py)
* [Sol2](project_euler/problem_001/sol2.py)
* [Sol3](project_euler/problem_001/sol3.py)
* [Sol4](project_euler/problem_001/sol4.py)
* [Sol5](project_euler/problem_001/sol5.py)
* [Sol6](project_euler/problem_001/sol6.py)
* [Sol7](project_euler/problem_001/sol7.py)
* Problem 002
* [Sol1](project_euler/problem_002/sol1.py)
* [Sol2](project_euler/problem_002/sol2.py)
* [Sol3](project_euler/problem_002/sol3.py)
* [Sol4](project_euler/problem_002/sol4.py)
* [Sol5](project_euler/problem_002/sol5.py)
* Problem 003
* [Sol1](project_euler/problem_003/sol1.py)
* [Sol2](project_euler/problem_003/sol2.py)
* [Sol3](project_euler/problem_003/sol3.py)
* Problem 004
* [Sol1](project_euler/problem_004/sol1.py)
* [Sol2](project_euler/problem_004/sol2.py)
* Problem 005
* [Sol1](project_euler/problem_005/sol1.py)
* [Sol2](project_euler/problem_005/sol2.py)
* Problem 006
* [Sol1](project_euler/problem_006/sol1.py)
* [Sol2](project_euler/problem_006/sol2.py)
* [Sol3](project_euler/problem_006/sol3.py)
* [Sol4](project_euler/problem_006/sol4.py)
* Problem 007
* [Sol1](project_euler/problem_007/sol1.py)
* [Sol2](project_euler/problem_007/sol2.py)
* [Sol3](project_euler/problem_007/sol3.py)
* Problem 008
* [Sol1](project_euler/problem_008/sol1.py)
* [Sol2](project_euler/problem_008/sol2.py)
* [Sol3](project_euler/problem_008/sol3.py)
* Problem 009
* [Sol1](project_euler/problem_009/sol1.py)
* [Sol2](project_euler/problem_009/sol2.py)
* [Sol3](project_euler/problem_009/sol3.py)
* Problem 010
* [Sol1](project_euler/problem_010/sol1.py)
* [Sol2](project_euler/problem_010/sol2.py)
* [Sol3](project_euler/problem_010/sol3.py)
* Problem 011
* [Sol1](project_euler/problem_011/sol1.py)
* [Sol2](project_euler/problem_011/sol2.py)
* Problem 012
* [Sol1](project_euler/problem_012/sol1.py)
* [Sol2](project_euler/problem_012/sol2.py)
* Problem 013
* [Sol1](project_euler/problem_013/sol1.py)
* Problem 014
* [Sol1](project_euler/problem_014/sol1.py)
* [Sol2](project_euler/problem_014/sol2.py)
* Problem 015
* [Sol1](project_euler/problem_015/sol1.py)
* Problem 016
* [Sol1](project_euler/problem_016/sol1.py)
* [Sol2](project_euler/problem_016/sol2.py)
* Problem 017
* [Sol1](project_euler/problem_017/sol1.py)
* Problem 018
* [Solution](project_euler/problem_018/solution.py)
* Problem 019
* [Sol1](project_euler/problem_019/sol1.py)
* Problem 020
* [Sol1](project_euler/problem_020/sol1.py)
* [Sol2](project_euler/problem_020/sol2.py)
* [Sol3](project_euler/problem_020/sol3.py)
* [Sol4](project_euler/problem_020/sol4.py)
* Problem 021
* [Sol1](project_euler/problem_021/sol1.py)
* Problem 022
* [Sol1](project_euler/problem_022/sol1.py)
* [Sol2](project_euler/problem_022/sol2.py)
* Problem 023
* [Sol1](project_euler/problem_023/sol1.py)
* Problem 024
* [Sol1](project_euler/problem_024/sol1.py)
* Problem 025
* [Sol1](project_euler/problem_025/sol1.py)
* [Sol2](project_euler/problem_025/sol2.py)
* [Sol3](project_euler/problem_025/sol3.py)
* Problem 026
* [Sol1](project_euler/problem_026/sol1.py)
* Problem 027
* [Sol1](project_euler/problem_027/sol1.py)
* Problem 028
* [Sol1](project_euler/problem_028/sol1.py)
* Problem 029
* [Sol1](project_euler/problem_029/sol1.py)
* Problem 030
* [Sol1](project_euler/problem_030/sol1.py)
* Problem 031
* [Sol1](project_euler/problem_031/sol1.py)
* [Sol2](project_euler/problem_031/sol2.py)
* Problem 032
* [Sol32](project_euler/problem_032/sol32.py)
* Problem 033
* [Sol1](project_euler/problem_033/sol1.py)
* Problem 034
* [Sol1](project_euler/problem_034/sol1.py)
* Problem 035
* [Sol1](project_euler/problem_035/sol1.py)
* Problem 036
* [Sol1](project_euler/problem_036/sol1.py)
* Problem 037
* [Sol1](project_euler/problem_037/sol1.py)
* Problem 038
* [Sol1](project_euler/problem_038/sol1.py)
* Problem 039
* [Sol1](project_euler/problem_039/sol1.py)
* Problem 040
* [Sol1](project_euler/problem_040/sol1.py)
* Problem 041
* [Sol1](project_euler/problem_041/sol1.py)
* Problem 042
* [Solution42](project_euler/problem_042/solution42.py)
* Problem 043
* [Sol1](project_euler/problem_043/sol1.py)
* Problem 044
* [Sol1](project_euler/problem_044/sol1.py)
* Problem 045
* [Sol1](project_euler/problem_045/sol1.py)
* Problem 046
* [Sol1](project_euler/problem_046/sol1.py)
* Problem 047
* [Sol1](project_euler/problem_047/sol1.py)
* Problem 048
* [Sol1](project_euler/problem_048/sol1.py)
* Problem 049
* [Sol1](project_euler/problem_049/sol1.py)
* Problem 050
* [Sol1](project_euler/problem_050/sol1.py)
* Problem 051
* [Sol1](project_euler/problem_051/sol1.py)
* Problem 052
* [Sol1](project_euler/problem_052/sol1.py)
* Problem 053
* [Sol1](project_euler/problem_053/sol1.py)
* Problem 054
* [Sol1](project_euler/problem_054/sol1.py)
* [Test Poker Hand](project_euler/problem_054/test_poker_hand.py)
* Problem 055
* [Sol1](project_euler/problem_055/sol1.py)
* Problem 056
* [Sol1](project_euler/problem_056/sol1.py)
* Problem 057
* [Sol1](project_euler/problem_057/sol1.py)
* Problem 058
* [Sol1](project_euler/problem_058/sol1.py)
* Problem 059
* [Sol1](project_euler/problem_059/sol1.py)
* Problem 062
* [Sol1](project_euler/problem_062/sol1.py)
* Problem 063
* [Sol1](project_euler/problem_063/sol1.py)
* Problem 064
* [Sol1](project_euler/problem_064/sol1.py)
* Problem 065
* [Sol1](project_euler/problem_065/sol1.py)
* Problem 067
* [Sol1](project_euler/problem_067/sol1.py)
* [Sol2](project_euler/problem_067/sol2.py)
* Problem 068
* [Sol1](project_euler/problem_068/sol1.py)
* Problem 069
* [Sol1](project_euler/problem_069/sol1.py)
* Problem 070
* [Sol1](project_euler/problem_070/sol1.py)
* Problem 071
* [Sol1](project_euler/problem_071/sol1.py)
* Problem 072
* [Sol1](project_euler/problem_072/sol1.py)
* [Sol2](project_euler/problem_072/sol2.py)
* Problem 073
* [Sol1](project_euler/problem_073/sol1.py)
* Problem 074
* [Sol1](project_euler/problem_074/sol1.py)
* [Sol2](project_euler/problem_074/sol2.py)
* Problem 075
* [Sol1](project_euler/problem_075/sol1.py)
* Problem 076
* [Sol1](project_euler/problem_076/sol1.py)
* Problem 077
* [Sol1](project_euler/problem_077/sol1.py)
* Problem 078
* [Sol1](project_euler/problem_078/sol1.py)
* Problem 079
* [Sol1](project_euler/problem_079/sol1.py)
* Problem 080
* [Sol1](project_euler/problem_080/sol1.py)
* Problem 081
* [Sol1](project_euler/problem_081/sol1.py)
* Problem 082
* [Sol1](project_euler/problem_082/sol1.py)
* Problem 085
* [Sol1](project_euler/problem_085/sol1.py)
* Problem 086
* [Sol1](project_euler/problem_086/sol1.py)
* Problem 087
* [Sol1](project_euler/problem_087/sol1.py)
* Problem 089
* [Sol1](project_euler/problem_089/sol1.py)
* Problem 091
* [Sol1](project_euler/problem_091/sol1.py)
* Problem 092
* [Sol1](project_euler/problem_092/sol1.py)
* Problem 094
* [Sol1](project_euler/problem_094/sol1.py)
* Problem 097
* [Sol1](project_euler/problem_097/sol1.py)
* Problem 099
* [Sol1](project_euler/problem_099/sol1.py)
* Problem 100
* [Sol1](project_euler/problem_100/sol1.py)
* Problem 101
* [Sol1](project_euler/problem_101/sol1.py)
* Problem 102
* [Sol1](project_euler/problem_102/sol1.py)
* Problem 104
* [Sol1](project_euler/problem_104/sol1.py)
* Problem 107
* [Sol1](project_euler/problem_107/sol1.py)
* Problem 109
* [Sol1](project_euler/problem_109/sol1.py)
* Problem 112
* [Sol1](project_euler/problem_112/sol1.py)
* Problem 113
* [Sol1](project_euler/problem_113/sol1.py)
* Problem 114
* [Sol1](project_euler/problem_114/sol1.py)
* Problem 115
* [Sol1](project_euler/problem_115/sol1.py)
* Problem 116
* [Sol1](project_euler/problem_116/sol1.py)
* Problem 117
* [Sol1](project_euler/problem_117/sol1.py)
* Problem 119
* [Sol1](project_euler/problem_119/sol1.py)
* Problem 120
* [Sol1](project_euler/problem_120/sol1.py)
* Problem 121
* [Sol1](project_euler/problem_121/sol1.py)
* Problem 123
* [Sol1](project_euler/problem_123/sol1.py)
* Problem 125
* [Sol1](project_euler/problem_125/sol1.py)
* Problem 129
* [Sol1](project_euler/problem_129/sol1.py)
* Problem 131
* [Sol1](project_euler/problem_131/sol1.py)
* Problem 135
* [Sol1](project_euler/problem_135/sol1.py)
* Problem 144
* [Sol1](project_euler/problem_144/sol1.py)
* Problem 145
* [Sol1](project_euler/problem_145/sol1.py)
* Problem 173
* [Sol1](project_euler/problem_173/sol1.py)
* Problem 174
* [Sol1](project_euler/problem_174/sol1.py)
* Problem 180
* [Sol1](project_euler/problem_180/sol1.py)
* Problem 187
* [Sol1](project_euler/problem_187/sol1.py)
* Problem 188
* [Sol1](project_euler/problem_188/sol1.py)
* Problem 191
* [Sol1](project_euler/problem_191/sol1.py)
* Problem 203
* [Sol1](project_euler/problem_203/sol1.py)
* Problem 205
* [Sol1](project_euler/problem_205/sol1.py)
* Problem 206
* [Sol1](project_euler/problem_206/sol1.py)
* Problem 207
* [Sol1](project_euler/problem_207/sol1.py)
* Problem 234
* [Sol1](project_euler/problem_234/sol1.py)
* Problem 301
* [Sol1](project_euler/problem_301/sol1.py)
* Problem 493
* [Sol1](project_euler/problem_493/sol1.py)
* Problem 551
* [Sol1](project_euler/problem_551/sol1.py)
* Problem 587
* [Sol1](project_euler/problem_587/sol1.py)
* Problem 686
* [Sol1](project_euler/problem_686/sol1.py)
* Problem 800
* [Sol1](project_euler/problem_800/sol1.py)
## Quantum
* [Q Fourier Transform](quantum/q_fourier_transform.py)
## Scheduling
* [First Come First Served](scheduling/first_come_first_served.py)
* [Highest Response Ratio Next](scheduling/highest_response_ratio_next.py)
* [Job Sequence With Deadline](scheduling/job_sequence_with_deadline.py)
* [Job Sequencing With Deadline](scheduling/job_sequencing_with_deadline.py)
* [Multi Level Feedback Queue](scheduling/multi_level_feedback_queue.py)
* [Non Preemptive Shortest Job First](scheduling/non_preemptive_shortest_job_first.py)
* [Round Robin](scheduling/round_robin.py)
* [Shortest Job First](scheduling/shortest_job_first.py)
## Searches
* [Binary Search](searches/binary_search.py)
* [Binary Tree Traversal](searches/binary_tree_traversal.py)
* [Double Linear Search](searches/double_linear_search.py)
* [Double Linear Search Recursion](searches/double_linear_search_recursion.py)
* [Fibonacci Search](searches/fibonacci_search.py)
* [Hill Climbing](searches/hill_climbing.py)
* [Interpolation Search](searches/interpolation_search.py)
* [Jump Search](searches/jump_search.py)
* [Linear Search](searches/linear_search.py)
* [Median Of Medians](searches/median_of_medians.py)
* [Quick Select](searches/quick_select.py)
* [Sentinel Linear Search](searches/sentinel_linear_search.py)
* [Simple Binary Search](searches/simple_binary_search.py)
* [Simulated Annealing](searches/simulated_annealing.py)
* [Tabu Search](searches/tabu_search.py)
* [Ternary Search](searches/ternary_search.py)
## Sorts
* [Bead Sort](sorts/bead_sort.py)
* [Binary Insertion Sort](sorts/binary_insertion_sort.py)
* [Bitonic Sort](sorts/bitonic_sort.py)
* [Bogo Sort](sorts/bogo_sort.py)
* [Bubble Sort](sorts/bubble_sort.py)
* [Bucket Sort](sorts/bucket_sort.py)
* [Circle Sort](sorts/circle_sort.py)
* [Cocktail Shaker Sort](sorts/cocktail_shaker_sort.py)
* [Comb Sort](sorts/comb_sort.py)
* [Counting Sort](sorts/counting_sort.py)
* [Cycle Sort](sorts/cycle_sort.py)
* [Double Sort](sorts/double_sort.py)
* [Dutch National Flag Sort](sorts/dutch_national_flag_sort.py)
* [Exchange Sort](sorts/exchange_sort.py)
* [External Sort](sorts/external_sort.py)
* [Gnome Sort](sorts/gnome_sort.py)
* [Heap Sort](sorts/heap_sort.py)
* [Insertion Sort](sorts/insertion_sort.py)
* [Intro Sort](sorts/intro_sort.py)
* [Iterative Merge Sort](sorts/iterative_merge_sort.py)
* [Merge Insertion Sort](sorts/merge_insertion_sort.py)
* [Merge Sort](sorts/merge_sort.py)
* [Msd Radix Sort](sorts/msd_radix_sort.py)
* [Natural Sort](sorts/natural_sort.py)
* [Odd Even Sort](sorts/odd_even_sort.py)
* [Odd Even Transposition Parallel](sorts/odd_even_transposition_parallel.py)
* [Odd Even Transposition Single Threaded](sorts/odd_even_transposition_single_threaded.py)
* [Pancake Sort](sorts/pancake_sort.py)
* [Patience Sort](sorts/patience_sort.py)
* [Pigeon Sort](sorts/pigeon_sort.py)
* [Pigeonhole Sort](sorts/pigeonhole_sort.py)
* [Quick Sort](sorts/quick_sort.py)
* [Quick Sort 3 Partition](sorts/quick_sort_3_partition.py)
* [Radix Sort](sorts/radix_sort.py)
* [Recursive Insertion Sort](sorts/recursive_insertion_sort.py)
* [Recursive Mergesort Array](sorts/recursive_mergesort_array.py)
* [Recursive Quick Sort](sorts/recursive_quick_sort.py)
* [Selection Sort](sorts/selection_sort.py)
* [Shell Sort](sorts/shell_sort.py)
* [Shrink Shell Sort](sorts/shrink_shell_sort.py)
* [Slowsort](sorts/slowsort.py)
* [Stooge Sort](sorts/stooge_sort.py)
* [Strand Sort](sorts/strand_sort.py)
* [Tim Sort](sorts/tim_sort.py)
* [Topological Sort](sorts/topological_sort.py)
* [Tree Sort](sorts/tree_sort.py)
* [Unknown Sort](sorts/unknown_sort.py)
* [Wiggle Sort](sorts/wiggle_sort.py)
## Strings
* [Aho Corasick](strings/aho_corasick.py)
* [Alternative String Arrange](strings/alternative_string_arrange.py)
* [Anagrams](strings/anagrams.py)
* [Autocomplete Using Trie](strings/autocomplete_using_trie.py)
* [Barcode Validator](strings/barcode_validator.py)
* [Bitap String Match](strings/bitap_string_match.py)
* [Boyer Moore Search](strings/boyer_moore_search.py)
* [Camel Case To Snake Case](strings/camel_case_to_snake_case.py)
* [Can String Be Rearranged As Palindrome](strings/can_string_be_rearranged_as_palindrome.py)
* [Capitalize](strings/capitalize.py)
* [Check Anagrams](strings/check_anagrams.py)
* [Credit Card Validator](strings/credit_card_validator.py)
* [Damerau Levenshtein Distance](strings/damerau_levenshtein_distance.py)
* [Detecting English Programmatically](strings/detecting_english_programmatically.py)
* [Dna](strings/dna.py)
* [Edit Distance](strings/edit_distance.py)
* [Frequency Finder](strings/frequency_finder.py)
* [Hamming Distance](strings/hamming_distance.py)
* [Indian Phone Validator](strings/indian_phone_validator.py)
* [Is Contains Unique Chars](strings/is_contains_unique_chars.py)
* [Is Isogram](strings/is_isogram.py)
* [Is Pangram](strings/is_pangram.py)
* [Is Polish National Id](strings/is_polish_national_id.py)
* [Is Spain National Id](strings/is_spain_national_id.py)
* [Is Srilankan Phone Number](strings/is_srilankan_phone_number.py)
* [Is Valid Email Address](strings/is_valid_email_address.py)
* [Jaro Winkler](strings/jaro_winkler.py)
* [Join](strings/join.py)
* [Knuth Morris Pratt](strings/knuth_morris_pratt.py)
* [Levenshtein Distance](strings/levenshtein_distance.py)
* [Lower](strings/lower.py)
* [Manacher](strings/manacher.py)
* [Min Cost String Conversion](strings/min_cost_string_conversion.py)
* [Naive String Search](strings/naive_string_search.py)
* [Ngram](strings/ngram.py)
* [Palindrome](strings/palindrome.py)
* [Pig Latin](strings/pig_latin.py)
* [Prefix Function](strings/prefix_function.py)
* [Rabin Karp](strings/rabin_karp.py)
* [Remove Duplicate](strings/remove_duplicate.py)
* [Reverse Letters](strings/reverse_letters.py)
* [Reverse Words](strings/reverse_words.py)
* [Snake Case To Camel Pascal Case](strings/snake_case_to_camel_pascal_case.py)
* [Split](strings/split.py)
* [String Switch Case](strings/string_switch_case.py)
* [Strip](strings/strip.py)
* [Text Justification](strings/text_justification.py)
* [Title](strings/title.py)
* [Top K Frequent Words](strings/top_k_frequent_words.py)
* [Upper](strings/upper.py)
* [Wave](strings/wave.py)
* [Wildcard Pattern Matching](strings/wildcard_pattern_matching.py)
* [Word Occurrence](strings/word_occurrence.py)
* [Word Patterns](strings/word_patterns.py)
* [Z Function](strings/z_function.py)
## Web Programming
* [Co2 Emission](web_programming/co2_emission.py)
* [Covid Stats Via Xpath](web_programming/covid_stats_via_xpath.py)
* [Crawl Google Results](web_programming/crawl_google_results.py)
* [Crawl Google Scholar Citation](web_programming/crawl_google_scholar_citation.py)
* [Currency Converter](web_programming/currency_converter.py)
* [Current Stock Price](web_programming/current_stock_price.py)
* [Current Weather](web_programming/current_weather.py)
* [Daily Horoscope](web_programming/daily_horoscope.py)
* [Download Images From Google Query](web_programming/download_images_from_google_query.py)
* [Emails From Url](web_programming/emails_from_url.py)
* [Fetch Anime And Play](web_programming/fetch_anime_and_play.py)
* [Fetch Bbc News](web_programming/fetch_bbc_news.py)
* [Fetch Github Info](web_programming/fetch_github_info.py)
* [Fetch Jobs](web_programming/fetch_jobs.py)
* [Fetch Quotes](web_programming/fetch_quotes.py)
* [Fetch Well Rx Price](web_programming/fetch_well_rx_price.py)
* [Get Amazon Product Data](web_programming/get_amazon_product_data.py)
* [Get Imdb Top 250 Movies Csv](web_programming/get_imdb_top_250_movies_csv.py)
* [Get Imdbtop](web_programming/get_imdbtop.py)
* [Get Ip Geolocation](web_programming/get_ip_geolocation.py)
* [Get Top Billionaires](web_programming/get_top_billionaires.py)
* [Get Top Hn Posts](web_programming/get_top_hn_posts.py)
* [Get User Tweets](web_programming/get_user_tweets.py)
* [Giphy](web_programming/giphy.py)
* [Instagram Crawler](web_programming/instagram_crawler.py)
* [Instagram Pic](web_programming/instagram_pic.py)
* [Instagram Video](web_programming/instagram_video.py)
* [Nasa Data](web_programming/nasa_data.py)
* [Open Google Results](web_programming/open_google_results.py)
* [Random Anime Character](web_programming/random_anime_character.py)
* [Recaptcha Verification](web_programming/recaptcha_verification.py)
* [Reddit](web_programming/reddit.py)
* [Search Books By Isbn](web_programming/search_books_by_isbn.py)
* [Slack Message](web_programming/slack_message.py)
* [Test Fetch Github Info](web_programming/test_fetch_github_info.py)
* [World Covid19 Stats](web_programming/world_covid19_stats.py)
|
## Audio Filters
* [Butterworth Filter](audio_filters/butterworth_filter.py)
* [Iir Filter](audio_filters/iir_filter.py)
* [Show Response](audio_filters/show_response.py)
## Backtracking
* [All Combinations](backtracking/all_combinations.py)
* [All Permutations](backtracking/all_permutations.py)
* [All Subsequences](backtracking/all_subsequences.py)
* [Coloring](backtracking/coloring.py)
* [Combination Sum](backtracking/combination_sum.py)
* [Crossword Puzzle Solver](backtracking/crossword_puzzle_solver.py)
* [Generate Parentheses](backtracking/generate_parentheses.py)
* [Hamiltonian Cycle](backtracking/hamiltonian_cycle.py)
* [Knight Tour](backtracking/knight_tour.py)
* [Match Word Pattern](backtracking/match_word_pattern.py)
* [Minimax](backtracking/minimax.py)
* [N Queens](backtracking/n_queens.py)
* [N Queens Math](backtracking/n_queens_math.py)
* [Power Sum](backtracking/power_sum.py)
* [Rat In Maze](backtracking/rat_in_maze.py)
* [Sudoku](backtracking/sudoku.py)
* [Sum Of Subsets](backtracking/sum_of_subsets.py)
* [Word Search](backtracking/word_search.py)
## Bit Manipulation
* [Binary And Operator](bit_manipulation/binary_and_operator.py)
* [Binary Coded Decimal](bit_manipulation/binary_coded_decimal.py)
* [Binary Count Setbits](bit_manipulation/binary_count_setbits.py)
* [Binary Count Trailing Zeros](bit_manipulation/binary_count_trailing_zeros.py)
* [Binary Or Operator](bit_manipulation/binary_or_operator.py)
* [Binary Shifts](bit_manipulation/binary_shifts.py)
* [Binary Twos Complement](bit_manipulation/binary_twos_complement.py)
* [Binary Xor Operator](bit_manipulation/binary_xor_operator.py)
* [Bitwise Addition Recursive](bit_manipulation/bitwise_addition_recursive.py)
* [Count 1S Brian Kernighan Method](bit_manipulation/count_1s_brian_kernighan_method.py)
* [Count Number Of One Bits](bit_manipulation/count_number_of_one_bits.py)
* [Excess 3 Code](bit_manipulation/excess_3_code.py)
* [Find Previous Power Of Two](bit_manipulation/find_previous_power_of_two.py)
* [Gray Code Sequence](bit_manipulation/gray_code_sequence.py)
* [Highest Set Bit](bit_manipulation/highest_set_bit.py)
* [Index Of Rightmost Set Bit](bit_manipulation/index_of_rightmost_set_bit.py)
* [Is Even](bit_manipulation/is_even.py)
* [Is Power Of Two](bit_manipulation/is_power_of_two.py)
* [Largest Pow Of Two Le Num](bit_manipulation/largest_pow_of_two_le_num.py)
* [Missing Number](bit_manipulation/missing_number.py)
* [Numbers Different Signs](bit_manipulation/numbers_different_signs.py)
* [Power Of 4](bit_manipulation/power_of_4.py)
* [Reverse Bits](bit_manipulation/reverse_bits.py)
* [Single Bit Manipulation Operations](bit_manipulation/single_bit_manipulation_operations.py)
* [Swap All Odd And Even Bits](bit_manipulation/swap_all_odd_and_even_bits.py)
## Blockchain
* [Diophantine Equation](blockchain/diophantine_equation.py)
## Boolean Algebra
* [And Gate](boolean_algebra/and_gate.py)
* [Imply Gate](boolean_algebra/imply_gate.py)
* [Karnaugh Map Simplification](boolean_algebra/karnaugh_map_simplification.py)
* [Multiplexer](boolean_algebra/multiplexer.py)
* [Nand Gate](boolean_algebra/nand_gate.py)
* [Nimply Gate](boolean_algebra/nimply_gate.py)
* [Nor Gate](boolean_algebra/nor_gate.py)
* [Not Gate](boolean_algebra/not_gate.py)
* [Or Gate](boolean_algebra/or_gate.py)
* [Quine Mc Cluskey](boolean_algebra/quine_mc_cluskey.py)
* [Xnor Gate](boolean_algebra/xnor_gate.py)
* [Xor Gate](boolean_algebra/xor_gate.py)
## Cellular Automata
* [Conways Game Of Life](cellular_automata/conways_game_of_life.py)
* [Game Of Life](cellular_automata/game_of_life.py)
* [Langtons Ant](cellular_automata/langtons_ant.py)
* [Nagel Schrekenberg](cellular_automata/nagel_schrekenberg.py)
* [One Dimensional](cellular_automata/one_dimensional.py)
* [Wa Tor](cellular_automata/wa_tor.py)
## Ciphers
* [A1Z26](ciphers/a1z26.py)
* [Affine Cipher](ciphers/affine_cipher.py)
* [Atbash](ciphers/atbash.py)
* [Autokey](ciphers/autokey.py)
* [Baconian Cipher](ciphers/baconian_cipher.py)
* [Base16](ciphers/base16.py)
* [Base32](ciphers/base32.py)
* [Base64](ciphers/base64.py)
* [Base85](ciphers/base85.py)
* [Beaufort Cipher](ciphers/beaufort_cipher.py)
* [Bifid](ciphers/bifid.py)
* [Brute Force Caesar Cipher](ciphers/brute_force_caesar_cipher.py)
* [Caesar Cipher](ciphers/caesar_cipher.py)
* [Cryptomath Module](ciphers/cryptomath_module.py)
* [Decrypt Caesar With Chi Squared](ciphers/decrypt_caesar_with_chi_squared.py)
* [Deterministic Miller Rabin](ciphers/deterministic_miller_rabin.py)
* [Diffie](ciphers/diffie.py)
* [Diffie Hellman](ciphers/diffie_hellman.py)
* [Elgamal Key Generator](ciphers/elgamal_key_generator.py)
* [Enigma Machine2](ciphers/enigma_machine2.py)
* [Fractionated Morse Cipher](ciphers/fractionated_morse_cipher.py)
* [Hill Cipher](ciphers/hill_cipher.py)
* [Mixed Keyword Cypher](ciphers/mixed_keyword_cypher.py)
* [Mono Alphabetic Ciphers](ciphers/mono_alphabetic_ciphers.py)
* [Morse Code](ciphers/morse_code.py)
* [Onepad Cipher](ciphers/onepad_cipher.py)
* [Permutation Cipher](ciphers/permutation_cipher.py)
* [Playfair Cipher](ciphers/playfair_cipher.py)
* [Polybius](ciphers/polybius.py)
* [Porta Cipher](ciphers/porta_cipher.py)
* [Rabin Miller](ciphers/rabin_miller.py)
* [Rail Fence Cipher](ciphers/rail_fence_cipher.py)
* [Rot13](ciphers/rot13.py)
* [Rsa Cipher](ciphers/rsa_cipher.py)
* [Rsa Factorization](ciphers/rsa_factorization.py)
* [Rsa Key Generator](ciphers/rsa_key_generator.py)
* [Running Key Cipher](ciphers/running_key_cipher.py)
* [Shuffled Shift Cipher](ciphers/shuffled_shift_cipher.py)
* [Simple Keyword Cypher](ciphers/simple_keyword_cypher.py)
* [Simple Substitution Cipher](ciphers/simple_substitution_cipher.py)
* [Transposition Cipher](ciphers/transposition_cipher.py)
* [Transposition Cipher Encrypt Decrypt File](ciphers/transposition_cipher_encrypt_decrypt_file.py)
* [Trifid Cipher](ciphers/trifid_cipher.py)
* [Vernam Cipher](ciphers/vernam_cipher.py)
* [Vigenere Cipher](ciphers/vigenere_cipher.py)
* [Xor Cipher](ciphers/xor_cipher.py)
## Compression
* [Burrows Wheeler](compression/burrows_wheeler.py)
* [Huffman](compression/huffman.py)
* [Lempel Ziv](compression/lempel_ziv.py)
* [Lempel Ziv Decompress](compression/lempel_ziv_decompress.py)
* [Lz77](compression/lz77.py)
* [Peak Signal To Noise Ratio](compression/peak_signal_to_noise_ratio.py)
* [Run Length Encoding](compression/run_length_encoding.py)
## Computer Vision
* [Flip Augmentation](computer_vision/flip_augmentation.py)
* [Haralick Descriptors](computer_vision/haralick_descriptors.py)
* [Harris Corner](computer_vision/harris_corner.py)
* [Horn Schunck](computer_vision/horn_schunck.py)
* [Mean Threshold](computer_vision/mean_threshold.py)
* [Mosaic Augmentation](computer_vision/mosaic_augmentation.py)
* [Pooling Functions](computer_vision/pooling_functions.py)
## Conversions
* [Astronomical Length Scale Conversion](conversions/astronomical_length_scale_conversion.py)
* [Binary To Decimal](conversions/binary_to_decimal.py)
* [Binary To Hexadecimal](conversions/binary_to_hexadecimal.py)
* [Binary To Octal](conversions/binary_to_octal.py)
* [Convert Number To Words](conversions/convert_number_to_words.py)
* [Decimal To Any](conversions/decimal_to_any.py)
* [Decimal To Binary](conversions/decimal_to_binary.py)
* [Decimal To Hexadecimal](conversions/decimal_to_hexadecimal.py)
* [Decimal To Octal](conversions/decimal_to_octal.py)
* [Energy Conversions](conversions/energy_conversions.py)
* [Excel Title To Column](conversions/excel_title_to_column.py)
* [Hex To Bin](conversions/hex_to_bin.py)
* [Hexadecimal To Decimal](conversions/hexadecimal_to_decimal.py)
* [Ipv4 Conversion](conversions/ipv4_conversion.py)
* [Length Conversion](conversions/length_conversion.py)
* [Molecular Chemistry](conversions/molecular_chemistry.py)
* [Octal To Binary](conversions/octal_to_binary.py)
* [Octal To Decimal](conversions/octal_to_decimal.py)
* [Octal To Hexadecimal](conversions/octal_to_hexadecimal.py)
* [Prefix Conversions](conversions/prefix_conversions.py)
* [Prefix Conversions String](conversions/prefix_conversions_string.py)
* [Pressure Conversions](conversions/pressure_conversions.py)
* [Rgb Cmyk Conversion](conversions/rgb_cmyk_conversion.py)
* [Rgb Hsv Conversion](conversions/rgb_hsv_conversion.py)
* [Roman Numerals](conversions/roman_numerals.py)
* [Speed Conversions](conversions/speed_conversions.py)
* [Temperature Conversions](conversions/temperature_conversions.py)
* [Time Conversions](conversions/time_conversions.py)
* [Volume Conversions](conversions/volume_conversions.py)
* [Weight Conversion](conversions/weight_conversion.py)
## Data Structures
* Arrays
* [Equilibrium Index In Array](data_structures/arrays/equilibrium_index_in_array.py)
* [Find Triplets With 0 Sum](data_structures/arrays/find_triplets_with_0_sum.py)
* [Index 2D Array In 1D](data_structures/arrays/index_2d_array_in_1d.py)
* [Kth Largest Element](data_structures/arrays/kth_largest_element.py)
* [Median Two Array](data_structures/arrays/median_two_array.py)
* [Monotonic Array](data_structures/arrays/monotonic_array.py)
* [Pairs With Given Sum](data_structures/arrays/pairs_with_given_sum.py)
* [Permutations](data_structures/arrays/permutations.py)
* [Prefix Sum](data_structures/arrays/prefix_sum.py)
* [Product Sum](data_structures/arrays/product_sum.py)
* [Sparse Table](data_structures/arrays/sparse_table.py)
* [Sudoku Solver](data_structures/arrays/sudoku_solver.py)
* Binary Tree
* [Avl Tree](data_structures/binary_tree/avl_tree.py)
* [Basic Binary Tree](data_structures/binary_tree/basic_binary_tree.py)
* [Binary Search Tree](data_structures/binary_tree/binary_search_tree.py)
* [Binary Search Tree Recursive](data_structures/binary_tree/binary_search_tree_recursive.py)
* [Binary Tree Mirror](data_structures/binary_tree/binary_tree_mirror.py)
* [Binary Tree Node Sum](data_structures/binary_tree/binary_tree_node_sum.py)
* [Binary Tree Path Sum](data_structures/binary_tree/binary_tree_path_sum.py)
* [Binary Tree Traversals](data_structures/binary_tree/binary_tree_traversals.py)
* [Diameter Of Binary Tree](data_structures/binary_tree/diameter_of_binary_tree.py)
* [Diff Views Of Binary Tree](data_structures/binary_tree/diff_views_of_binary_tree.py)
* [Distribute Coins](data_structures/binary_tree/distribute_coins.py)
* [Fenwick Tree](data_structures/binary_tree/fenwick_tree.py)
* [Flatten Binarytree To Linkedlist](data_structures/binary_tree/flatten_binarytree_to_linkedlist.py)
* [Floor And Ceiling](data_structures/binary_tree/floor_and_ceiling.py)
* [Inorder Tree Traversal 2022](data_structures/binary_tree/inorder_tree_traversal_2022.py)
* [Is Sorted](data_structures/binary_tree/is_sorted.py)
* [Is Sum Tree](data_structures/binary_tree/is_sum_tree.py)
* [Lazy Segment Tree](data_structures/binary_tree/lazy_segment_tree.py)
* [Lowest Common Ancestor](data_structures/binary_tree/lowest_common_ancestor.py)
* [Maximum Fenwick Tree](data_structures/binary_tree/maximum_fenwick_tree.py)
* [Merge Two Binary Trees](data_structures/binary_tree/merge_two_binary_trees.py)
* [Mirror Binary Tree](data_structures/binary_tree/mirror_binary_tree.py)
* [Non Recursive Segment Tree](data_structures/binary_tree/non_recursive_segment_tree.py)
* [Number Of Possible Binary Trees](data_structures/binary_tree/number_of_possible_binary_trees.py)
* [Red Black Tree](data_structures/binary_tree/red_black_tree.py)
* [Segment Tree](data_structures/binary_tree/segment_tree.py)
* [Segment Tree Other](data_structures/binary_tree/segment_tree_other.py)
* [Serialize Deserialize Binary Tree](data_structures/binary_tree/serialize_deserialize_binary_tree.py)
* [Symmetric Tree](data_structures/binary_tree/symmetric_tree.py)
* [Treap](data_structures/binary_tree/treap.py)
* [Wavelet Tree](data_structures/binary_tree/wavelet_tree.py)
* Disjoint Set
* [Alternate Disjoint Set](data_structures/disjoint_set/alternate_disjoint_set.py)
* [Disjoint Set](data_structures/disjoint_set/disjoint_set.py)
* Hashing
* [Bloom Filter](data_structures/hashing/bloom_filter.py)
* [Double Hash](data_structures/hashing/double_hash.py)
* [Hash Map](data_structures/hashing/hash_map.py)
* [Hash Table](data_structures/hashing/hash_table.py)
* [Hash Table With Linked List](data_structures/hashing/hash_table_with_linked_list.py)
* Number Theory
* [Prime Numbers](data_structures/hashing/number_theory/prime_numbers.py)
* [Quadratic Probing](data_structures/hashing/quadratic_probing.py)
* Tests
* [Test Hash Map](data_structures/hashing/tests/test_hash_map.py)
* Heap
* [Binomial Heap](data_structures/heap/binomial_heap.py)
* [Heap](data_structures/heap/heap.py)
* [Heap Generic](data_structures/heap/heap_generic.py)
* [Max Heap](data_structures/heap/max_heap.py)
* [Min Heap](data_structures/heap/min_heap.py)
* [Randomized Heap](data_structures/heap/randomized_heap.py)
* [Skew Heap](data_structures/heap/skew_heap.py)
* Linked List
* [Circular Linked List](data_structures/linked_list/circular_linked_list.py)
* [Deque Doubly](data_structures/linked_list/deque_doubly.py)
* [Doubly Linked List](data_structures/linked_list/doubly_linked_list.py)
* [Doubly Linked List Two](data_structures/linked_list/doubly_linked_list_two.py)
* [Floyds Cycle Detection](data_structures/linked_list/floyds_cycle_detection.py)
* [From Sequence](data_structures/linked_list/from_sequence.py)
* [Has Loop](data_structures/linked_list/has_loop.py)
* [Is Palindrome](data_structures/linked_list/is_palindrome.py)
* [Merge Two Lists](data_structures/linked_list/merge_two_lists.py)
* [Middle Element Of Linked List](data_structures/linked_list/middle_element_of_linked_list.py)
* [Print Reverse](data_structures/linked_list/print_reverse.py)
* [Reverse K Group](data_structures/linked_list/reverse_k_group.py)
* [Rotate To The Right](data_structures/linked_list/rotate_to_the_right.py)
* [Singly Linked List](data_structures/linked_list/singly_linked_list.py)
* [Skip List](data_structures/linked_list/skip_list.py)
* [Swap Nodes](data_structures/linked_list/swap_nodes.py)
* Queue
* [Circular Queue](data_structures/queue/circular_queue.py)
* [Circular Queue Linked List](data_structures/queue/circular_queue_linked_list.py)
* [Double Ended Queue](data_structures/queue/double_ended_queue.py)
* [Linked Queue](data_structures/queue/linked_queue.py)
* [Priority Queue Using List](data_structures/queue/priority_queue_using_list.py)
* [Queue By List](data_structures/queue/queue_by_list.py)
* [Queue By Two Stacks](data_structures/queue/queue_by_two_stacks.py)
* [Queue On Pseudo Stack](data_structures/queue/queue_on_pseudo_stack.py)
* Stacks
* [Balanced Parentheses](data_structures/stacks/balanced_parentheses.py)
* [Dijkstras Two Stack Algorithm](data_structures/stacks/dijkstras_two_stack_algorithm.py)
* [Infix To Postfix Conversion](data_structures/stacks/infix_to_postfix_conversion.py)
* [Infix To Prefix Conversion](data_structures/stacks/infix_to_prefix_conversion.py)
* [Next Greater Element](data_structures/stacks/next_greater_element.py)
* [Postfix Evaluation](data_structures/stacks/postfix_evaluation.py)
* [Prefix Evaluation](data_structures/stacks/prefix_evaluation.py)
* [Stack](data_structures/stacks/stack.py)
* [Stack Using Two Queues](data_structures/stacks/stack_using_two_queues.py)
* [Stack With Doubly Linked List](data_structures/stacks/stack_with_doubly_linked_list.py)
* [Stack With Singly Linked List](data_structures/stacks/stack_with_singly_linked_list.py)
* [Stock Span Problem](data_structures/stacks/stock_span_problem.py)
* Trie
* [Radix Tree](data_structures/trie/radix_tree.py)
* [Trie](data_structures/trie/trie.py)
## Digital Image Processing
* [Change Brightness](digital_image_processing/change_brightness.py)
* [Change Contrast](digital_image_processing/change_contrast.py)
* [Convert To Negative](digital_image_processing/convert_to_negative.py)
* Dithering
* [Burkes](digital_image_processing/dithering/burkes.py)
* Edge Detection
* [Canny](digital_image_processing/edge_detection/canny.py)
* Filters
* [Bilateral Filter](digital_image_processing/filters/bilateral_filter.py)
* [Convolve](digital_image_processing/filters/convolve.py)
* [Gabor Filter](digital_image_processing/filters/gabor_filter.py)
* [Gaussian Filter](digital_image_processing/filters/gaussian_filter.py)
* [Laplacian Filter](digital_image_processing/filters/laplacian_filter.py)
* [Local Binary Pattern](digital_image_processing/filters/local_binary_pattern.py)
* [Median Filter](digital_image_processing/filters/median_filter.py)
* [Sobel Filter](digital_image_processing/filters/sobel_filter.py)
* Histogram Equalization
* [Histogram Stretch](digital_image_processing/histogram_equalization/histogram_stretch.py)
* [Index Calculation](digital_image_processing/index_calculation.py)
* Morphological Operations
* [Dilation Operation](digital_image_processing/morphological_operations/dilation_operation.py)
* [Erosion Operation](digital_image_processing/morphological_operations/erosion_operation.py)
* Resize
* [Resize](digital_image_processing/resize/resize.py)
* Rotation
* [Rotation](digital_image_processing/rotation/rotation.py)
* [Sepia](digital_image_processing/sepia.py)
* [Test Digital Image Processing](digital_image_processing/test_digital_image_processing.py)
## Divide And Conquer
* [Closest Pair Of Points](divide_and_conquer/closest_pair_of_points.py)
* [Convex Hull](divide_and_conquer/convex_hull.py)
* [Heaps Algorithm](divide_and_conquer/heaps_algorithm.py)
* [Heaps Algorithm Iterative](divide_and_conquer/heaps_algorithm_iterative.py)
* [Inversions](divide_and_conquer/inversions.py)
* [Kth Order Statistic](divide_and_conquer/kth_order_statistic.py)
* [Max Difference Pair](divide_and_conquer/max_difference_pair.py)
* [Max Subarray](divide_and_conquer/max_subarray.py)
* [Mergesort](divide_and_conquer/mergesort.py)
* [Peak](divide_and_conquer/peak.py)
* [Power](divide_and_conquer/power.py)
* [Strassen Matrix Multiplication](divide_and_conquer/strassen_matrix_multiplication.py)
## Dynamic Programming
* [Abbreviation](dynamic_programming/abbreviation.py)
* [All Construct](dynamic_programming/all_construct.py)
* [Bitmask](dynamic_programming/bitmask.py)
* [Catalan Numbers](dynamic_programming/catalan_numbers.py)
* [Climbing Stairs](dynamic_programming/climbing_stairs.py)
* [Combination Sum Iv](dynamic_programming/combination_sum_iv.py)
* [Edit Distance](dynamic_programming/edit_distance.py)
* [Factorial](dynamic_programming/factorial.py)
* [Fast Fibonacci](dynamic_programming/fast_fibonacci.py)
* [Fibonacci](dynamic_programming/fibonacci.py)
* [Fizz Buzz](dynamic_programming/fizz_buzz.py)
* [Floyd Warshall](dynamic_programming/floyd_warshall.py)
* [Integer Partition](dynamic_programming/integer_partition.py)
* [Iterating Through Submasks](dynamic_programming/iterating_through_submasks.py)
* [Knapsack](dynamic_programming/knapsack.py)
* [Largest Divisible Subset](dynamic_programming/largest_divisible_subset.py)
* [Longest Common Subsequence](dynamic_programming/longest_common_subsequence.py)
* [Longest Common Substring](dynamic_programming/longest_common_substring.py)
* [Longest Increasing Subsequence](dynamic_programming/longest_increasing_subsequence.py)
* [Longest Increasing Subsequence O(Nlogn)](dynamic_programming/longest_increasing_subsequence_o(nlogn).py)
* [Longest Palindromic Subsequence](dynamic_programming/longest_palindromic_subsequence.py)
* [Matrix Chain Multiplication](dynamic_programming/matrix_chain_multiplication.py)
* [Matrix Chain Order](dynamic_programming/matrix_chain_order.py)
* [Max Non Adjacent Sum](dynamic_programming/max_non_adjacent_sum.py)
* [Max Product Subarray](dynamic_programming/max_product_subarray.py)
* [Max Subarray Sum](dynamic_programming/max_subarray_sum.py)
* [Min Distance Up Bottom](dynamic_programming/min_distance_up_bottom.py)
* [Minimum Coin Change](dynamic_programming/minimum_coin_change.py)
* [Minimum Cost Path](dynamic_programming/minimum_cost_path.py)
* [Minimum Partition](dynamic_programming/minimum_partition.py)
* [Minimum Size Subarray Sum](dynamic_programming/minimum_size_subarray_sum.py)
* [Minimum Squares To Represent A Number](dynamic_programming/minimum_squares_to_represent_a_number.py)
* [Minimum Steps To One](dynamic_programming/minimum_steps_to_one.py)
* [Minimum Tickets Cost](dynamic_programming/minimum_tickets_cost.py)
* [Optimal Binary Search Tree](dynamic_programming/optimal_binary_search_tree.py)
* [Palindrome Partitioning](dynamic_programming/palindrome_partitioning.py)
* [Regex Match](dynamic_programming/regex_match.py)
* [Rod Cutting](dynamic_programming/rod_cutting.py)
* [Smith Waterman](dynamic_programming/smith_waterman.py)
* [Subset Generation](dynamic_programming/subset_generation.py)
* [Sum Of Subset](dynamic_programming/sum_of_subset.py)
* [Trapped Water](dynamic_programming/trapped_water.py)
* [Tribonacci](dynamic_programming/tribonacci.py)
* [Viterbi](dynamic_programming/viterbi.py)
* [Wildcard Matching](dynamic_programming/wildcard_matching.py)
* [Word Break](dynamic_programming/word_break.py)
## Electronics
* [Apparent Power](electronics/apparent_power.py)
* [Builtin Voltage](electronics/builtin_voltage.py)
* [Capacitor Equivalence](electronics/capacitor_equivalence.py)
* [Carrier Concentration](electronics/carrier_concentration.py)
* [Charging Capacitor](electronics/charging_capacitor.py)
* [Charging Inductor](electronics/charging_inductor.py)
* [Circular Convolution](electronics/circular_convolution.py)
* [Coulombs Law](electronics/coulombs_law.py)
* [Electric Conductivity](electronics/electric_conductivity.py)
* [Electric Power](electronics/electric_power.py)
* [Electrical Impedance](electronics/electrical_impedance.py)
* [Ic 555 Timer](electronics/ic_555_timer.py)
* [Ind Reactance](electronics/ind_reactance.py)
* [Ohms Law](electronics/ohms_law.py)
* [Real And Reactive Power](electronics/real_and_reactive_power.py)
* [Resistor Color Code](electronics/resistor_color_code.py)
* [Resistor Equivalence](electronics/resistor_equivalence.py)
* [Resonant Frequency](electronics/resonant_frequency.py)
* [Wheatstone Bridge](electronics/wheatstone_bridge.py)
## File Transfer
* [Receive File](file_transfer/receive_file.py)
* [Send File](file_transfer/send_file.py)
* Tests
* [Test Send File](file_transfer/tests/test_send_file.py)
## Financial
* [Equated Monthly Installments](financial/equated_monthly_installments.py)
* [Exponential Moving Average](financial/exponential_moving_average.py)
* [Interest](financial/interest.py)
* [Present Value](financial/present_value.py)
* [Price Plus Tax](financial/price_plus_tax.py)
* [Simple Moving Average](financial/simple_moving_average.py)
## Fractals
* [Julia Sets](fractals/julia_sets.py)
* [Koch Snowflake](fractals/koch_snowflake.py)
* [Mandelbrot](fractals/mandelbrot.py)
* [Sierpinski Triangle](fractals/sierpinski_triangle.py)
## Fuzzy Logic
* [Fuzzy Operations](fuzzy_logic/fuzzy_operations.py)
## Genetic Algorithm
* [Basic String](genetic_algorithm/basic_string.py)
## Geodesy
* [Haversine Distance](geodesy/haversine_distance.py)
* [Lamberts Ellipsoidal Distance](geodesy/lamberts_ellipsoidal_distance.py)
## Graphics
* [Bezier Curve](graphics/bezier_curve.py)
* [Vector3 For 2D Rendering](graphics/vector3_for_2d_rendering.py)
## Graphs
* [A Star](graphs/a_star.py)
* [Articulation Points](graphs/articulation_points.py)
* [Basic Graphs](graphs/basic_graphs.py)
* [Bellman Ford](graphs/bellman_ford.py)
* [Bi Directional Dijkstra](graphs/bi_directional_dijkstra.py)
* [Bidirectional A Star](graphs/bidirectional_a_star.py)
* [Bidirectional Breadth First Search](graphs/bidirectional_breadth_first_search.py)
* [Boruvka](graphs/boruvka.py)
* [Breadth First Search](graphs/breadth_first_search.py)
* [Breadth First Search 2](graphs/breadth_first_search_2.py)
* [Breadth First Search Shortest Path](graphs/breadth_first_search_shortest_path.py)
* [Breadth First Search Shortest Path 2](graphs/breadth_first_search_shortest_path_2.py)
* [Breadth First Search Zero One Shortest Path](graphs/breadth_first_search_zero_one_shortest_path.py)
* [Check Bipatrite](graphs/check_bipatrite.py)
* [Check Cycle](graphs/check_cycle.py)
* [Connected Components](graphs/connected_components.py)
* [Deep Clone Graph](graphs/deep_clone_graph.py)
* [Depth First Search](graphs/depth_first_search.py)
* [Depth First Search 2](graphs/depth_first_search_2.py)
* [Dijkstra](graphs/dijkstra.py)
* [Dijkstra 2](graphs/dijkstra_2.py)
* [Dijkstra Algorithm](graphs/dijkstra_algorithm.py)
* [Dijkstra Alternate](graphs/dijkstra_alternate.py)
* [Dijkstra Binary Grid](graphs/dijkstra_binary_grid.py)
* [Dinic](graphs/dinic.py)
* [Directed And Undirected (Weighted) Graph](graphs/directed_and_undirected_(weighted)_graph.py)
* [Edmonds Karp Multiple Source And Sink](graphs/edmonds_karp_multiple_source_and_sink.py)
* [Eulerian Path And Circuit For Undirected Graph](graphs/eulerian_path_and_circuit_for_undirected_graph.py)
* [Even Tree](graphs/even_tree.py)
* [Finding Bridges](graphs/finding_bridges.py)
* [Frequent Pattern Graph Miner](graphs/frequent_pattern_graph_miner.py)
* [G Topological Sort](graphs/g_topological_sort.py)
* [Gale Shapley Bigraph](graphs/gale_shapley_bigraph.py)
* [Graph Adjacency List](graphs/graph_adjacency_list.py)
* [Graph Adjacency Matrix](graphs/graph_adjacency_matrix.py)
* [Graph List](graphs/graph_list.py)
* [Graphs Floyd Warshall](graphs/graphs_floyd_warshall.py)
* [Greedy Best First](graphs/greedy_best_first.py)
* [Greedy Min Vertex Cover](graphs/greedy_min_vertex_cover.py)
* [Kahns Algorithm Long](graphs/kahns_algorithm_long.py)
* [Kahns Algorithm Topo](graphs/kahns_algorithm_topo.py)
* [Karger](graphs/karger.py)
* [Markov Chain](graphs/markov_chain.py)
* [Matching Min Vertex Cover](graphs/matching_min_vertex_cover.py)
* [Minimum Path Sum](graphs/minimum_path_sum.py)
* [Minimum Spanning Tree Boruvka](graphs/minimum_spanning_tree_boruvka.py)
* [Minimum Spanning Tree Kruskal](graphs/minimum_spanning_tree_kruskal.py)
* [Minimum Spanning Tree Kruskal2](graphs/minimum_spanning_tree_kruskal2.py)
* [Minimum Spanning Tree Prims](graphs/minimum_spanning_tree_prims.py)
* [Minimum Spanning Tree Prims2](graphs/minimum_spanning_tree_prims2.py)
* [Multi Heuristic Astar](graphs/multi_heuristic_astar.py)
* [Page Rank](graphs/page_rank.py)
* [Prim](graphs/prim.py)
* [Random Graph Generator](graphs/random_graph_generator.py)
* [Scc Kosaraju](graphs/scc_kosaraju.py)
* [Strongly Connected Components](graphs/strongly_connected_components.py)
* [Tarjans Scc](graphs/tarjans_scc.py)
* Tests
* [Test Min Spanning Tree Kruskal](graphs/tests/test_min_spanning_tree_kruskal.py)
* [Test Min Spanning Tree Prim](graphs/tests/test_min_spanning_tree_prim.py)
## Greedy Methods
* [Best Time To Buy And Sell Stock](greedy_methods/best_time_to_buy_and_sell_stock.py)
* [Fractional Cover Problem](greedy_methods/fractional_cover_problem.py)
* [Fractional Knapsack](greedy_methods/fractional_knapsack.py)
* [Fractional Knapsack 2](greedy_methods/fractional_knapsack_2.py)
* [Gas Station](greedy_methods/gas_station.py)
* [Minimum Coin Change](greedy_methods/minimum_coin_change.py)
* [Minimum Waiting Time](greedy_methods/minimum_waiting_time.py)
* [Optimal Merge Pattern](greedy_methods/optimal_merge_pattern.py)
## Hashes
* [Adler32](hashes/adler32.py)
* [Chaos Machine](hashes/chaos_machine.py)
* [Djb2](hashes/djb2.py)
* [Elf](hashes/elf.py)
* [Enigma Machine](hashes/enigma_machine.py)
* [Fletcher16](hashes/fletcher16.py)
* [Hamming Code](hashes/hamming_code.py)
* [Luhn](hashes/luhn.py)
* [Md5](hashes/md5.py)
* [Sdbm](hashes/sdbm.py)
* [Sha1](hashes/sha1.py)
* [Sha256](hashes/sha256.py)
## Knapsack
* [Greedy Knapsack](knapsack/greedy_knapsack.py)
* [Knapsack](knapsack/knapsack.py)
* [Recursive Approach Knapsack](knapsack/recursive_approach_knapsack.py)
* Tests
* [Test Greedy Knapsack](knapsack/tests/test_greedy_knapsack.py)
* [Test Knapsack](knapsack/tests/test_knapsack.py)
## Linear Algebra
* [Gaussian Elimination](linear_algebra/gaussian_elimination.py)
* [Jacobi Iteration Method](linear_algebra/jacobi_iteration_method.py)
* [Lu Decomposition](linear_algebra/lu_decomposition.py)
* Src
* [Conjugate Gradient](linear_algebra/src/conjugate_gradient.py)
* Gaussian Elimination Pivoting
* [Gaussian Elimination Pivoting](linear_algebra/src/gaussian_elimination_pivoting/gaussian_elimination_pivoting.py)
* [Lib](linear_algebra/src/lib.py)
* [Polynom For Points](linear_algebra/src/polynom_for_points.py)
* [Power Iteration](linear_algebra/src/power_iteration.py)
* [Rank Of Matrix](linear_algebra/src/rank_of_matrix.py)
* [Rayleigh Quotient](linear_algebra/src/rayleigh_quotient.py)
* [Schur Complement](linear_algebra/src/schur_complement.py)
* [Test Linear Algebra](linear_algebra/src/test_linear_algebra.py)
* [Transformations 2D](linear_algebra/src/transformations_2d.py)
## Linear Programming
* [Simplex](linear_programming/simplex.py)
## Machine Learning
* [Apriori Algorithm](machine_learning/apriori_algorithm.py)
* [Astar](machine_learning/astar.py)
* [Automatic Differentiation](machine_learning/automatic_differentiation.py)
* [Data Transformations](machine_learning/data_transformations.py)
* [Decision Tree](machine_learning/decision_tree.py)
* [Dimensionality Reduction](machine_learning/dimensionality_reduction.py)
* Forecasting
* [Run](machine_learning/forecasting/run.py)
* [Frequent Pattern Growth](machine_learning/frequent_pattern_growth.py)
* [Gradient Boosting Classifier](machine_learning/gradient_boosting_classifier.py)
* [Gradient Descent](machine_learning/gradient_descent.py)
* [K Means Clust](machine_learning/k_means_clust.py)
* [K Nearest Neighbours](machine_learning/k_nearest_neighbours.py)
* [Linear Discriminant Analysis](machine_learning/linear_discriminant_analysis.py)
* [Linear Regression](machine_learning/linear_regression.py)
* Local Weighted Learning
* [Local Weighted Learning](machine_learning/local_weighted_learning/local_weighted_learning.py)
* [Logistic Regression](machine_learning/logistic_regression.py)
* [Loss Functions](machine_learning/loss_functions.py)
* [Mfcc](machine_learning/mfcc.py)
* [Multilayer Perceptron Classifier](machine_learning/multilayer_perceptron_classifier.py)
* [Polynomial Regression](machine_learning/polynomial_regression.py)
* [Scoring Functions](machine_learning/scoring_functions.py)
* [Self Organizing Map](machine_learning/self_organizing_map.py)
* [Sequential Minimum Optimization](machine_learning/sequential_minimum_optimization.py)
* [Similarity Search](machine_learning/similarity_search.py)
* [Support Vector Machines](machine_learning/support_vector_machines.py)
* [Word Frequency Functions](machine_learning/word_frequency_functions.py)
* [Xgboost Classifier](machine_learning/xgboost_classifier.py)
* [Xgboost Regressor](machine_learning/xgboost_regressor.py)
## Maths
* [Abs](maths/abs.py)
* [Addition Without Arithmetic](maths/addition_without_arithmetic.py)
* [Aliquot Sum](maths/aliquot_sum.py)
* [Allocation Number](maths/allocation_number.py)
* [Arc Length](maths/arc_length.py)
* [Area](maths/area.py)
* [Area Under Curve](maths/area_under_curve.py)
* [Average Absolute Deviation](maths/average_absolute_deviation.py)
* [Average Mean](maths/average_mean.py)
* [Average Median](maths/average_median.py)
* [Average Mode](maths/average_mode.py)
* [Bailey Borwein Plouffe](maths/bailey_borwein_plouffe.py)
* [Base Neg2 Conversion](maths/base_neg2_conversion.py)
* [Basic Maths](maths/basic_maths.py)
* [Binary Exponentiation](maths/binary_exponentiation.py)
* [Binary Multiplication](maths/binary_multiplication.py)
* [Binomial Coefficient](maths/binomial_coefficient.py)
* [Binomial Distribution](maths/binomial_distribution.py)
* [Ceil](maths/ceil.py)
* [Chebyshev Distance](maths/chebyshev_distance.py)
* [Check Polygon](maths/check_polygon.py)
* [Chinese Remainder Theorem](maths/chinese_remainder_theorem.py)
* [Chudnovsky Algorithm](maths/chudnovsky_algorithm.py)
* [Collatz Sequence](maths/collatz_sequence.py)
* [Combinations](maths/combinations.py)
* [Continued Fraction](maths/continued_fraction.py)
* [Decimal Isolate](maths/decimal_isolate.py)
* [Decimal To Fraction](maths/decimal_to_fraction.py)
* [Dodecahedron](maths/dodecahedron.py)
* [Double Factorial](maths/double_factorial.py)
* [Dual Number Automatic Differentiation](maths/dual_number_automatic_differentiation.py)
* [Entropy](maths/entropy.py)
* [Euclidean Distance](maths/euclidean_distance.py)
* [Euler Method](maths/euler_method.py)
* [Euler Modified](maths/euler_modified.py)
* [Eulers Totient](maths/eulers_totient.py)
* [Extended Euclidean Algorithm](maths/extended_euclidean_algorithm.py)
* [Factorial](maths/factorial.py)
* [Factors](maths/factors.py)
* [Fast Inverse Sqrt](maths/fast_inverse_sqrt.py)
* [Fermat Little Theorem](maths/fermat_little_theorem.py)
* [Fibonacci](maths/fibonacci.py)
* [Find Max](maths/find_max.py)
* [Find Min](maths/find_min.py)
* [Floor](maths/floor.py)
* [Gamma](maths/gamma.py)
* [Gaussian](maths/gaussian.py)
* [Gaussian Error Linear Unit](maths/gaussian_error_linear_unit.py)
* [Gcd Of N Numbers](maths/gcd_of_n_numbers.py)
* [Germain Primes](maths/germain_primes.py)
* [Greatest Common Divisor](maths/greatest_common_divisor.py)
* [Hardy Ramanujanalgo](maths/hardy_ramanujanalgo.py)
* [Integer Square Root](maths/integer_square_root.py)
* [Interquartile Range](maths/interquartile_range.py)
* [Is Int Palindrome](maths/is_int_palindrome.py)
* [Is Ip V4 Address Valid](maths/is_ip_v4_address_valid.py)
* [Is Square Free](maths/is_square_free.py)
* [Jaccard Similarity](maths/jaccard_similarity.py)
* [Joint Probability Distribution](maths/joint_probability_distribution.py)
* [Josephus Problem](maths/josephus_problem.py)
* [Juggler Sequence](maths/juggler_sequence.py)
* [Karatsuba](maths/karatsuba.py)
* [Kth Lexicographic Permutation](maths/kth_lexicographic_permutation.py)
* [Largest Of Very Large Numbers](maths/largest_of_very_large_numbers.py)
* [Least Common Multiple](maths/least_common_multiple.py)
* [Line Length](maths/line_length.py)
* [Liouville Lambda](maths/liouville_lambda.py)
* [Lucas Lehmer Primality Test](maths/lucas_lehmer_primality_test.py)
* [Lucas Series](maths/lucas_series.py)
* [Maclaurin Series](maths/maclaurin_series.py)
* [Manhattan Distance](maths/manhattan_distance.py)
* [Matrix Exponentiation](maths/matrix_exponentiation.py)
* [Max Sum Sliding Window](maths/max_sum_sliding_window.py)
* [Median Of Two Arrays](maths/median_of_two_arrays.py)
* [Minkowski Distance](maths/minkowski_distance.py)
* [Mobius Function](maths/mobius_function.py)
* [Modular Division](maths/modular_division.py)
* [Modular Exponential](maths/modular_exponential.py)
* [Monte Carlo](maths/monte_carlo.py)
* [Monte Carlo Dice](maths/monte_carlo_dice.py)
* [Number Of Digits](maths/number_of_digits.py)
* Numerical Analysis
* [Adams Bashforth](maths/numerical_analysis/adams_bashforth.py)
* [Bisection](maths/numerical_analysis/bisection.py)
* [Bisection 2](maths/numerical_analysis/bisection_2.py)
* [Integration By Simpson Approx](maths/numerical_analysis/integration_by_simpson_approx.py)
* [Intersection](maths/numerical_analysis/intersection.py)
* [Nevilles Method](maths/numerical_analysis/nevilles_method.py)
* [Newton Forward Interpolation](maths/numerical_analysis/newton_forward_interpolation.py)
* [Newton Raphson](maths/numerical_analysis/newton_raphson.py)
* [Numerical Integration](maths/numerical_analysis/numerical_integration.py)
* [Runge Kutta](maths/numerical_analysis/runge_kutta.py)
* [Runge Kutta Fehlberg 45](maths/numerical_analysis/runge_kutta_fehlberg_45.py)
* [Runge Kutta Gills](maths/numerical_analysis/runge_kutta_gills.py)
* [Secant Method](maths/numerical_analysis/secant_method.py)
* [Simpson Rule](maths/numerical_analysis/simpson_rule.py)
* [Square Root](maths/numerical_analysis/square_root.py)
* [Odd Sieve](maths/odd_sieve.py)
* [Perfect Cube](maths/perfect_cube.py)
* [Perfect Number](maths/perfect_number.py)
* [Perfect Square](maths/perfect_square.py)
* [Persistence](maths/persistence.py)
* [Pi Generator](maths/pi_generator.py)
* [Pi Monte Carlo Estimation](maths/pi_monte_carlo_estimation.py)
* [Points Are Collinear 3D](maths/points_are_collinear_3d.py)
* [Pollard Rho](maths/pollard_rho.py)
* [Polynomial Evaluation](maths/polynomial_evaluation.py)
* Polynomials
* [Single Indeterminate Operations](maths/polynomials/single_indeterminate_operations.py)
* [Power Using Recursion](maths/power_using_recursion.py)
* [Prime Check](maths/prime_check.py)
* [Prime Factors](maths/prime_factors.py)
* [Prime Numbers](maths/prime_numbers.py)
* [Prime Sieve Eratosthenes](maths/prime_sieve_eratosthenes.py)
* [Primelib](maths/primelib.py)
* [Print Multiplication Table](maths/print_multiplication_table.py)
* [Pythagoras](maths/pythagoras.py)
* [Qr Decomposition](maths/qr_decomposition.py)
* [Quadratic Equations Complex Numbers](maths/quadratic_equations_complex_numbers.py)
* [Radians](maths/radians.py)
* [Radix2 Fft](maths/radix2_fft.py)
* [Remove Digit](maths/remove_digit.py)
* [Segmented Sieve](maths/segmented_sieve.py)
* Series
* [Arithmetic](maths/series/arithmetic.py)
* [Geometric](maths/series/geometric.py)
* [Geometric Series](maths/series/geometric_series.py)
* [Harmonic](maths/series/harmonic.py)
* [Harmonic Series](maths/series/harmonic_series.py)
* [Hexagonal Numbers](maths/series/hexagonal_numbers.py)
* [P Series](maths/series/p_series.py)
* [Sieve Of Eratosthenes](maths/sieve_of_eratosthenes.py)
* [Sigmoid](maths/sigmoid.py)
* [Signum](maths/signum.py)
* [Simultaneous Linear Equation Solver](maths/simultaneous_linear_equation_solver.py)
* [Sin](maths/sin.py)
* [Sock Merchant](maths/sock_merchant.py)
* [Softmax](maths/softmax.py)
* [Solovay Strassen Primality Test](maths/solovay_strassen_primality_test.py)
* Special Numbers
* [Armstrong Numbers](maths/special_numbers/armstrong_numbers.py)
* [Automorphic Number](maths/special_numbers/automorphic_number.py)
* [Bell Numbers](maths/special_numbers/bell_numbers.py)
* [Carmichael Number](maths/special_numbers/carmichael_number.py)
* [Catalan Number](maths/special_numbers/catalan_number.py)
* [Hamming Numbers](maths/special_numbers/hamming_numbers.py)
* [Happy Number](maths/special_numbers/happy_number.py)
* [Harshad Numbers](maths/special_numbers/harshad_numbers.py)
* [Hexagonal Number](maths/special_numbers/hexagonal_number.py)
* [Krishnamurthy Number](maths/special_numbers/krishnamurthy_number.py)
* [Perfect Number](maths/special_numbers/perfect_number.py)
* [Polygonal Numbers](maths/special_numbers/polygonal_numbers.py)
* [Pronic Number](maths/special_numbers/pronic_number.py)
* [Proth Number](maths/special_numbers/proth_number.py)
* [Triangular Numbers](maths/special_numbers/triangular_numbers.py)
* [Ugly Numbers](maths/special_numbers/ugly_numbers.py)
* [Weird Number](maths/special_numbers/weird_number.py)
* [Sum Of Arithmetic Series](maths/sum_of_arithmetic_series.py)
* [Sum Of Digits](maths/sum_of_digits.py)
* [Sum Of Geometric Progression](maths/sum_of_geometric_progression.py)
* [Sum Of Harmonic Series](maths/sum_of_harmonic_series.py)
* [Sumset](maths/sumset.py)
* [Sylvester Sequence](maths/sylvester_sequence.py)
* [Tanh](maths/tanh.py)
* [Test Prime Check](maths/test_prime_check.py)
* [Three Sum](maths/three_sum.py)
* [Trapezoidal Rule](maths/trapezoidal_rule.py)
* [Triplet Sum](maths/triplet_sum.py)
* [Twin Prime](maths/twin_prime.py)
* [Two Pointer](maths/two_pointer.py)
* [Two Sum](maths/two_sum.py)
* [Volume](maths/volume.py)
* [Zellers Congruence](maths/zellers_congruence.py)
## Matrix
* [Binary Search Matrix](matrix/binary_search_matrix.py)
* [Count Islands In Matrix](matrix/count_islands_in_matrix.py)
* [Count Negative Numbers In Sorted Matrix](matrix/count_negative_numbers_in_sorted_matrix.py)
* [Count Paths](matrix/count_paths.py)
* [Cramers Rule 2X2](matrix/cramers_rule_2x2.py)
* [Inverse Of Matrix](matrix/inverse_of_matrix.py)
* [Largest Square Area In Matrix](matrix/largest_square_area_in_matrix.py)
* [Matrix Class](matrix/matrix_class.py)
* [Matrix Multiplication Recursion](matrix/matrix_multiplication_recursion.py)
* [Matrix Operation](matrix/matrix_operation.py)
* [Max Area Of Island](matrix/max_area_of_island.py)
* [Median Matrix](matrix/median_matrix.py)
* [Nth Fibonacci Using Matrix Exponentiation](matrix/nth_fibonacci_using_matrix_exponentiation.py)
* [Pascal Triangle](matrix/pascal_triangle.py)
* [Rotate Matrix](matrix/rotate_matrix.py)
* [Searching In Sorted Matrix](matrix/searching_in_sorted_matrix.py)
* [Sherman Morrison](matrix/sherman_morrison.py)
* [Spiral Print](matrix/spiral_print.py)
* Tests
* [Test Matrix Operation](matrix/tests/test_matrix_operation.py)
* [Validate Sudoku Board](matrix/validate_sudoku_board.py)
## Networking Flow
* [Ford Fulkerson](networking_flow/ford_fulkerson.py)
* [Minimum Cut](networking_flow/minimum_cut.py)
## Neural Network
* [2 Hidden Layers Neural Network](neural_network/2_hidden_layers_neural_network.py)
* Activation Functions
* [Binary Step](neural_network/activation_functions/binary_step.py)
* [Exponential Linear Unit](neural_network/activation_functions/exponential_linear_unit.py)
* [Leaky Rectified Linear Unit](neural_network/activation_functions/leaky_rectified_linear_unit.py)
* [Mish](neural_network/activation_functions/mish.py)
* [Rectified Linear Unit](neural_network/activation_functions/rectified_linear_unit.py)
* [Scaled Exponential Linear Unit](neural_network/activation_functions/scaled_exponential_linear_unit.py)
* [Soboleva Modified Hyperbolic Tangent](neural_network/activation_functions/soboleva_modified_hyperbolic_tangent.py)
* [Softplus](neural_network/activation_functions/softplus.py)
* [Squareplus](neural_network/activation_functions/squareplus.py)
* [Swish](neural_network/activation_functions/swish.py)
* [Back Propagation Neural Network](neural_network/back_propagation_neural_network.py)
* [Convolution Neural Network](neural_network/convolution_neural_network.py)
* [Simple Neural Network](neural_network/simple_neural_network.py)
## Other
* [Activity Selection](other/activity_selection.py)
* [Alternative List Arrange](other/alternative_list_arrange.py)
* [Bankers Algorithm](other/bankers_algorithm.py)
* [Davis Putnam Logemann Loveland](other/davis_putnam_logemann_loveland.py)
* [Doomsday](other/doomsday.py)
* [Fischer Yates Shuffle](other/fischer_yates_shuffle.py)
* [Gauss Easter](other/gauss_easter.py)
* [Graham Scan](other/graham_scan.py)
* [Greedy](other/greedy.py)
* [Guess The Number Search](other/guess_the_number_search.py)
* [H Index](other/h_index.py)
* [Least Recently Used](other/least_recently_used.py)
* [Lfu Cache](other/lfu_cache.py)
* [Linear Congruential Generator](other/linear_congruential_generator.py)
* [Lru Cache](other/lru_cache.py)
* [Magicdiamondpattern](other/magicdiamondpattern.py)
* [Majority Vote Algorithm](other/majority_vote_algorithm.py)
* [Maximum Subsequence](other/maximum_subsequence.py)
* [Nested Brackets](other/nested_brackets.py)
* [Number Container System](other/number_container_system.py)
* [Password](other/password.py)
* [Quine](other/quine.py)
* [Scoring Algorithm](other/scoring_algorithm.py)
* [Sdes](other/sdes.py)
* [Tower Of Hanoi](other/tower_of_hanoi.py)
* [Word Search](other/word_search.py)
## Physics
* [Altitude Pressure](physics/altitude_pressure.py)
* [Archimedes Principle Of Buoyant Force](physics/archimedes_principle_of_buoyant_force.py)
* [Basic Orbital Capture](physics/basic_orbital_capture.py)
* [Casimir Effect](physics/casimir_effect.py)
* [Center Of Mass](physics/center_of_mass.py)
* [Centripetal Force](physics/centripetal_force.py)
* [Coulombs Law](physics/coulombs_law.py)
* [Doppler Frequency](physics/doppler_frequency.py)
* [Grahams Law](physics/grahams_law.py)
* [Horizontal Projectile Motion](physics/horizontal_projectile_motion.py)
* [Hubble Parameter](physics/hubble_parameter.py)
* [Ideal Gas Law](physics/ideal_gas_law.py)
* [In Static Equilibrium](physics/in_static_equilibrium.py)
* [Kinetic Energy](physics/kinetic_energy.py)
* [Lens Formulae](physics/lens_formulae.py)
* [Lorentz Transformation Four Vector](physics/lorentz_transformation_four_vector.py)
* [Malus Law](physics/malus_law.py)
* [Mass Energy Equivalence](physics/mass_energy_equivalence.py)
* [Mirror Formulae](physics/mirror_formulae.py)
* [N Body Simulation](physics/n_body_simulation.py)
* [Newtons Law Of Gravitation](physics/newtons_law_of_gravitation.py)
* [Newtons Second Law Of Motion](physics/newtons_second_law_of_motion.py)
* [Photoelectric Effect](physics/photoelectric_effect.py)
* [Potential Energy](physics/potential_energy.py)
* [Reynolds Number](physics/reynolds_number.py)
* [Rms Speed Of Molecule](physics/rms_speed_of_molecule.py)
* [Shear Stress](physics/shear_stress.py)
* [Speed Of Sound](physics/speed_of_sound.py)
* [Speeds Of Gas Molecules](physics/speeds_of_gas_molecules.py)
* [Terminal Velocity](physics/terminal_velocity.py)
## Project Euler
* Problem 001
* [Sol1](project_euler/problem_001/sol1.py)
* [Sol2](project_euler/problem_001/sol2.py)
* [Sol3](project_euler/problem_001/sol3.py)
* [Sol4](project_euler/problem_001/sol4.py)
* [Sol5](project_euler/problem_001/sol5.py)
* [Sol6](project_euler/problem_001/sol6.py)
* [Sol7](project_euler/problem_001/sol7.py)
* Problem 002
* [Sol1](project_euler/problem_002/sol1.py)
* [Sol2](project_euler/problem_002/sol2.py)
* [Sol3](project_euler/problem_002/sol3.py)
* [Sol4](project_euler/problem_002/sol4.py)
* [Sol5](project_euler/problem_002/sol5.py)
* Problem 003
* [Sol1](project_euler/problem_003/sol1.py)
* [Sol2](project_euler/problem_003/sol2.py)
* [Sol3](project_euler/problem_003/sol3.py)
* Problem 004
* [Sol1](project_euler/problem_004/sol1.py)
* [Sol2](project_euler/problem_004/sol2.py)
* Problem 005
* [Sol1](project_euler/problem_005/sol1.py)
* [Sol2](project_euler/problem_005/sol2.py)
* Problem 006
* [Sol1](project_euler/problem_006/sol1.py)
* [Sol2](project_euler/problem_006/sol2.py)
* [Sol3](project_euler/problem_006/sol3.py)
* [Sol4](project_euler/problem_006/sol4.py)
* Problem 007
* [Sol1](project_euler/problem_007/sol1.py)
* [Sol2](project_euler/problem_007/sol2.py)
* [Sol3](project_euler/problem_007/sol3.py)
* Problem 008
* [Sol1](project_euler/problem_008/sol1.py)
* [Sol2](project_euler/problem_008/sol2.py)
* [Sol3](project_euler/problem_008/sol3.py)
* Problem 009
* [Sol1](project_euler/problem_009/sol1.py)
* [Sol2](project_euler/problem_009/sol2.py)
* [Sol3](project_euler/problem_009/sol3.py)
* Problem 010
* [Sol1](project_euler/problem_010/sol1.py)
* [Sol2](project_euler/problem_010/sol2.py)
* [Sol3](project_euler/problem_010/sol3.py)
* Problem 011
* [Sol1](project_euler/problem_011/sol1.py)
* [Sol2](project_euler/problem_011/sol2.py)
* Problem 012
* [Sol1](project_euler/problem_012/sol1.py)
* [Sol2](project_euler/problem_012/sol2.py)
* Problem 013
* [Sol1](project_euler/problem_013/sol1.py)
* Problem 014
* [Sol1](project_euler/problem_014/sol1.py)
* [Sol2](project_euler/problem_014/sol2.py)
* Problem 015
* [Sol1](project_euler/problem_015/sol1.py)
* Problem 016
* [Sol1](project_euler/problem_016/sol1.py)
* [Sol2](project_euler/problem_016/sol2.py)
* Problem 017
* [Sol1](project_euler/problem_017/sol1.py)
* Problem 018
* [Solution](project_euler/problem_018/solution.py)
* Problem 019
* [Sol1](project_euler/problem_019/sol1.py)
* Problem 020
* [Sol1](project_euler/problem_020/sol1.py)
* [Sol2](project_euler/problem_020/sol2.py)
* [Sol3](project_euler/problem_020/sol3.py)
* [Sol4](project_euler/problem_020/sol4.py)
* Problem 021
* [Sol1](project_euler/problem_021/sol1.py)
* Problem 022
* [Sol1](project_euler/problem_022/sol1.py)
* [Sol2](project_euler/problem_022/sol2.py)
* Problem 023
* [Sol1](project_euler/problem_023/sol1.py)
* Problem 024
* [Sol1](project_euler/problem_024/sol1.py)
* Problem 025
* [Sol1](project_euler/problem_025/sol1.py)
* [Sol2](project_euler/problem_025/sol2.py)
* [Sol3](project_euler/problem_025/sol3.py)
* Problem 026
* [Sol1](project_euler/problem_026/sol1.py)
* Problem 027
* [Sol1](project_euler/problem_027/sol1.py)
* Problem 028
* [Sol1](project_euler/problem_028/sol1.py)
* Problem 029
* [Sol1](project_euler/problem_029/sol1.py)
* Problem 030
* [Sol1](project_euler/problem_030/sol1.py)
* Problem 031
* [Sol1](project_euler/problem_031/sol1.py)
* [Sol2](project_euler/problem_031/sol2.py)
* Problem 032
* [Sol32](project_euler/problem_032/sol32.py)
* Problem 033
* [Sol1](project_euler/problem_033/sol1.py)
* Problem 034
* [Sol1](project_euler/problem_034/sol1.py)
* Problem 035
* [Sol1](project_euler/problem_035/sol1.py)
* Problem 036
* [Sol1](project_euler/problem_036/sol1.py)
* Problem 037
* [Sol1](project_euler/problem_037/sol1.py)
* Problem 038
* [Sol1](project_euler/problem_038/sol1.py)
* Problem 039
* [Sol1](project_euler/problem_039/sol1.py)
* Problem 040
* [Sol1](project_euler/problem_040/sol1.py)
* Problem 041
* [Sol1](project_euler/problem_041/sol1.py)
* Problem 042
* [Solution42](project_euler/problem_042/solution42.py)
* Problem 043
* [Sol1](project_euler/problem_043/sol1.py)
* Problem 044
* [Sol1](project_euler/problem_044/sol1.py)
* Problem 045
* [Sol1](project_euler/problem_045/sol1.py)
* Problem 046
* [Sol1](project_euler/problem_046/sol1.py)
* Problem 047
* [Sol1](project_euler/problem_047/sol1.py)
* Problem 048
* [Sol1](project_euler/problem_048/sol1.py)
* Problem 049
* [Sol1](project_euler/problem_049/sol1.py)
* Problem 050
* [Sol1](project_euler/problem_050/sol1.py)
* Problem 051
* [Sol1](project_euler/problem_051/sol1.py)
* Problem 052
* [Sol1](project_euler/problem_052/sol1.py)
* Problem 053
* [Sol1](project_euler/problem_053/sol1.py)
* Problem 054
* [Sol1](project_euler/problem_054/sol1.py)
* [Test Poker Hand](project_euler/problem_054/test_poker_hand.py)
* Problem 055
* [Sol1](project_euler/problem_055/sol1.py)
* Problem 056
* [Sol1](project_euler/problem_056/sol1.py)
* Problem 057
* [Sol1](project_euler/problem_057/sol1.py)
* Problem 058
* [Sol1](project_euler/problem_058/sol1.py)
* Problem 059
* [Sol1](project_euler/problem_059/sol1.py)
* Problem 062
* [Sol1](project_euler/problem_062/sol1.py)
* Problem 063
* [Sol1](project_euler/problem_063/sol1.py)
* Problem 064
* [Sol1](project_euler/problem_064/sol1.py)
* Problem 065
* [Sol1](project_euler/problem_065/sol1.py)
* Problem 067
* [Sol1](project_euler/problem_067/sol1.py)
* [Sol2](project_euler/problem_067/sol2.py)
* Problem 068
* [Sol1](project_euler/problem_068/sol1.py)
* Problem 069
* [Sol1](project_euler/problem_069/sol1.py)
* Problem 070
* [Sol1](project_euler/problem_070/sol1.py)
* Problem 071
* [Sol1](project_euler/problem_071/sol1.py)
* Problem 072
* [Sol1](project_euler/problem_072/sol1.py)
* [Sol2](project_euler/problem_072/sol2.py)
* Problem 073
* [Sol1](project_euler/problem_073/sol1.py)
* Problem 074
* [Sol1](project_euler/problem_074/sol1.py)
* [Sol2](project_euler/problem_074/sol2.py)
* Problem 075
* [Sol1](project_euler/problem_075/sol1.py)
* Problem 076
* [Sol1](project_euler/problem_076/sol1.py)
* Problem 077
* [Sol1](project_euler/problem_077/sol1.py)
* Problem 078
* [Sol1](project_euler/problem_078/sol1.py)
* Problem 079
* [Sol1](project_euler/problem_079/sol1.py)
* Problem 080
* [Sol1](project_euler/problem_080/sol1.py)
* Problem 081
* [Sol1](project_euler/problem_081/sol1.py)
* Problem 082
* [Sol1](project_euler/problem_082/sol1.py)
* Problem 085
* [Sol1](project_euler/problem_085/sol1.py)
* Problem 086
* [Sol1](project_euler/problem_086/sol1.py)
* Problem 087
* [Sol1](project_euler/problem_087/sol1.py)
* Problem 089
* [Sol1](project_euler/problem_089/sol1.py)
* Problem 091
* [Sol1](project_euler/problem_091/sol1.py)
* Problem 092
* [Sol1](project_euler/problem_092/sol1.py)
* Problem 094
* [Sol1](project_euler/problem_094/sol1.py)
* Problem 097
* [Sol1](project_euler/problem_097/sol1.py)
* Problem 099
* [Sol1](project_euler/problem_099/sol1.py)
* Problem 100
* [Sol1](project_euler/problem_100/sol1.py)
* Problem 101
* [Sol1](project_euler/problem_101/sol1.py)
* Problem 102
* [Sol1](project_euler/problem_102/sol1.py)
* Problem 104
* [Sol1](project_euler/problem_104/sol1.py)
* Problem 107
* [Sol1](project_euler/problem_107/sol1.py)
* Problem 109
* [Sol1](project_euler/problem_109/sol1.py)
* Problem 112
* [Sol1](project_euler/problem_112/sol1.py)
* Problem 113
* [Sol1](project_euler/problem_113/sol1.py)
* Problem 114
* [Sol1](project_euler/problem_114/sol1.py)
* Problem 115
* [Sol1](project_euler/problem_115/sol1.py)
* Problem 116
* [Sol1](project_euler/problem_116/sol1.py)
* Problem 117
* [Sol1](project_euler/problem_117/sol1.py)
* Problem 119
* [Sol1](project_euler/problem_119/sol1.py)
* Problem 120
* [Sol1](project_euler/problem_120/sol1.py)
* Problem 121
* [Sol1](project_euler/problem_121/sol1.py)
* Problem 123
* [Sol1](project_euler/problem_123/sol1.py)
* Problem 125
* [Sol1](project_euler/problem_125/sol1.py)
* Problem 129
* [Sol1](project_euler/problem_129/sol1.py)
* Problem 131
* [Sol1](project_euler/problem_131/sol1.py)
* Problem 135
* [Sol1](project_euler/problem_135/sol1.py)
* Problem 144
* [Sol1](project_euler/problem_144/sol1.py)
* Problem 145
* [Sol1](project_euler/problem_145/sol1.py)
* Problem 173
* [Sol1](project_euler/problem_173/sol1.py)
* Problem 174
* [Sol1](project_euler/problem_174/sol1.py)
* Problem 180
* [Sol1](project_euler/problem_180/sol1.py)
* Problem 187
* [Sol1](project_euler/problem_187/sol1.py)
* Problem 188
* [Sol1](project_euler/problem_188/sol1.py)
* Problem 191
* [Sol1](project_euler/problem_191/sol1.py)
* Problem 203
* [Sol1](project_euler/problem_203/sol1.py)
* Problem 205
* [Sol1](project_euler/problem_205/sol1.py)
* Problem 206
* [Sol1](project_euler/problem_206/sol1.py)
* Problem 207
* [Sol1](project_euler/problem_207/sol1.py)
* Problem 234
* [Sol1](project_euler/problem_234/sol1.py)
* Problem 301
* [Sol1](project_euler/problem_301/sol1.py)
* Problem 493
* [Sol1](project_euler/problem_493/sol1.py)
* Problem 551
* [Sol1](project_euler/problem_551/sol1.py)
* Problem 587
* [Sol1](project_euler/problem_587/sol1.py)
* Problem 686
* [Sol1](project_euler/problem_686/sol1.py)
* Problem 800
* [Sol1](project_euler/problem_800/sol1.py)
## Quantum
* [Q Fourier Transform](quantum/q_fourier_transform.py)
## Scheduling
* [First Come First Served](scheduling/first_come_first_served.py)
* [Highest Response Ratio Next](scheduling/highest_response_ratio_next.py)
* [Job Sequence With Deadline](scheduling/job_sequence_with_deadline.py)
* [Job Sequencing With Deadline](scheduling/job_sequencing_with_deadline.py)
* [Multi Level Feedback Queue](scheduling/multi_level_feedback_queue.py)
* [Non Preemptive Shortest Job First](scheduling/non_preemptive_shortest_job_first.py)
* [Round Robin](scheduling/round_robin.py)
* [Shortest Job First](scheduling/shortest_job_first.py)
## Searches
* [Binary Search](searches/binary_search.py)
* [Binary Tree Traversal](searches/binary_tree_traversal.py)
* [Double Linear Search](searches/double_linear_search.py)
* [Double Linear Search Recursion](searches/double_linear_search_recursion.py)
* [Fibonacci Search](searches/fibonacci_search.py)
* [Hill Climbing](searches/hill_climbing.py)
* [Interpolation Search](searches/interpolation_search.py)
* [Jump Search](searches/jump_search.py)
* [Linear Search](searches/linear_search.py)
* [Median Of Medians](searches/median_of_medians.py)
* [Quick Select](searches/quick_select.py)
* [Sentinel Linear Search](searches/sentinel_linear_search.py)
* [Simple Binary Search](searches/simple_binary_search.py)
* [Simulated Annealing](searches/simulated_annealing.py)
* [Tabu Search](searches/tabu_search.py)
* [Ternary Search](searches/ternary_search.py)
## Sorts
* [Bead Sort](sorts/bead_sort.py)
* [Binary Insertion Sort](sorts/binary_insertion_sort.py)
* [Bitonic Sort](sorts/bitonic_sort.py)
* [Bogo Sort](sorts/bogo_sort.py)
* [Bubble Sort](sorts/bubble_sort.py)
* [Bucket Sort](sorts/bucket_sort.py)
* [Circle Sort](sorts/circle_sort.py)
* [Cocktail Shaker Sort](sorts/cocktail_shaker_sort.py)
* [Comb Sort](sorts/comb_sort.py)
* [Counting Sort](sorts/counting_sort.py)
* [Cycle Sort](sorts/cycle_sort.py)
* [Double Sort](sorts/double_sort.py)
* [Dutch National Flag Sort](sorts/dutch_national_flag_sort.py)
* [Exchange Sort](sorts/exchange_sort.py)
* [External Sort](sorts/external_sort.py)
* [Gnome Sort](sorts/gnome_sort.py)
* [Heap Sort](sorts/heap_sort.py)
* [Insertion Sort](sorts/insertion_sort.py)
* [Intro Sort](sorts/intro_sort.py)
* [Iterative Merge Sort](sorts/iterative_merge_sort.py)
* [Merge Insertion Sort](sorts/merge_insertion_sort.py)
* [Merge Sort](sorts/merge_sort.py)
* [Msd Radix Sort](sorts/msd_radix_sort.py)
* [Natural Sort](sorts/natural_sort.py)
* [Odd Even Sort](sorts/odd_even_sort.py)
* [Odd Even Transposition Parallel](sorts/odd_even_transposition_parallel.py)
* [Odd Even Transposition Single Threaded](sorts/odd_even_transposition_single_threaded.py)
* [Pancake Sort](sorts/pancake_sort.py)
* [Patience Sort](sorts/patience_sort.py)
* [Pigeon Sort](sorts/pigeon_sort.py)
* [Pigeonhole Sort](sorts/pigeonhole_sort.py)
* [Quick Sort](sorts/quick_sort.py)
* [Quick Sort 3 Partition](sorts/quick_sort_3_partition.py)
* [Radix Sort](sorts/radix_sort.py)
* [Recursive Insertion Sort](sorts/recursive_insertion_sort.py)
* [Recursive Mergesort Array](sorts/recursive_mergesort_array.py)
* [Recursive Quick Sort](sorts/recursive_quick_sort.py)
* [Selection Sort](sorts/selection_sort.py)
* [Shell Sort](sorts/shell_sort.py)
* [Shrink Shell Sort](sorts/shrink_shell_sort.py)
* [Slowsort](sorts/slowsort.py)
* [Stooge Sort](sorts/stooge_sort.py)
* [Strand Sort](sorts/strand_sort.py)
* [Tim Sort](sorts/tim_sort.py)
* [Topological Sort](sorts/topological_sort.py)
* [Tree Sort](sorts/tree_sort.py)
* [Unknown Sort](sorts/unknown_sort.py)
* [Wiggle Sort](sorts/wiggle_sort.py)
## Strings
* [Aho Corasick](strings/aho_corasick.py)
* [Alternative String Arrange](strings/alternative_string_arrange.py)
* [Anagrams](strings/anagrams.py)
* [Autocomplete Using Trie](strings/autocomplete_using_trie.py)
* [Barcode Validator](strings/barcode_validator.py)
* [Bitap String Match](strings/bitap_string_match.py)
* [Boyer Moore Search](strings/boyer_moore_search.py)
* [Camel Case To Snake Case](strings/camel_case_to_snake_case.py)
* [Can String Be Rearranged As Palindrome](strings/can_string_be_rearranged_as_palindrome.py)
* [Capitalize](strings/capitalize.py)
* [Check Anagrams](strings/check_anagrams.py)
* [Credit Card Validator](strings/credit_card_validator.py)
* [Damerau Levenshtein Distance](strings/damerau_levenshtein_distance.py)
* [Detecting English Programmatically](strings/detecting_english_programmatically.py)
* [Dna](strings/dna.py)
* [Edit Distance](strings/edit_distance.py)
* [Frequency Finder](strings/frequency_finder.py)
* [Hamming Distance](strings/hamming_distance.py)
* [Indian Phone Validator](strings/indian_phone_validator.py)
* [Is Contains Unique Chars](strings/is_contains_unique_chars.py)
* [Is Isogram](strings/is_isogram.py)
* [Is Pangram](strings/is_pangram.py)
* [Is Polish National Id](strings/is_polish_national_id.py)
* [Is Spain National Id](strings/is_spain_national_id.py)
* [Is Srilankan Phone Number](strings/is_srilankan_phone_number.py)
* [Is Valid Email Address](strings/is_valid_email_address.py)
* [Jaro Winkler](strings/jaro_winkler.py)
* [Join](strings/join.py)
* [Knuth Morris Pratt](strings/knuth_morris_pratt.py)
* [Levenshtein Distance](strings/levenshtein_distance.py)
* [Lower](strings/lower.py)
* [Manacher](strings/manacher.py)
* [Min Cost String Conversion](strings/min_cost_string_conversion.py)
* [Naive String Search](strings/naive_string_search.py)
* [Ngram](strings/ngram.py)
* [Palindrome](strings/palindrome.py)
* [Pig Latin](strings/pig_latin.py)
* [Prefix Function](strings/prefix_function.py)
* [Rabin Karp](strings/rabin_karp.py)
* [Remove Duplicate](strings/remove_duplicate.py)
* [Reverse Letters](strings/reverse_letters.py)
* [Reverse Words](strings/reverse_words.py)
* [Snake Case To Camel Pascal Case](strings/snake_case_to_camel_pascal_case.py)
* [Split](strings/split.py)
* [String Switch Case](strings/string_switch_case.py)
* [Strip](strings/strip.py)
* [Text Justification](strings/text_justification.py)
* [Title](strings/title.py)
* [Top K Frequent Words](strings/top_k_frequent_words.py)
* [Upper](strings/upper.py)
* [Wave](strings/wave.py)
* [Wildcard Pattern Matching](strings/wildcard_pattern_matching.py)
* [Word Occurrence](strings/word_occurrence.py)
* [Word Patterns](strings/word_patterns.py)
* [Z Function](strings/z_function.py)
## Web Programming
* [Co2 Emission](web_programming/co2_emission.py)
* [Covid Stats Via Xpath](web_programming/covid_stats_via_xpath.py)
* [Crawl Google Results](web_programming/crawl_google_results.py)
* [Crawl Google Scholar Citation](web_programming/crawl_google_scholar_citation.py)
* [Currency Converter](web_programming/currency_converter.py)
* [Current Stock Price](web_programming/current_stock_price.py)
* [Current Weather](web_programming/current_weather.py)
* [Daily Horoscope](web_programming/daily_horoscope.py)
* [Download Images From Google Query](web_programming/download_images_from_google_query.py)
* [Emails From Url](web_programming/emails_from_url.py)
* [Fetch Anime And Play](web_programming/fetch_anime_and_play.py)
* [Fetch Bbc News](web_programming/fetch_bbc_news.py)
* [Fetch Github Info](web_programming/fetch_github_info.py)
* [Fetch Jobs](web_programming/fetch_jobs.py)
* [Fetch Quotes](web_programming/fetch_quotes.py)
* [Fetch Well Rx Price](web_programming/fetch_well_rx_price.py)
* [Get Amazon Product Data](web_programming/get_amazon_product_data.py)
* [Get Imdb Top 250 Movies Csv](web_programming/get_imdb_top_250_movies_csv.py)
* [Get Ip Geolocation](web_programming/get_ip_geolocation.py)
* [Get Top Billionaires](web_programming/get_top_billionaires.py)
* [Get Top Hn Posts](web_programming/get_top_hn_posts.py)
* [Get User Tweets](web_programming/get_user_tweets.py)
* [Giphy](web_programming/giphy.py)
* [Instagram Crawler](web_programming/instagram_crawler.py)
* [Instagram Pic](web_programming/instagram_pic.py)
* [Instagram Video](web_programming/instagram_video.py)
* [Nasa Data](web_programming/nasa_data.py)
* [Open Google Results](web_programming/open_google_results.py)
* [Random Anime Character](web_programming/random_anime_character.py)
* [Recaptcha Verification](web_programming/recaptcha_verification.py)
* [Reddit](web_programming/reddit.py)
* [Search Books By Isbn](web_programming/search_books_by_isbn.py)
* [Slack Message](web_programming/slack_message.py)
* [Test Fetch Github Info](web_programming/test_fetch_github_info.py)
* [World Covid19 Stats](web_programming/world_covid19_stats.py)
| 1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | """
This program print the matrix in spiral form.
This problem has been solved through recursive way.
Matrix must satisfy below conditions
i) matrix should be only one or two dimensional
ii) number of column of all rows should be equal
"""
def check_matrix(matrix: list[list[int]]) -> bool:
# must be
matrix = [list(row) for row in matrix]
if matrix and isinstance(matrix, list):
if isinstance(matrix[0], list):
prev_len = 0
for row in matrix:
if prev_len == 0:
prev_len = len(row)
result = True
else:
result = prev_len == len(row)
else:
result = True
else:
result = False
return result
def spiral_print_clockwise(a: list[list[int]]) -> None:
"""
>>> spiral_print_clockwise([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
1
2
3
4
8
12
11
10
9
5
6
7
"""
if check_matrix(a) and len(a) > 0:
a = [list(row) for row in a]
mat_row = len(a)
if isinstance(a[0], list):
mat_col = len(a[0])
else:
for dat in a:
print(dat)
return
# horizotal printing increasing
for i in range(mat_col):
print(a[0][i])
# vertical printing down
for i in range(1, mat_row):
print(a[i][mat_col - 1])
# horizotal printing decreasing
if mat_row > 1:
for i in range(mat_col - 2, -1, -1):
print(a[mat_row - 1][i])
# vertical printing up
for i in range(mat_row - 2, 0, -1):
print(a[i][0])
remain_mat = [row[1 : mat_col - 1] for row in a[1 : mat_row - 1]]
if len(remain_mat) > 0:
spiral_print_clockwise(remain_mat)
else:
return
else:
print("Not a valid matrix")
return
# Other Easy to understand Approach
def spiral_traversal(matrix: list[list]) -> list[int]:
"""
>>> spiral_traversal([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
[1, 2, 3, 4, 8, 12, 11, 10, 9, 5, 6, 7]
Example:
matrix = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
Algorithm:
Step 1. first pop the 0 index list. (which is [1,2,3,4] and concatenate the
output of [step 2])
Step 2. Now perform matrix’s Transpose operation (Change rows to column
and vice versa) and reverse the resultant matrix.
Step 3. Pass the output of [2nd step], to same recursive function till
base case hits.
Dry Run:
Stage 1.
[1, 2, 3, 4] + spiral_traversal([
[8, 12], [7, 11], [6, 10], [5, 9]]
])
Stage 2.
[1, 2, 3, 4, 8, 12] + spiral_traversal([
[11, 10, 9], [7, 6, 5]
])
Stage 3.
[1, 2, 3, 4, 8, 12, 11, 10, 9] + spiral_traversal([
[5], [6], [7]
])
Stage 4.
[1, 2, 3, 4, 8, 12, 11, 10, 9, 5] + spiral_traversal([
[5], [6], [7]
])
Stage 5.
[1, 2, 3, 4, 8, 12, 11, 10, 9, 5] + spiral_traversal([[6, 7]])
Stage 6.
[1, 2, 3, 4, 8, 12, 11, 10, 9, 5, 6, 7] + spiral_traversal([])
"""
if matrix:
return list(matrix.pop(0)) + spiral_traversal(list(zip(*matrix))[::-1])
else:
return []
# driver code
if __name__ == "__main__":
import doctest
doctest.testmod()
a = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
spiral_print_clockwise(a)
| """
This program print the matrix in spiral form.
This problem has been solved through recursive way.
Matrix must satisfy below conditions
i) matrix should be only one or two dimensional
ii) number of column of all rows should be equal
"""
def check_matrix(matrix: list[list[int]]) -> bool:
# must be
matrix = [list(row) for row in matrix]
if matrix and isinstance(matrix, list):
if isinstance(matrix[0], list):
prev_len = 0
for row in matrix:
if prev_len == 0:
prev_len = len(row)
result = True
else:
result = prev_len == len(row)
else:
result = True
else:
result = False
return result
def spiral_print_clockwise(a: list[list[int]]) -> None:
"""
>>> spiral_print_clockwise([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
1
2
3
4
8
12
11
10
9
5
6
7
"""
if check_matrix(a) and len(a) > 0:
a = [list(row) for row in a]
mat_row = len(a)
if isinstance(a[0], list):
mat_col = len(a[0])
else:
for dat in a:
print(dat)
return
# horizotal printing increasing
for i in range(mat_col):
print(a[0][i])
# vertical printing down
for i in range(1, mat_row):
print(a[i][mat_col - 1])
# horizotal printing decreasing
if mat_row > 1:
for i in range(mat_col - 2, -1, -1):
print(a[mat_row - 1][i])
# vertical printing up
for i in range(mat_row - 2, 0, -1):
print(a[i][0])
remain_mat = [row[1 : mat_col - 1] for row in a[1 : mat_row - 1]]
if len(remain_mat) > 0:
spiral_print_clockwise(remain_mat)
else:
return
else:
print("Not a valid matrix")
return
# Other Easy to understand Approach
def spiral_traversal(matrix: list[list]) -> list[int]:
"""
>>> spiral_traversal([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
[1, 2, 3, 4, 8, 12, 11, 10, 9, 5, 6, 7]
Example:
matrix = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
Algorithm:
Step 1. first pop the 0 index list. (which is [1,2,3,4] and concatenate the
output of [step 2])
Step 2. Now perform matrix’s Transpose operation (Change rows to column
and vice versa) and reverse the resultant matrix.
Step 3. Pass the output of [2nd step], to same recursive function till
base case hits.
Dry Run:
Stage 1.
[1, 2, 3, 4] + spiral_traversal([
[8, 12], [7, 11], [6, 10], [5, 9]]
])
Stage 2.
[1, 2, 3, 4, 8, 12] + spiral_traversal([
[11, 10, 9], [7, 6, 5]
])
Stage 3.
[1, 2, 3, 4, 8, 12, 11, 10, 9] + spiral_traversal([
[5], [6], [7]
])
Stage 4.
[1, 2, 3, 4, 8, 12, 11, 10, 9, 5] + spiral_traversal([
[5], [6], [7]
])
Stage 5.
[1, 2, 3, 4, 8, 12, 11, 10, 9, 5] + spiral_traversal([[6, 7]])
Stage 6.
[1, 2, 3, 4, 8, 12, 11, 10, 9, 5, 6, 7] + spiral_traversal([])
"""
if matrix:
return list(matrix.pop(0)) + spiral_traversal(list(zip(*matrix))[::-1]) # type: ignore
else:
return []
# driver code
if __name__ == "__main__":
import doctest
doctest.testmod()
a = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
spiral_print_clockwise(a)
| 1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | # https://farside.ph.utexas.edu/teaching/316/lectures/node46.html
from __future__ import annotations
def capacitor_parallel(capacitors: list[float]) -> float:
"""
Ceq = C1 + C2 + ... + Cn
Calculate the equivalent resistance for any number of capacitors in parallel.
>>> capacitor_parallel([5.71389, 12, 3])
20.71389
>>> capacitor_parallel([5.71389, 12, -3])
Traceback (most recent call last):
...
ValueError: Capacitor at index 2 has a negative value!
"""
sum_c = 0.0
for index, capacitor in enumerate(capacitors):
if capacitor < 0:
msg = f"Capacitor at index {index} has a negative value!"
raise ValueError(msg)
sum_c += capacitor
return sum_c
def capacitor_series(capacitors: list[float]) -> float:
"""
Ceq = 1/ (1/C1 + 1/C2 + ... + 1/Cn)
>>> capacitor_series([5.71389, 12, 3])
1.6901062252507735
>>> capacitor_series([5.71389, 12, -3])
Traceback (most recent call last):
...
ValueError: Capacitor at index 2 has a negative or zero value!
>>> capacitor_series([5.71389, 12, 0.000])
Traceback (most recent call last):
...
ValueError: Capacitor at index 2 has a negative or zero value!
"""
first_sum = 0.0
for index, capacitor in enumerate(capacitors):
if capacitor <= 0:
msg = f"Capacitor at index {index} has a negative or zero value!"
raise ValueError(msg)
first_sum += 1 / capacitor
return 1 / first_sum
if __name__ == "__main__":
import doctest
doctest.testmod()
| # https://farside.ph.utexas.edu/teaching/316/lectures/node46.html
from __future__ import annotations
def capacitor_parallel(capacitors: list[float]) -> float:
"""
Ceq = C1 + C2 + ... + Cn
Calculate the equivalent resistance for any number of capacitors in parallel.
>>> capacitor_parallel([5.71389, 12, 3])
20.71389
>>> capacitor_parallel([5.71389, 12, -3])
Traceback (most recent call last):
...
ValueError: Capacitor at index 2 has a negative value!
"""
sum_c = 0.0
for index, capacitor in enumerate(capacitors):
if capacitor < 0:
msg = f"Capacitor at index {index} has a negative value!"
raise ValueError(msg)
sum_c += capacitor
return sum_c
def capacitor_series(capacitors: list[float]) -> float:
"""
Ceq = 1/ (1/C1 + 1/C2 + ... + 1/Cn)
>>> capacitor_series([5.71389, 12, 3])
1.6901062252507735
>>> capacitor_series([5.71389, 12, -3])
Traceback (most recent call last):
...
ValueError: Capacitor at index 2 has a negative or zero value!
>>> capacitor_series([5.71389, 12, 0.000])
Traceback (most recent call last):
...
ValueError: Capacitor at index 2 has a negative or zero value!
"""
first_sum = 0.0
for index, capacitor in enumerate(capacitors):
if capacitor <= 0:
msg = f"Capacitor at index {index} has a negative or zero value!"
raise ValueError(msg)
first_sum += 1 / capacitor
return 1 / first_sum
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | """Breath First Search (BFS) can be used when finding the shortest path
from a given source node to a target node in an unweighted graph.
"""
from __future__ import annotations
graph = {
"A": ["B", "C", "E"],
"B": ["A", "D", "E"],
"C": ["A", "F", "G"],
"D": ["B"],
"E": ["A", "B", "D"],
"F": ["C"],
"G": ["C"],
}
class Graph:
def __init__(self, graph: dict[str, list[str]], source_vertex: str) -> None:
"""
Graph is implemented as dictionary of adjacency lists. Also,
Source vertex have to be defined upon initialization.
"""
self.graph = graph
# mapping node to its parent in resulting breadth first tree
self.parent: dict[str, str | None] = {}
self.source_vertex = source_vertex
def breath_first_search(self) -> None:
"""
This function is a helper for running breath first search on this graph.
>>> g = Graph(graph, "G")
>>> g.breath_first_search()
>>> g.parent
{'G': None, 'C': 'G', 'A': 'C', 'F': 'C', 'B': 'A', 'E': 'A', 'D': 'B'}
"""
visited = {self.source_vertex}
self.parent[self.source_vertex] = None
queue = [self.source_vertex] # first in first out queue
while queue:
vertex = queue.pop(0)
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(adjacent_vertex)
self.parent[adjacent_vertex] = vertex
queue.append(adjacent_vertex)
def shortest_path(self, target_vertex: str) -> str:
"""
This shortest path function returns a string, describing the result:
1.) No path is found. The string is a human readable message to indicate this.
2.) The shortest path is found. The string is in the form
`v1(->v2->v3->...->vn)`, where v1 is the source vertex and vn is the target
vertex, if it exists separately.
>>> g = Graph(graph, "G")
>>> g.breath_first_search()
Case 1 - No path is found.
>>> g.shortest_path("Foo")
Traceback (most recent call last):
...
ValueError: No path from vertex: G to vertex: Foo
Case 2 - The path is found.
>>> g.shortest_path("D")
'G->C->A->B->D'
>>> g.shortest_path("G")
'G'
"""
if target_vertex == self.source_vertex:
return self.source_vertex
target_vertex_parent = self.parent.get(target_vertex)
if target_vertex_parent is None:
msg = (
f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}"
)
raise ValueError(msg)
return self.shortest_path(target_vertex_parent) + f"->{target_vertex}"
if __name__ == "__main__":
g = Graph(graph, "G")
g.breath_first_search()
print(g.shortest_path("D"))
print(g.shortest_path("G"))
print(g.shortest_path("Foo"))
| """Breath First Search (BFS) can be used when finding the shortest path
from a given source node to a target node in an unweighted graph.
"""
from __future__ import annotations
graph = {
"A": ["B", "C", "E"],
"B": ["A", "D", "E"],
"C": ["A", "F", "G"],
"D": ["B"],
"E": ["A", "B", "D"],
"F": ["C"],
"G": ["C"],
}
class Graph:
def __init__(self, graph: dict[str, list[str]], source_vertex: str) -> None:
"""
Graph is implemented as dictionary of adjacency lists. Also,
Source vertex have to be defined upon initialization.
"""
self.graph = graph
# mapping node to its parent in resulting breadth first tree
self.parent: dict[str, str | None] = {}
self.source_vertex = source_vertex
def breath_first_search(self) -> None:
"""
This function is a helper for running breath first search on this graph.
>>> g = Graph(graph, "G")
>>> g.breath_first_search()
>>> g.parent
{'G': None, 'C': 'G', 'A': 'C', 'F': 'C', 'B': 'A', 'E': 'A', 'D': 'B'}
"""
visited = {self.source_vertex}
self.parent[self.source_vertex] = None
queue = [self.source_vertex] # first in first out queue
while queue:
vertex = queue.pop(0)
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(adjacent_vertex)
self.parent[adjacent_vertex] = vertex
queue.append(adjacent_vertex)
def shortest_path(self, target_vertex: str) -> str:
"""
This shortest path function returns a string, describing the result:
1.) No path is found. The string is a human readable message to indicate this.
2.) The shortest path is found. The string is in the form
`v1(->v2->v3->...->vn)`, where v1 is the source vertex and vn is the target
vertex, if it exists separately.
>>> g = Graph(graph, "G")
>>> g.breath_first_search()
Case 1 - No path is found.
>>> g.shortest_path("Foo")
Traceback (most recent call last):
...
ValueError: No path from vertex: G to vertex: Foo
Case 2 - The path is found.
>>> g.shortest_path("D")
'G->C->A->B->D'
>>> g.shortest_path("G")
'G'
"""
if target_vertex == self.source_vertex:
return self.source_vertex
target_vertex_parent = self.parent.get(target_vertex)
if target_vertex_parent is None:
msg = (
f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}"
)
raise ValueError(msg)
return self.shortest_path(target_vertex_parent) + f"->{target_vertex}"
if __name__ == "__main__":
g = Graph(graph, "G")
g.breath_first_search()
print(g.shortest_path("D"))
print(g.shortest_path("G"))
print(g.shortest_path("Foo"))
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | """
Fast inverse square root (1/sqrt(x)) using the Quake III algorithm.
Reference: https://en.wikipedia.org/wiki/Fast_inverse_square_root
Accuracy: https://en.wikipedia.org/wiki/Fast_inverse_square_root#Accuracy
"""
import struct
def fast_inverse_sqrt(number: float) -> float:
"""
Compute the fast inverse square root of a floating-point number using the famous
Quake III algorithm.
:param float number: Input number for which to calculate the inverse square root.
:return float: The fast inverse square root of the input number.
Example:
>>> fast_inverse_sqrt(10)
0.3156857923527257
>>> fast_inverse_sqrt(4)
0.49915357479239103
>>> fast_inverse_sqrt(4.1)
0.4932849504615651
>>> fast_inverse_sqrt(0)
Traceback (most recent call last):
...
ValueError: Input must be a positive number.
>>> fast_inverse_sqrt(-1)
Traceback (most recent call last):
...
ValueError: Input must be a positive number.
>>> from math import isclose, sqrt
>>> all(isclose(fast_inverse_sqrt(i), 1 / sqrt(i), rel_tol=0.00132)
... for i in range(50, 60))
True
"""
if number <= 0:
raise ValueError("Input must be a positive number.")
i = struct.unpack(">i", struct.pack(">f", number))[0]
i = 0x5F3759DF - (i >> 1)
y = struct.unpack(">f", struct.pack(">i", i))[0]
return y * (1.5 - 0.5 * number * y * y)
if __name__ == "__main__":
from doctest import testmod
testmod()
# https://en.wikipedia.org/wiki/Fast_inverse_square_root#Accuracy
from math import sqrt
for i in range(5, 101, 5):
print(f"{i:>3}: {(1 / sqrt(i)) - fast_inverse_sqrt(i):.5f}")
| """
Fast inverse square root (1/sqrt(x)) using the Quake III algorithm.
Reference: https://en.wikipedia.org/wiki/Fast_inverse_square_root
Accuracy: https://en.wikipedia.org/wiki/Fast_inverse_square_root#Accuracy
"""
import struct
def fast_inverse_sqrt(number: float) -> float:
"""
Compute the fast inverse square root of a floating-point number using the famous
Quake III algorithm.
:param float number: Input number for which to calculate the inverse square root.
:return float: The fast inverse square root of the input number.
Example:
>>> fast_inverse_sqrt(10)
0.3156857923527257
>>> fast_inverse_sqrt(4)
0.49915357479239103
>>> fast_inverse_sqrt(4.1)
0.4932849504615651
>>> fast_inverse_sqrt(0)
Traceback (most recent call last):
...
ValueError: Input must be a positive number.
>>> fast_inverse_sqrt(-1)
Traceback (most recent call last):
...
ValueError: Input must be a positive number.
>>> from math import isclose, sqrt
>>> all(isclose(fast_inverse_sqrt(i), 1 / sqrt(i), rel_tol=0.00132)
... for i in range(50, 60))
True
"""
if number <= 0:
raise ValueError("Input must be a positive number.")
i = struct.unpack(">i", struct.pack(">f", number))[0]
i = 0x5F3759DF - (i >> 1)
y = struct.unpack(">f", struct.pack(">i", i))[0]
return y * (1.5 - 0.5 * number * y * y)
if __name__ == "__main__":
from doctest import testmod
testmod()
# https://en.wikipedia.org/wiki/Fast_inverse_square_root#Accuracy
from math import sqrt
for i in range(5, 101, 5):
print(f"{i:>3}: {(1 / sqrt(i)) - fast_inverse_sqrt(i):.5f}")
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | import math
"""
In cryptography, the TRANSPOSITION cipher is a method of encryption where the
positions of plaintext are shifted a certain number(determined by the key) that
follows a regular system that results in the permuted text, known as the encrypted
text. The type of transposition cipher demonstrated under is the ROUTE cipher.
"""
def main() -> None:
message = input("Enter message: ")
key = int(input(f"Enter key [2-{len(message) - 1}]: "))
mode = input("Encryption/Decryption [e/d]: ")
if mode.lower().startswith("e"):
text = encrypt_message(key, message)
elif mode.lower().startswith("d"):
text = decrypt_message(key, message)
# Append pipe symbol (vertical bar) to identify spaces at the end.
print(f"Output:\n{text + '|'}")
def encrypt_message(key: int, message: str) -> str:
"""
>>> encrypt_message(6, 'Harshil Darji')
'Hlia rDsahrij'
"""
cipher_text = [""] * key
for col in range(key):
pointer = col
while pointer < len(message):
cipher_text[col] += message[pointer]
pointer += key
return "".join(cipher_text)
def decrypt_message(key: int, message: str) -> str:
"""
>>> decrypt_message(6, 'Hlia rDsahrij')
'Harshil Darji'
"""
num_cols = math.ceil(len(message) / key)
num_rows = key
num_shaded_boxes = (num_cols * num_rows) - len(message)
plain_text = [""] * num_cols
col = 0
row = 0
for symbol in message:
plain_text[col] += symbol
col += 1
if (
(col == num_cols)
or (col == num_cols - 1)
and (row >= num_rows - num_shaded_boxes)
):
col = 0
row += 1
return "".join(plain_text)
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| import math
"""
In cryptography, the TRANSPOSITION cipher is a method of encryption where the
positions of plaintext are shifted a certain number(determined by the key) that
follows a regular system that results in the permuted text, known as the encrypted
text. The type of transposition cipher demonstrated under is the ROUTE cipher.
"""
def main() -> None:
message = input("Enter message: ")
key = int(input(f"Enter key [2-{len(message) - 1}]: "))
mode = input("Encryption/Decryption [e/d]: ")
if mode.lower().startswith("e"):
text = encrypt_message(key, message)
elif mode.lower().startswith("d"):
text = decrypt_message(key, message)
# Append pipe symbol (vertical bar) to identify spaces at the end.
print(f"Output:\n{text + '|'}")
def encrypt_message(key: int, message: str) -> str:
"""
>>> encrypt_message(6, 'Harshil Darji')
'Hlia rDsahrij'
"""
cipher_text = [""] * key
for col in range(key):
pointer = col
while pointer < len(message):
cipher_text[col] += message[pointer]
pointer += key
return "".join(cipher_text)
def decrypt_message(key: int, message: str) -> str:
"""
>>> decrypt_message(6, 'Hlia rDsahrij')
'Harshil Darji'
"""
num_cols = math.ceil(len(message) / key)
num_rows = key
num_shaded_boxes = (num_cols * num_rows) - len(message)
plain_text = [""] * num_cols
col = 0
row = 0
for symbol in message:
plain_text[col] += symbol
col += 1
if (
(col == num_cols)
or (col == num_cols - 1)
and (row >= num_rows - num_shaded_boxes)
):
col = 0
row += 1
return "".join(plain_text)
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | """
PyTest's for Digital Image Processing
"""
import numpy as np
from cv2 import COLOR_BGR2GRAY, cvtColor, imread
from numpy import array, uint8
from PIL import Image
from digital_image_processing import change_contrast as cc
from digital_image_processing import convert_to_negative as cn
from digital_image_processing import sepia as sp
from digital_image_processing.dithering import burkes as bs
from digital_image_processing.edge_detection import canny
from digital_image_processing.filters import convolve as conv
from digital_image_processing.filters import gaussian_filter as gg
from digital_image_processing.filters import local_binary_pattern as lbp
from digital_image_processing.filters import median_filter as med
from digital_image_processing.filters import sobel_filter as sob
from digital_image_processing.resize import resize as rs
img = imread(r"digital_image_processing/image_data/lena_small.jpg")
gray = cvtColor(img, COLOR_BGR2GRAY)
# Test: convert_to_negative()
def test_convert_to_negative():
negative_img = cn.convert_to_negative(img)
# assert negative_img array for at least one True
assert negative_img.any()
# Test: change_contrast()
def test_change_contrast():
with Image.open("digital_image_processing/image_data/lena_small.jpg") as img:
# Work around assertion for response
assert str(cc.change_contrast(img, 110)).startswith(
"<PIL.Image.Image image mode=RGB size=100x100 at"
)
# canny.gen_gaussian_kernel()
def test_gen_gaussian_kernel():
resp = canny.gen_gaussian_kernel(9, sigma=1.4)
# Assert ambiguous array
assert resp.all()
# canny.py
def test_canny():
canny_img = imread("digital_image_processing/image_data/lena_small.jpg", 0)
# assert ambiguous array for all == True
assert canny_img.all()
canny_array = canny.canny(canny_img)
# assert canny array for at least one True
assert canny_array.any()
# filters/gaussian_filter.py
def test_gen_gaussian_kernel_filter():
assert gg.gaussian_filter(gray, 5, sigma=0.9).all()
def test_convolve_filter():
# laplace diagonals
laplace = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]])
res = conv.img_convolve(gray, laplace).astype(uint8)
assert res.any()
def test_median_filter():
assert med.median_filter(gray, 3).any()
def test_sobel_filter():
grad, theta = sob.sobel_filter(gray)
assert grad.any()
assert theta.any()
def test_sepia():
sepia = sp.make_sepia(img, 20)
assert sepia.all()
def test_burkes(file_path: str = "digital_image_processing/image_data/lena_small.jpg"):
burkes = bs.Burkes(imread(file_path, 1), 120)
burkes.process()
assert burkes.output_img.any()
def test_nearest_neighbour(
file_path: str = "digital_image_processing/image_data/lena_small.jpg",
):
nn = rs.NearestNeighbour(imread(file_path, 1), 400, 200)
nn.process()
assert nn.output.any()
def test_local_binary_pattern():
# pull request 10161 before:
# "digital_image_processing/image_data/lena.jpg"
# after: "digital_image_processing/image_data/lena_small.jpg"
from os import getenv # Speed up our Continuous Integration tests
file_name = "lena_small.jpg" if getenv("CI") else "lena.jpg"
file_path = f"digital_image_processing/image_data/{file_name}"
# Reading the image and converting it to grayscale
image = imread(file_path, 0)
# Test for get_neighbors_pixel function() return not None
x_coordinate = 0
y_coordinate = 0
center = image[x_coordinate][y_coordinate]
neighbors_pixels = lbp.get_neighbors_pixel(
image, x_coordinate, y_coordinate, center
)
assert neighbors_pixels is not None
# Test for local_binary_pattern function()
# Create a numpy array as the same height and width of read image
lbp_image = np.zeros((image.shape[0], image.shape[1]))
# Iterating through the image and calculating the local binary pattern value
# for each pixel.
for i in range(image.shape[0]):
for j in range(image.shape[1]):
lbp_image[i][j] = lbp.local_binary_value(image, i, j)
assert lbp_image.any()
| """
PyTest's for Digital Image Processing
"""
import numpy as np
from cv2 import COLOR_BGR2GRAY, cvtColor, imread
from numpy import array, uint8
from PIL import Image
from digital_image_processing import change_contrast as cc
from digital_image_processing import convert_to_negative as cn
from digital_image_processing import sepia as sp
from digital_image_processing.dithering import burkes as bs
from digital_image_processing.edge_detection import canny
from digital_image_processing.filters import convolve as conv
from digital_image_processing.filters import gaussian_filter as gg
from digital_image_processing.filters import local_binary_pattern as lbp
from digital_image_processing.filters import median_filter as med
from digital_image_processing.filters import sobel_filter as sob
from digital_image_processing.resize import resize as rs
img = imread(r"digital_image_processing/image_data/lena_small.jpg")
gray = cvtColor(img, COLOR_BGR2GRAY)
# Test: convert_to_negative()
def test_convert_to_negative():
negative_img = cn.convert_to_negative(img)
# assert negative_img array for at least one True
assert negative_img.any()
# Test: change_contrast()
def test_change_contrast():
with Image.open("digital_image_processing/image_data/lena_small.jpg") as img:
# Work around assertion for response
assert str(cc.change_contrast(img, 110)).startswith(
"<PIL.Image.Image image mode=RGB size=100x100 at"
)
# canny.gen_gaussian_kernel()
def test_gen_gaussian_kernel():
resp = canny.gen_gaussian_kernel(9, sigma=1.4)
# Assert ambiguous array
assert resp.all()
# canny.py
def test_canny():
canny_img = imread("digital_image_processing/image_data/lena_small.jpg", 0)
# assert ambiguous array for all == True
assert canny_img.all()
canny_array = canny.canny(canny_img)
# assert canny array for at least one True
assert canny_array.any()
# filters/gaussian_filter.py
def test_gen_gaussian_kernel_filter():
assert gg.gaussian_filter(gray, 5, sigma=0.9).all()
def test_convolve_filter():
# laplace diagonals
laplace = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]])
res = conv.img_convolve(gray, laplace).astype(uint8)
assert res.any()
def test_median_filter():
assert med.median_filter(gray, 3).any()
def test_sobel_filter():
grad, theta = sob.sobel_filter(gray)
assert grad.any()
assert theta.any()
def test_sepia():
sepia = sp.make_sepia(img, 20)
assert sepia.all()
def test_burkes(file_path: str = "digital_image_processing/image_data/lena_small.jpg"):
burkes = bs.Burkes(imread(file_path, 1), 120)
burkes.process()
assert burkes.output_img.any()
def test_nearest_neighbour(
file_path: str = "digital_image_processing/image_data/lena_small.jpg",
):
nn = rs.NearestNeighbour(imread(file_path, 1), 400, 200)
nn.process()
assert nn.output.any()
def test_local_binary_pattern():
# pull request 10161 before:
# "digital_image_processing/image_data/lena.jpg"
# after: "digital_image_processing/image_data/lena_small.jpg"
from os import getenv # Speed up our Continuous Integration tests
file_name = "lena_small.jpg" if getenv("CI") else "lena.jpg"
file_path = f"digital_image_processing/image_data/{file_name}"
# Reading the image and converting it to grayscale
image = imread(file_path, 0)
# Test for get_neighbors_pixel function() return not None
x_coordinate = 0
y_coordinate = 0
center = image[x_coordinate][y_coordinate]
neighbors_pixels = lbp.get_neighbors_pixel(
image, x_coordinate, y_coordinate, center
)
assert neighbors_pixels is not None
# Test for local_binary_pattern function()
# Create a numpy array as the same height and width of read image
lbp_image = np.zeros((image.shape[0], image.shape[1]))
# Iterating through the image and calculating the local binary pattern value
# for each pixel.
for i in range(image.shape[0]):
for j in range(image.shape[1]):
lbp_image[i][j] = lbp.local_binary_value(image, i, j)
assert lbp_image.any()
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | def rgb_to_cmyk(r_input: int, g_input: int, b_input: int) -> tuple[int, int, int, int]:
"""
Simple RGB to CMYK conversion. Returns percentages of CMYK paint.
https://www.programmingalgorithms.com/algorithm/rgb-to-cmyk/
Note: this is a very popular algorithm that converts colors linearly and gives
only approximate results. Actual preparation for printing requires advanced color
conversion considering the color profiles and parameters of the target device.
>>> rgb_to_cmyk(255, 200, "a")
Traceback (most recent call last):
...
ValueError: Expected int, found (<class 'int'>, <class 'int'>, <class 'str'>)
>>> rgb_to_cmyk(255, 255, 999)
Traceback (most recent call last):
...
ValueError: Expected int of the range 0..255
>>> rgb_to_cmyk(255, 255, 255) # white
(0, 0, 0, 0)
>>> rgb_to_cmyk(128, 128, 128) # gray
(0, 0, 0, 50)
>>> rgb_to_cmyk(0, 0, 0) # black
(0, 0, 0, 100)
>>> rgb_to_cmyk(255, 0, 0) # red
(0, 100, 100, 0)
>>> rgb_to_cmyk(0, 255, 0) # green
(100, 0, 100, 0)
>>> rgb_to_cmyk(0, 0, 255) # blue
(100, 100, 0, 0)
"""
if (
not isinstance(r_input, int)
or not isinstance(g_input, int)
or not isinstance(b_input, int)
):
msg = f"Expected int, found {type(r_input), type(g_input), type(b_input)}"
raise ValueError(msg)
if not 0 <= r_input < 256 or not 0 <= g_input < 256 or not 0 <= b_input < 256:
raise ValueError("Expected int of the range 0..255")
# changing range from 0..255 to 0..1
r = r_input / 255
g = g_input / 255
b = b_input / 255
k = 1 - max(r, g, b)
if k == 1: # pure black
return 0, 0, 0, 100
c = round(100 * (1 - r - k) / (1 - k))
m = round(100 * (1 - g - k) / (1 - k))
y = round(100 * (1 - b - k) / (1 - k))
k = round(100 * k)
return c, m, y, k
if __name__ == "__main__":
from doctest import testmod
testmod()
| def rgb_to_cmyk(r_input: int, g_input: int, b_input: int) -> tuple[int, int, int, int]:
"""
Simple RGB to CMYK conversion. Returns percentages of CMYK paint.
https://www.programmingalgorithms.com/algorithm/rgb-to-cmyk/
Note: this is a very popular algorithm that converts colors linearly and gives
only approximate results. Actual preparation for printing requires advanced color
conversion considering the color profiles and parameters of the target device.
>>> rgb_to_cmyk(255, 200, "a")
Traceback (most recent call last):
...
ValueError: Expected int, found (<class 'int'>, <class 'int'>, <class 'str'>)
>>> rgb_to_cmyk(255, 255, 999)
Traceback (most recent call last):
...
ValueError: Expected int of the range 0..255
>>> rgb_to_cmyk(255, 255, 255) # white
(0, 0, 0, 0)
>>> rgb_to_cmyk(128, 128, 128) # gray
(0, 0, 0, 50)
>>> rgb_to_cmyk(0, 0, 0) # black
(0, 0, 0, 100)
>>> rgb_to_cmyk(255, 0, 0) # red
(0, 100, 100, 0)
>>> rgb_to_cmyk(0, 255, 0) # green
(100, 0, 100, 0)
>>> rgb_to_cmyk(0, 0, 255) # blue
(100, 100, 0, 0)
"""
if (
not isinstance(r_input, int)
or not isinstance(g_input, int)
or not isinstance(b_input, int)
):
msg = f"Expected int, found {type(r_input), type(g_input), type(b_input)}"
raise ValueError(msg)
if not 0 <= r_input < 256 or not 0 <= g_input < 256 or not 0 <= b_input < 256:
raise ValueError("Expected int of the range 0..255")
# changing range from 0..255 to 0..1
r = r_input / 255
g = g_input / 255
b = b_input / 255
k = 1 - max(r, g, b)
if k == 1: # pure black
return 0, 0, 0, 100
c = round(100 * (1 - r - k) / (1 - k))
m = round(100 * (1 - g - k) / (1 - k))
y = round(100 * (1 - b - k) / (1 - k))
k = round(100 * k)
return c, m, y, k
if __name__ == "__main__":
from doctest import testmod
testmod()
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | # Minimum cut on Ford_Fulkerson algorithm.
test_graph = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
def bfs(graph, s, t, parent):
# Return True if there is node that has not iterated.
visited = [False] * len(graph)
queue = [s]
visited[s] = True
while queue:
u = queue.pop(0)
for ind in range(len(graph[u])):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(ind)
visited[ind] = True
parent[ind] = u
return visited[t]
def mincut(graph, source, sink):
"""This array is filled by BFS and to store path
>>> mincut(test_graph, source=0, sink=5)
[(1, 3), (4, 3), (4, 5)]
"""
parent = [-1] * (len(graph))
max_flow = 0
res = []
temp = [i[:] for i in graph] # Record original cut, copy.
while bfs(graph, source, sink, parent):
path_flow = float("Inf")
s = sink
while s != source:
# Find the minimum value in select path
path_flow = min(path_flow, graph[parent[s]][s])
s = parent[s]
max_flow += path_flow
v = sink
while v != source:
u = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
v = parent[v]
for i in range(len(graph)):
for j in range(len(graph[0])):
if graph[i][j] == 0 and temp[i][j] > 0:
res.append((i, j))
return res
if __name__ == "__main__":
print(mincut(test_graph, source=0, sink=5))
| # Minimum cut on Ford_Fulkerson algorithm.
test_graph = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
def bfs(graph, s, t, parent):
# Return True if there is node that has not iterated.
visited = [False] * len(graph)
queue = [s]
visited[s] = True
while queue:
u = queue.pop(0)
for ind in range(len(graph[u])):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(ind)
visited[ind] = True
parent[ind] = u
return visited[t]
def mincut(graph, source, sink):
"""This array is filled by BFS and to store path
>>> mincut(test_graph, source=0, sink=5)
[(1, 3), (4, 3), (4, 5)]
"""
parent = [-1] * (len(graph))
max_flow = 0
res = []
temp = [i[:] for i in graph] # Record original cut, copy.
while bfs(graph, source, sink, parent):
path_flow = float("Inf")
s = sink
while s != source:
# Find the minimum value in select path
path_flow = min(path_flow, graph[parent[s]][s])
s = parent[s]
max_flow += path_flow
v = sink
while v != source:
u = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
v = parent[v]
for i in range(len(graph)):
for j in range(len(graph[0])):
if graph[i][j] == 0 and temp[i][j] > 0:
res.append((i, j))
return res
if __name__ == "__main__":
print(mincut(test_graph, source=0, sink=5))
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | """
Problem 43: https://projecteuler.net/problem=43
The number, 1406357289, is a 0 to 9 pandigital number because it is made up of
each of the digits 0 to 9 in some order, but it also has a rather interesting
sub-string divisibility property.
Let d1 be the 1st digit, d2 be the 2nd digit, and so on. In this way, we note
the following:
d2d3d4=406 is divisible by 2
d3d4d5=063 is divisible by 3
d4d5d6=635 is divisible by 5
d5d6d7=357 is divisible by 7
d6d7d8=572 is divisible by 11
d7d8d9=728 is divisible by 13
d8d9d10=289 is divisible by 17
Find the sum of all 0 to 9 pandigital numbers with this property.
"""
from itertools import permutations
def is_substring_divisible(num: tuple) -> bool:
"""
Returns True if the pandigital number passes
all the divisibility tests.
>>> is_substring_divisible((0, 1, 2, 4, 6, 5, 7, 3, 8, 9))
False
>>> is_substring_divisible((5, 1, 2, 4, 6, 0, 7, 8, 3, 9))
False
>>> is_substring_divisible((1, 4, 0, 6, 3, 5, 7, 2, 8, 9))
True
"""
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
tests = [7, 11, 13, 17]
for i, test in enumerate(tests):
if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def solution(n: int = 10) -> int:
"""
Returns the sum of all pandigital numbers which pass the
divisibility tests.
>>> solution(10)
16695334890
"""
return sum(
int("".join(map(str, num)))
for num in permutations(range(n))
if is_substring_divisible(num)
)
if __name__ == "__main__":
print(f"{solution() = }")
| """
Problem 43: https://projecteuler.net/problem=43
The number, 1406357289, is a 0 to 9 pandigital number because it is made up of
each of the digits 0 to 9 in some order, but it also has a rather interesting
sub-string divisibility property.
Let d1 be the 1st digit, d2 be the 2nd digit, and so on. In this way, we note
the following:
d2d3d4=406 is divisible by 2
d3d4d5=063 is divisible by 3
d4d5d6=635 is divisible by 5
d5d6d7=357 is divisible by 7
d6d7d8=572 is divisible by 11
d7d8d9=728 is divisible by 13
d8d9d10=289 is divisible by 17
Find the sum of all 0 to 9 pandigital numbers with this property.
"""
from itertools import permutations
def is_substring_divisible(num: tuple) -> bool:
"""
Returns True if the pandigital number passes
all the divisibility tests.
>>> is_substring_divisible((0, 1, 2, 4, 6, 5, 7, 3, 8, 9))
False
>>> is_substring_divisible((5, 1, 2, 4, 6, 0, 7, 8, 3, 9))
False
>>> is_substring_divisible((1, 4, 0, 6, 3, 5, 7, 2, 8, 9))
True
"""
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
tests = [7, 11, 13, 17]
for i, test in enumerate(tests):
if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def solution(n: int = 10) -> int:
"""
Returns the sum of all pandigital numbers which pass the
divisibility tests.
>>> solution(10)
16695334890
"""
return sum(
int("".join(map(str, num)))
for num in permutations(range(n))
if is_substring_divisible(num)
)
if __name__ == "__main__":
print(f"{solution() = }")
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | """
Approximates the area under the curve using the trapezoidal rule
"""
from __future__ import annotations
from collections.abc import Callable
def trapezoidal_area(
fnc: Callable[[float], float],
x_start: float,
x_end: float,
steps: int = 100,
) -> float:
"""
Treats curve as a collection of linear lines and sums the area of the
trapezium shape they form
:param fnc: a function which defines a curve
:param x_start: left end point to indicate the start of line segment
:param x_end: right end point to indicate end of line segment
:param steps: an accuracy gauge; more steps increases the accuracy
:return: a float representing the length of the curve
>>> def f(x):
... return 5
>>> '%.3f' % trapezoidal_area(f, 12.0, 14.0, 1000)
'10.000'
>>> def f(x):
... return 9*x**2
>>> '%.4f' % trapezoidal_area(f, -4.0, 0, 10000)
'192.0000'
>>> '%.4f' % trapezoidal_area(f, -4.0, 4.0, 10000)
'384.0000'
"""
x1 = x_start
fx1 = fnc(x_start)
area = 0.0
for _ in range(steps):
# Approximates small segments of curve as linear and solve
# for trapezoidal area
x2 = (x_end - x_start) / steps + x1
fx2 = fnc(x2)
area += abs(fx2 + fx1) * (x2 - x1) / 2
# Increment step
x1 = x2
fx1 = fx2
return area
if __name__ == "__main__":
def f(x):
return x**3
print("f(x) = x^3")
print("The area between the curve, x = -10, x = 10 and the x axis is:")
i = 10
while i <= 100000:
area = trapezoidal_area(f, -5, 5, i)
print(f"with {i} steps: {area}")
i *= 10
| """
Approximates the area under the curve using the trapezoidal rule
"""
from __future__ import annotations
from collections.abc import Callable
def trapezoidal_area(
fnc: Callable[[float], float],
x_start: float,
x_end: float,
steps: int = 100,
) -> float:
"""
Treats curve as a collection of linear lines and sums the area of the
trapezium shape they form
:param fnc: a function which defines a curve
:param x_start: left end point to indicate the start of line segment
:param x_end: right end point to indicate end of line segment
:param steps: an accuracy gauge; more steps increases the accuracy
:return: a float representing the length of the curve
>>> def f(x):
... return 5
>>> '%.3f' % trapezoidal_area(f, 12.0, 14.0, 1000)
'10.000'
>>> def f(x):
... return 9*x**2
>>> '%.4f' % trapezoidal_area(f, -4.0, 0, 10000)
'192.0000'
>>> '%.4f' % trapezoidal_area(f, -4.0, 4.0, 10000)
'384.0000'
"""
x1 = x_start
fx1 = fnc(x_start)
area = 0.0
for _ in range(steps):
# Approximates small segments of curve as linear and solve
# for trapezoidal area
x2 = (x_end - x_start) / steps + x1
fx2 = fnc(x2)
area += abs(fx2 + fx1) * (x2 - x1) / 2
# Increment step
x1 = x2
fx1 = fx2
return area
if __name__ == "__main__":
def f(x):
return x**3
print("f(x) = x^3")
print("The area between the curve, x = -10, x = 10 and the x axis is:")
i = 10
while i <= 100000:
area = trapezoidal_area(f, -5, 5, i)
print(f"with {i} steps: {area}")
i *= 10
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | """
* Author: Manuel Di Lullo (https://github.com/manueldilullo)
* Description: Random graphs generator.
Uses graphs represented with an adjacency list.
URL: https://en.wikipedia.org/wiki/Random_graph
"""
import random
def random_graph(
vertices_number: int, probability: float, directed: bool = False
) -> dict:
"""
Generate a random graph
@input: vertices_number (number of vertices),
probability (probability that a generic edge (u,v) exists),
directed (if True: graph will be a directed graph,
otherwise it will be an undirected graph)
@examples:
>>> random.seed(1)
>>> random_graph(4, 0.5)
{0: [1], 1: [0, 2, 3], 2: [1, 3], 3: [1, 2]}
>>> random.seed(1)
>>> random_graph(4, 0.5, True)
{0: [1], 1: [2, 3], 2: [3], 3: []}
"""
graph: dict = {i: [] for i in range(vertices_number)}
# if probability is greater or equal than 1, then generate a complete graph
if probability >= 1:
return complete_graph(vertices_number)
# if probability is lower or equal than 0, then return a graph without edges
if probability <= 0:
return graph
# for each couple of nodes, add an edge from u to v
# if the number randomly generated is greater than probability probability
for i in range(vertices_number):
for j in range(i + 1, vertices_number):
if random.random() < probability:
graph[i].append(j)
if not directed:
# if the graph is undirected, add an edge in from j to i, either
graph[j].append(i)
return graph
def complete_graph(vertices_number: int) -> dict:
"""
Generate a complete graph with vertices_number vertices.
@input: vertices_number (number of vertices),
directed (False if the graph is undirected, True otherwise)
@example:
>>> complete_graph(3)
{0: [1, 2], 1: [0, 2], 2: [0, 1]}
"""
return {
i: [j for j in range(vertices_number) if i != j] for i in range(vertices_number)
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| """
* Author: Manuel Di Lullo (https://github.com/manueldilullo)
* Description: Random graphs generator.
Uses graphs represented with an adjacency list.
URL: https://en.wikipedia.org/wiki/Random_graph
"""
import random
def random_graph(
vertices_number: int, probability: float, directed: bool = False
) -> dict:
"""
Generate a random graph
@input: vertices_number (number of vertices),
probability (probability that a generic edge (u,v) exists),
directed (if True: graph will be a directed graph,
otherwise it will be an undirected graph)
@examples:
>>> random.seed(1)
>>> random_graph(4, 0.5)
{0: [1], 1: [0, 2, 3], 2: [1, 3], 3: [1, 2]}
>>> random.seed(1)
>>> random_graph(4, 0.5, True)
{0: [1], 1: [2, 3], 2: [3], 3: []}
"""
graph: dict = {i: [] for i in range(vertices_number)}
# if probability is greater or equal than 1, then generate a complete graph
if probability >= 1:
return complete_graph(vertices_number)
# if probability is lower or equal than 0, then return a graph without edges
if probability <= 0:
return graph
# for each couple of nodes, add an edge from u to v
# if the number randomly generated is greater than probability probability
for i in range(vertices_number):
for j in range(i + 1, vertices_number):
if random.random() < probability:
graph[i].append(j)
if not directed:
# if the graph is undirected, add an edge in from j to i, either
graph[j].append(i)
return graph
def complete_graph(vertices_number: int) -> dict:
"""
Generate a complete graph with vertices_number vertices.
@input: vertices_number (number of vertices),
directed (False if the graph is undirected, True otherwise)
@example:
>>> complete_graph(3)
{0: [1, 2], 1: [0, 2], 2: [0, 1]}
"""
return {
i: [j for j in range(vertices_number) if i != j] for i in range(vertices_number)
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | """
Given an array of integer elements and an integer 'k', we are required to find the
maximum sum of 'k' consecutive elements in the array.
Instead of using a nested for loop, in a Brute force approach we will use a technique
called 'Window sliding technique' where the nested loops can be converted to a single
loop to reduce time complexity.
"""
from __future__ import annotations
def max_sum_in_array(array: list[int], k: int) -> int:
"""
Returns the maximum sum of k consecutive elements
>>> arr = [1, 4, 2, 10, 2, 3, 1, 0, 20]
>>> k = 4
>>> max_sum_in_array(arr, k)
24
>>> k = 10
>>> max_sum_in_array(arr,k)
Traceback (most recent call last):
...
ValueError: Invalid Input
>>> arr = [1, 4, 2, 10, 2, 13, 1, 0, 2]
>>> k = 4
>>> max_sum_in_array(arr, k)
27
"""
if len(array) < k or k < 0:
raise ValueError("Invalid Input")
max_sum = current_sum = sum(array[:k])
for i in range(len(array) - k):
current_sum = current_sum - array[i] + array[i + k]
max_sum = max(max_sum, current_sum)
return max_sum
if __name__ == "__main__":
from doctest import testmod
from random import randint
testmod()
array = [randint(-1000, 1000) for i in range(100)]
k = randint(0, 110)
print(f"The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}")
| """
Given an array of integer elements and an integer 'k', we are required to find the
maximum sum of 'k' consecutive elements in the array.
Instead of using a nested for loop, in a Brute force approach we will use a technique
called 'Window sliding technique' where the nested loops can be converted to a single
loop to reduce time complexity.
"""
from __future__ import annotations
def max_sum_in_array(array: list[int], k: int) -> int:
"""
Returns the maximum sum of k consecutive elements
>>> arr = [1, 4, 2, 10, 2, 3, 1, 0, 20]
>>> k = 4
>>> max_sum_in_array(arr, k)
24
>>> k = 10
>>> max_sum_in_array(arr,k)
Traceback (most recent call last):
...
ValueError: Invalid Input
>>> arr = [1, 4, 2, 10, 2, 13, 1, 0, 2]
>>> k = 4
>>> max_sum_in_array(arr, k)
27
"""
if len(array) < k or k < 0:
raise ValueError("Invalid Input")
max_sum = current_sum = sum(array[:k])
for i in range(len(array) - k):
current_sum = current_sum - array[i] + array[i + k]
max_sum = max(max_sum, current_sum)
return max_sum
if __name__ == "__main__":
from doctest import testmod
from random import randint
testmod()
array = [randint(-1000, 1000) for i in range(100)]
k = randint(0, 110)
print(f"The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}")
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | class FlowNetwork:
def __init__(self, graph, sources, sinks):
self.source_index = None
self.sink_index = None
self.graph = graph
self._normalize_graph(sources, sinks)
self.vertices_count = len(graph)
self.maximum_flow_algorithm = None
# make only one source and one sink
def _normalize_graph(self, sources, sinks):
if sources is int:
sources = [sources]
if sinks is int:
sinks = [sinks]
if len(sources) == 0 or len(sinks) == 0:
return
self.source_index = sources[0]
self.sink_index = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(sources) > 1 or len(sinks) > 1:
max_input_flow = 0
for i in sources:
max_input_flow += sum(self.graph[i])
size = len(self.graph) + 1
for room in self.graph:
room.insert(0, 0)
self.graph.insert(0, [0] * size)
for i in sources:
self.graph[0][i + 1] = max_input_flow
self.source_index = 0
size = len(self.graph) + 1
for room in self.graph:
room.append(0)
self.graph.append([0] * size)
for i in sinks:
self.graph[i + 1][size - 1] = max_input_flow
self.sink_index = size - 1
def find_maximum_flow(self):
if self.maximum_flow_algorithm is None:
raise Exception("You need to set maximum flow algorithm before.")
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def set_maximum_flow_algorithm(self, algorithm):
self.maximum_flow_algorithm = algorithm(self)
class FlowNetworkAlgorithmExecutor:
def __init__(self, flow_network):
self.flow_network = flow_network
self.verticies_count = flow_network.verticesCount
self.source_index = flow_network.sourceIndex
self.sink_index = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
self.graph = flow_network.graph
self.executed = False
def execute(self):
if not self.executed:
self._algorithm()
self.executed = True
# You should override it
def _algorithm(self):
pass
class MaximumFlowAlgorithmExecutor(FlowNetworkAlgorithmExecutor):
def __init__(self, flow_network):
super().__init__(flow_network)
# use this to save your result
self.maximum_flow = -1
def get_maximum_flow(self):
if not self.executed:
raise Exception("You should execute algorithm before using its result!")
return self.maximum_flow
class PushRelabelExecutor(MaximumFlowAlgorithmExecutor):
def __init__(self, flow_network):
super().__init__(flow_network)
self.preflow = [[0] * self.verticies_count for i in range(self.verticies_count)]
self.heights = [0] * self.verticies_count
self.excesses = [0] * self.verticies_count
def _algorithm(self):
self.heights[self.source_index] = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index]):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
vertices_list = [
i
for i in range(self.verticies_count)
if i not in {self.source_index, self.sink_index}
]
# move through list
i = 0
while i < len(vertices_list):
vertex_index = vertices_list[i]
previous_height = self.heights[vertex_index]
self.process_vertex(vertex_index)
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0, vertices_list.pop(i))
i = 0
else:
i += 1
self.maximum_flow = sum(self.preflow[self.source_index])
def process_vertex(self, vertex_index):
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(vertex_index, neighbour_index)
self.relabel(vertex_index)
def push(self, from_index, to_index):
preflow_delta = min(
self.excesses[from_index],
self.graph[from_index][to_index] - self.preflow[from_index][to_index],
)
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def relabel(self, vertex_index):
min_height = None
for to_index in range(self.verticies_count):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
min_height = self.heights[to_index]
if min_height is not None:
self.heights[vertex_index] = min_height + 1
if __name__ == "__main__":
entrances = [0]
exits = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
graph = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
flow_network = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
maximum_flow = flow_network.find_maximum_flow()
print(f"maximum flow is {maximum_flow}")
| class FlowNetwork:
def __init__(self, graph, sources, sinks):
self.source_index = None
self.sink_index = None
self.graph = graph
self._normalize_graph(sources, sinks)
self.vertices_count = len(graph)
self.maximum_flow_algorithm = None
# make only one source and one sink
def _normalize_graph(self, sources, sinks):
if sources is int:
sources = [sources]
if sinks is int:
sinks = [sinks]
if len(sources) == 0 or len(sinks) == 0:
return
self.source_index = sources[0]
self.sink_index = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(sources) > 1 or len(sinks) > 1:
max_input_flow = 0
for i in sources:
max_input_flow += sum(self.graph[i])
size = len(self.graph) + 1
for room in self.graph:
room.insert(0, 0)
self.graph.insert(0, [0] * size)
for i in sources:
self.graph[0][i + 1] = max_input_flow
self.source_index = 0
size = len(self.graph) + 1
for room in self.graph:
room.append(0)
self.graph.append([0] * size)
for i in sinks:
self.graph[i + 1][size - 1] = max_input_flow
self.sink_index = size - 1
def find_maximum_flow(self):
if self.maximum_flow_algorithm is None:
raise Exception("You need to set maximum flow algorithm before.")
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def set_maximum_flow_algorithm(self, algorithm):
self.maximum_flow_algorithm = algorithm(self)
class FlowNetworkAlgorithmExecutor:
def __init__(self, flow_network):
self.flow_network = flow_network
self.verticies_count = flow_network.verticesCount
self.source_index = flow_network.sourceIndex
self.sink_index = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
self.graph = flow_network.graph
self.executed = False
def execute(self):
if not self.executed:
self._algorithm()
self.executed = True
# You should override it
def _algorithm(self):
pass
class MaximumFlowAlgorithmExecutor(FlowNetworkAlgorithmExecutor):
def __init__(self, flow_network):
super().__init__(flow_network)
# use this to save your result
self.maximum_flow = -1
def get_maximum_flow(self):
if not self.executed:
raise Exception("You should execute algorithm before using its result!")
return self.maximum_flow
class PushRelabelExecutor(MaximumFlowAlgorithmExecutor):
def __init__(self, flow_network):
super().__init__(flow_network)
self.preflow = [[0] * self.verticies_count for i in range(self.verticies_count)]
self.heights = [0] * self.verticies_count
self.excesses = [0] * self.verticies_count
def _algorithm(self):
self.heights[self.source_index] = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index]):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
vertices_list = [
i
for i in range(self.verticies_count)
if i not in {self.source_index, self.sink_index}
]
# move through list
i = 0
while i < len(vertices_list):
vertex_index = vertices_list[i]
previous_height = self.heights[vertex_index]
self.process_vertex(vertex_index)
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0, vertices_list.pop(i))
i = 0
else:
i += 1
self.maximum_flow = sum(self.preflow[self.source_index])
def process_vertex(self, vertex_index):
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(vertex_index, neighbour_index)
self.relabel(vertex_index)
def push(self, from_index, to_index):
preflow_delta = min(
self.excesses[from_index],
self.graph[from_index][to_index] - self.preflow[from_index][to_index],
)
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def relabel(self, vertex_index):
min_height = None
for to_index in range(self.verticies_count):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
min_height = self.heights[to_index]
if min_height is not None:
self.heights[vertex_index] = min_height + 1
if __name__ == "__main__":
entrances = [0]
exits = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
graph = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
flow_network = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
maximum_flow = flow_network.find_maximum_flow()
print(f"maximum flow is {maximum_flow}")
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | """
An implementation of interquartile range (IQR) which is a measure of statistical
dispersion, which is the spread of the data.
The function takes the list of numeric values as input and returns the IQR.
Script inspired by this Wikipedia article:
https://en.wikipedia.org/wiki/Interquartile_range
"""
from __future__ import annotations
def find_median(nums: list[int | float]) -> float:
"""
This is the implementation of the median.
:param nums: The list of numeric nums
:return: Median of the list
>>> find_median(nums=([1, 2, 2, 3, 4]))
2
>>> find_median(nums=([1, 2, 2, 3, 4, 4]))
2.5
>>> find_median(nums=([-1, 2, 0, 3, 4, -4]))
1.5
>>> find_median(nums=([1.1, 2.2, 2, 3.3, 4.4, 4]))
2.65
"""
div, mod = divmod(len(nums), 2)
if mod:
return nums[div]
return (nums[div] + nums[(div) - 1]) / 2
def interquartile_range(nums: list[int | float]) -> float:
"""
Return the interquartile range for a list of numeric values.
:param nums: The list of numeric values.
:return: interquartile range
>>> interquartile_range(nums=[4, 1, 2, 3, 2])
2.0
>>> interquartile_range(nums = [-2, -7, -10, 9, 8, 4, -67, 45])
17.0
>>> interquartile_range(nums = [-2.1, -7.1, -10.1, 9.1, 8.1, 4.1, -67.1, 45.1])
17.2
>>> interquartile_range(nums = [0, 0, 0, 0, 0])
0.0
>>> interquartile_range(nums=[])
Traceback (most recent call last):
...
ValueError: The list is empty. Provide a non-empty list.
"""
if not nums:
raise ValueError("The list is empty. Provide a non-empty list.")
nums.sort()
length = len(nums)
div, mod = divmod(length, 2)
q1 = find_median(nums[:div])
half_length = sum((div, mod))
q3 = find_median(nums[half_length:length])
return q3 - q1
if __name__ == "__main__":
import doctest
doctest.testmod()
| """
An implementation of interquartile range (IQR) which is a measure of statistical
dispersion, which is the spread of the data.
The function takes the list of numeric values as input and returns the IQR.
Script inspired by this Wikipedia article:
https://en.wikipedia.org/wiki/Interquartile_range
"""
from __future__ import annotations
def find_median(nums: list[int | float]) -> float:
"""
This is the implementation of the median.
:param nums: The list of numeric nums
:return: Median of the list
>>> find_median(nums=([1, 2, 2, 3, 4]))
2
>>> find_median(nums=([1, 2, 2, 3, 4, 4]))
2.5
>>> find_median(nums=([-1, 2, 0, 3, 4, -4]))
1.5
>>> find_median(nums=([1.1, 2.2, 2, 3.3, 4.4, 4]))
2.65
"""
div, mod = divmod(len(nums), 2)
if mod:
return nums[div]
return (nums[div] + nums[(div) - 1]) / 2
def interquartile_range(nums: list[int | float]) -> float:
"""
Return the interquartile range for a list of numeric values.
:param nums: The list of numeric values.
:return: interquartile range
>>> interquartile_range(nums=[4, 1, 2, 3, 2])
2.0
>>> interquartile_range(nums = [-2, -7, -10, 9, 8, 4, -67, 45])
17.0
>>> interquartile_range(nums = [-2.1, -7.1, -10.1, 9.1, 8.1, 4.1, -67.1, 45.1])
17.2
>>> interquartile_range(nums = [0, 0, 0, 0, 0])
0.0
>>> interquartile_range(nums=[])
Traceback (most recent call last):
...
ValueError: The list is empty. Provide a non-empty list.
"""
if not nums:
raise ValueError("The list is empty. Provide a non-empty list.")
nums.sort()
length = len(nums)
div, mod = divmod(length, 2)
q1 = find_median(nums[:div])
half_length = sum((div, mod))
q3 = find_median(nums[half_length:length])
return q3 - q1
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | from math import atan, cos, radians, sin, tan
from .haversine_distance import haversine_distance
AXIS_A = 6378137.0
AXIS_B = 6356752.314245
EQUATORIAL_RADIUS = 6378137
def lamberts_ellipsoidal_distance(
lat1: float, lon1: float, lat2: float, lon2: float
) -> float:
"""
Calculate the shortest distance along the surface of an ellipsoid between
two points on the surface of earth given longitudes and latitudes
https://en.wikipedia.org/wiki/Geographical_distance#Lambert's_formula_for_long_lines
NOTE: This algorithm uses geodesy/haversine_distance.py to compute central angle,
sigma
Representing the earth as an ellipsoid allows us to approximate distances between
points on the surface much better than a sphere. Ellipsoidal formulas treat the
Earth as an oblate ellipsoid which means accounting for the flattening that happens
at the North and South poles. Lambert's formulae provide accuracy on the order of
10 meteres over thousands of kilometeres. Other methods can provide
millimeter-level accuracy but this is a simpler method to calculate long range
distances without increasing computational intensity.
Args:
lat1, lon1: latitude and longitude of coordinate 1
lat2, lon2: latitude and longitude of coordinate 2
Returns:
geographical distance between two points in metres
>>> from collections import namedtuple
>>> point_2d = namedtuple("point_2d", "lat lon")
>>> SAN_FRANCISCO = point_2d(37.774856, -122.424227)
>>> YOSEMITE = point_2d(37.864742, -119.537521)
>>> NEW_YORK = point_2d(40.713019, -74.012647)
>>> VENICE = point_2d(45.443012, 12.313071)
>>> f"{lamberts_ellipsoidal_distance(*SAN_FRANCISCO, *YOSEMITE):0,.0f} meters"
'254,351 meters'
>>> f"{lamberts_ellipsoidal_distance(*SAN_FRANCISCO, *NEW_YORK):0,.0f} meters"
'4,138,992 meters'
>>> f"{lamberts_ellipsoidal_distance(*SAN_FRANCISCO, *VENICE):0,.0f} meters"
'9,737,326 meters'
"""
# CONSTANTS per WGS84 https://en.wikipedia.org/wiki/World_Geodetic_System
# Distance in metres(m)
# Equation Parameters
# https://en.wikipedia.org/wiki/Geographical_distance#Lambert's_formula_for_long_lines
flattening = (AXIS_A - AXIS_B) / AXIS_A
# Parametric latitudes
# https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude
b_lat1 = atan((1 - flattening) * tan(radians(lat1)))
b_lat2 = atan((1 - flattening) * tan(radians(lat2)))
# Compute central angle between two points
# using haversine theta. sigma = haversine_distance / equatorial radius
sigma = haversine_distance(lat1, lon1, lat2, lon2) / EQUATORIAL_RADIUS
# Intermediate P and Q values
p_value = (b_lat1 + b_lat2) / 2
q_value = (b_lat2 - b_lat1) / 2
# Intermediate X value
# X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2)
x_numerator = (sin(p_value) ** 2) * (cos(q_value) ** 2)
x_demonimator = cos(sigma / 2) ** 2
x_value = (sigma - sin(sigma)) * (x_numerator / x_demonimator)
# Intermediate Y value
# Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2)
y_numerator = (cos(p_value) ** 2) * (sin(q_value) ** 2)
y_denominator = sin(sigma / 2) ** 2
y_value = (sigma + sin(sigma)) * (y_numerator / y_denominator)
return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value)))
if __name__ == "__main__":
import doctest
doctest.testmod()
| from math import atan, cos, radians, sin, tan
from .haversine_distance import haversine_distance
AXIS_A = 6378137.0
AXIS_B = 6356752.314245
EQUATORIAL_RADIUS = 6378137
def lamberts_ellipsoidal_distance(
lat1: float, lon1: float, lat2: float, lon2: float
) -> float:
"""
Calculate the shortest distance along the surface of an ellipsoid between
two points on the surface of earth given longitudes and latitudes
https://en.wikipedia.org/wiki/Geographical_distance#Lambert's_formula_for_long_lines
NOTE: This algorithm uses geodesy/haversine_distance.py to compute central angle,
sigma
Representing the earth as an ellipsoid allows us to approximate distances between
points on the surface much better than a sphere. Ellipsoidal formulas treat the
Earth as an oblate ellipsoid which means accounting for the flattening that happens
at the North and South poles. Lambert's formulae provide accuracy on the order of
10 meteres over thousands of kilometeres. Other methods can provide
millimeter-level accuracy but this is a simpler method to calculate long range
distances without increasing computational intensity.
Args:
lat1, lon1: latitude and longitude of coordinate 1
lat2, lon2: latitude and longitude of coordinate 2
Returns:
geographical distance between two points in metres
>>> from collections import namedtuple
>>> point_2d = namedtuple("point_2d", "lat lon")
>>> SAN_FRANCISCO = point_2d(37.774856, -122.424227)
>>> YOSEMITE = point_2d(37.864742, -119.537521)
>>> NEW_YORK = point_2d(40.713019, -74.012647)
>>> VENICE = point_2d(45.443012, 12.313071)
>>> f"{lamberts_ellipsoidal_distance(*SAN_FRANCISCO, *YOSEMITE):0,.0f} meters"
'254,351 meters'
>>> f"{lamberts_ellipsoidal_distance(*SAN_FRANCISCO, *NEW_YORK):0,.0f} meters"
'4,138,992 meters'
>>> f"{lamberts_ellipsoidal_distance(*SAN_FRANCISCO, *VENICE):0,.0f} meters"
'9,737,326 meters'
"""
# CONSTANTS per WGS84 https://en.wikipedia.org/wiki/World_Geodetic_System
# Distance in metres(m)
# Equation Parameters
# https://en.wikipedia.org/wiki/Geographical_distance#Lambert's_formula_for_long_lines
flattening = (AXIS_A - AXIS_B) / AXIS_A
# Parametric latitudes
# https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude
b_lat1 = atan((1 - flattening) * tan(radians(lat1)))
b_lat2 = atan((1 - flattening) * tan(radians(lat2)))
# Compute central angle between two points
# using haversine theta. sigma = haversine_distance / equatorial radius
sigma = haversine_distance(lat1, lon1, lat2, lon2) / EQUATORIAL_RADIUS
# Intermediate P and Q values
p_value = (b_lat1 + b_lat2) / 2
q_value = (b_lat2 - b_lat1) / 2
# Intermediate X value
# X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2)
x_numerator = (sin(p_value) ** 2) * (cos(q_value) ** 2)
x_demonimator = cos(sigma / 2) ** 2
x_value = (sigma - sin(sigma)) * (x_numerator / x_demonimator)
# Intermediate Y value
# Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2)
y_numerator = (cos(p_value) ** 2) * (sin(q_value) ** 2)
y_denominator = sin(sigma / 2) ** 2
y_value = (sigma + sin(sigma)) * (y_numerator / y_denominator)
return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value)))
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | -1 |
||
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | -1 |
||
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | import math
def perfect_square(num: int) -> bool:
"""
Check if a number is perfect square number or not
:param num: the number to be checked
:return: True if number is square number, otherwise False
>>> perfect_square(9)
True
>>> perfect_square(16)
True
>>> perfect_square(1)
True
>>> perfect_square(0)
True
>>> perfect_square(10)
False
"""
return math.sqrt(num) * math.sqrt(num) == num
def perfect_square_binary_search(n: int) -> bool:
"""
Check if a number is perfect square using binary search.
Time complexity : O(Log(n))
Space complexity: O(1)
>>> perfect_square_binary_search(9)
True
>>> perfect_square_binary_search(16)
True
>>> perfect_square_binary_search(1)
True
>>> perfect_square_binary_search(0)
True
>>> perfect_square_binary_search(10)
False
>>> perfect_square_binary_search(-1)
False
>>> perfect_square_binary_search(1.1)
False
>>> perfect_square_binary_search("a")
Traceback (most recent call last):
...
TypeError: '<=' not supported between instances of 'int' and 'str'
>>> perfect_square_binary_search(None)
Traceback (most recent call last):
...
TypeError: '<=' not supported between instances of 'int' and 'NoneType'
>>> perfect_square_binary_search([])
Traceback (most recent call last):
...
TypeError: '<=' not supported between instances of 'int' and 'list'
"""
left = 0
right = n
while left <= right:
mid = (left + right) // 2
if mid**2 == n:
return True
elif mid**2 > n:
right = mid - 1
else:
left = mid + 1
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| import math
def perfect_square(num: int) -> bool:
"""
Check if a number is perfect square number or not
:param num: the number to be checked
:return: True if number is square number, otherwise False
>>> perfect_square(9)
True
>>> perfect_square(16)
True
>>> perfect_square(1)
True
>>> perfect_square(0)
True
>>> perfect_square(10)
False
"""
return math.sqrt(num) * math.sqrt(num) == num
def perfect_square_binary_search(n: int) -> bool:
"""
Check if a number is perfect square using binary search.
Time complexity : O(Log(n))
Space complexity: O(1)
>>> perfect_square_binary_search(9)
True
>>> perfect_square_binary_search(16)
True
>>> perfect_square_binary_search(1)
True
>>> perfect_square_binary_search(0)
True
>>> perfect_square_binary_search(10)
False
>>> perfect_square_binary_search(-1)
False
>>> perfect_square_binary_search(1.1)
False
>>> perfect_square_binary_search("a")
Traceback (most recent call last):
...
TypeError: '<=' not supported between instances of 'int' and 'str'
>>> perfect_square_binary_search(None)
Traceback (most recent call last):
...
TypeError: '<=' not supported between instances of 'int' and 'NoneType'
>>> perfect_square_binary_search([])
Traceback (most recent call last):
...
TypeError: '<=' not supported between instances of 'int' and 'list'
"""
left = 0
right = n
while left <= right:
mid = (left + right) // 2
if mid**2 == n:
return True
elif mid**2 > n:
right = mid - 1
else:
left = mid + 1
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | """
Checks if a system of forces is in static equilibrium.
"""
from __future__ import annotations
from numpy import array, cos, cross, float64, radians, sin
from numpy.typing import NDArray
def polar_force(
magnitude: float, angle: float, radian_mode: bool = False
) -> list[float]:
"""
Resolves force along rectangular components.
(force, angle) => (force_x, force_y)
>>> import math
>>> force = polar_force(10, 45)
>>> math.isclose(force[0], 7.071067811865477)
True
>>> math.isclose(force[1], 7.0710678118654755)
True
>>> force = polar_force(10, 3.14, radian_mode=True)
>>> math.isclose(force[0], -9.999987317275396)
True
>>> math.isclose(force[1], 0.01592652916486828)
True
"""
if radian_mode:
return [magnitude * cos(angle), magnitude * sin(angle)]
return [magnitude * cos(radians(angle)), magnitude * sin(radians(angle))]
def in_static_equilibrium(
forces: NDArray[float64], location: NDArray[float64], eps: float = 10**-1
) -> bool:
"""
Check if a system is in equilibrium.
It takes two numpy.array objects.
forces ==> [
[force1_x, force1_y],
[force2_x, force2_y],
....]
location ==> [
[x1, y1],
[x2, y2],
....]
>>> force = array([[1, 1], [-1, 2]])
>>> location = array([[1, 0], [10, 0]])
>>> in_static_equilibrium(force, location)
False
"""
# summation of moments is zero
moments: NDArray[float64] = cross(location, forces)
sum_moments: float = sum(moments)
return abs(sum_moments) < eps
if __name__ == "__main__":
# Test to check if it works
forces = array(
[
polar_force(718.4, 180 - 30),
polar_force(879.54, 45),
polar_force(100, -90),
]
)
location: NDArray[float64] = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem 1 in image_data/2D_problems.jpg
forces = array(
[
polar_force(30 * 9.81, 15),
polar_force(215, 180 - 45),
polar_force(264, 90 - 30),
]
)
location = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem in image_data/2D_problems_1.jpg
forces = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]])
location = array([[0, 0], [6, 0], [10, 0], [12, 0]])
assert in_static_equilibrium(forces, location)
import doctest
doctest.testmod()
| """
Checks if a system of forces is in static equilibrium.
"""
from __future__ import annotations
from numpy import array, cos, cross, float64, radians, sin
from numpy.typing import NDArray
def polar_force(
magnitude: float, angle: float, radian_mode: bool = False
) -> list[float]:
"""
Resolves force along rectangular components.
(force, angle) => (force_x, force_y)
>>> import math
>>> force = polar_force(10, 45)
>>> math.isclose(force[0], 7.071067811865477)
True
>>> math.isclose(force[1], 7.0710678118654755)
True
>>> force = polar_force(10, 3.14, radian_mode=True)
>>> math.isclose(force[0], -9.999987317275396)
True
>>> math.isclose(force[1], 0.01592652916486828)
True
"""
if radian_mode:
return [magnitude * cos(angle), magnitude * sin(angle)]
return [magnitude * cos(radians(angle)), magnitude * sin(radians(angle))]
def in_static_equilibrium(
forces: NDArray[float64], location: NDArray[float64], eps: float = 10**-1
) -> bool:
"""
Check if a system is in equilibrium.
It takes two numpy.array objects.
forces ==> [
[force1_x, force1_y],
[force2_x, force2_y],
....]
location ==> [
[x1, y1],
[x2, y2],
....]
>>> force = array([[1, 1], [-1, 2]])
>>> location = array([[1, 0], [10, 0]])
>>> in_static_equilibrium(force, location)
False
"""
# summation of moments is zero
moments: NDArray[float64] = cross(location, forces)
sum_moments: float = sum(moments)
return abs(sum_moments) < eps
if __name__ == "__main__":
# Test to check if it works
forces = array(
[
polar_force(718.4, 180 - 30),
polar_force(879.54, 45),
polar_force(100, -90),
]
)
location: NDArray[float64] = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem 1 in image_data/2D_problems.jpg
forces = array(
[
polar_force(30 * 9.81, 15),
polar_force(215, 180 - 45),
polar_force(264, 90 - 30),
]
)
location = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem in image_data/2D_problems_1.jpg
forces = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]])
location = array([[0, 0], [6, 0], [10, 0], [12, 0]])
assert in_static_equilibrium(forces, location)
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | """
Normalization.
Wikipedia: https://en.wikipedia.org/wiki/Normalization
Normalization is the process of converting numerical data to a standard range of values.
This range is typically between [0, 1] or [-1, 1]. The equation for normalization is
x_norm = (x - x_min)/(x_max - x_min) where x_norm is the normalized value, x is the
value, x_min is the minimum value within the column or list of data, and x_max is the
maximum value within the column or list of data. Normalization is used to speed up the
training of data and put all of the data on a similar scale. This is useful because
variance in the range of values of a dataset can heavily impact optimization
(particularly Gradient Descent).
Standardization Wikipedia: https://en.wikipedia.org/wiki/Standardization
Standardization is the process of converting numerical data to a normally distributed
range of values. This range will have a mean of 0 and standard deviation of 1. This is
also known as z-score normalization. The equation for standardization is
x_std = (x - mu)/(sigma) where mu is the mean of the column or list of values and sigma
is the standard deviation of the column or list of values.
Choosing between Normalization & Standardization is more of an art of a science, but it
is often recommended to run experiments with both to see which performs better.
Additionally, a few rules of thumb are:
1. gaussian (normal) distributions work better with standardization
2. non-gaussian (non-normal) distributions work better with normalization
3. If a column or list of values has extreme values / outliers, use standardization
"""
from statistics import mean, stdev
def normalization(data: list, ndigits: int = 3) -> list:
"""
Return a normalized list of values.
@params: data, a list of values to normalize
@returns: a list of normalized values (rounded to ndigits decimal places)
@examples:
>>> normalization([2, 7, 10, 20, 30, 50])
[0.0, 0.104, 0.167, 0.375, 0.583, 1.0]
>>> normalization([5, 10, 15, 20, 25])
[0.0, 0.25, 0.5, 0.75, 1.0]
"""
# variables for calculation
x_min = min(data)
x_max = max(data)
# normalize data
return [round((x - x_min) / (x_max - x_min), ndigits) for x in data]
def standardization(data: list, ndigits: int = 3) -> list:
"""
Return a standardized list of values.
@params: data, a list of values to standardize
@returns: a list of standardized values (rounded to ndigits decimal places)
@examples:
>>> standardization([2, 7, 10, 20, 30, 50])
[-0.999, -0.719, -0.551, 0.009, 0.57, 1.69]
>>> standardization([5, 10, 15, 20, 25])
[-1.265, -0.632, 0.0, 0.632, 1.265]
"""
# variables for calculation
mu = mean(data)
sigma = stdev(data)
# standardize data
return [round((x - mu) / (sigma), ndigits) for x in data]
| """
Normalization.
Wikipedia: https://en.wikipedia.org/wiki/Normalization
Normalization is the process of converting numerical data to a standard range of values.
This range is typically between [0, 1] or [-1, 1]. The equation for normalization is
x_norm = (x - x_min)/(x_max - x_min) where x_norm is the normalized value, x is the
value, x_min is the minimum value within the column or list of data, and x_max is the
maximum value within the column or list of data. Normalization is used to speed up the
training of data and put all of the data on a similar scale. This is useful because
variance in the range of values of a dataset can heavily impact optimization
(particularly Gradient Descent).
Standardization Wikipedia: https://en.wikipedia.org/wiki/Standardization
Standardization is the process of converting numerical data to a normally distributed
range of values. This range will have a mean of 0 and standard deviation of 1. This is
also known as z-score normalization. The equation for standardization is
x_std = (x - mu)/(sigma) where mu is the mean of the column or list of values and sigma
is the standard deviation of the column or list of values.
Choosing between Normalization & Standardization is more of an art of a science, but it
is often recommended to run experiments with both to see which performs better.
Additionally, a few rules of thumb are:
1. gaussian (normal) distributions work better with standardization
2. non-gaussian (non-normal) distributions work better with normalization
3. If a column or list of values has extreme values / outliers, use standardization
"""
from statistics import mean, stdev
def normalization(data: list, ndigits: int = 3) -> list:
"""
Return a normalized list of values.
@params: data, a list of values to normalize
@returns: a list of normalized values (rounded to ndigits decimal places)
@examples:
>>> normalization([2, 7, 10, 20, 30, 50])
[0.0, 0.104, 0.167, 0.375, 0.583, 1.0]
>>> normalization([5, 10, 15, 20, 25])
[0.0, 0.25, 0.5, 0.75, 1.0]
"""
# variables for calculation
x_min = min(data)
x_max = max(data)
# normalize data
return [round((x - x_min) / (x_max - x_min), ndigits) for x in data]
def standardization(data: list, ndigits: int = 3) -> list:
"""
Return a standardized list of values.
@params: data, a list of values to standardize
@returns: a list of standardized values (rounded to ndigits decimal places)
@examples:
>>> standardization([2, 7, 10, 20, 30, 50])
[-0.999, -0.719, -0.551, 0.009, 0.57, 1.69]
>>> standardization([5, 10, 15, 20, 25])
[-1.265, -0.632, 0.0, 0.632, 1.265]
"""
# variables for calculation
mu = mean(data)
sigma = stdev(data)
# standardize data
return [round((x - mu) / (sigma), ndigits) for x in data]
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | """
https://en.wikipedia.org/wiki/Rayleigh_quotient
"""
from typing import Any
import numpy as np
def is_hermitian(matrix: np.ndarray) -> bool:
"""
Checks if a matrix is Hermitian.
>>> import numpy as np
>>> A = np.array([
... [2, 2+1j, 4],
... [2-1j, 3, 1j],
... [4, -1j, 1]])
>>> is_hermitian(A)
True
>>> A = np.array([
... [2, 2+1j, 4+1j],
... [2-1j, 3, 1j],
... [4, -1j, 1]])
>>> is_hermitian(A)
False
"""
return np.array_equal(matrix, matrix.conjugate().T)
def rayleigh_quotient(a: np.ndarray, v: np.ndarray) -> Any:
"""
Returns the Rayleigh quotient of a Hermitian matrix A and
vector v.
>>> import numpy as np
>>> A = np.array([
... [1, 2, 4],
... [2, 3, -1],
... [4, -1, 1]
... ])
>>> v = np.array([
... [1],
... [2],
... [3]
... ])
>>> rayleigh_quotient(A, v)
array([[3.]])
"""
v_star = v.conjugate().T
v_star_dot = v_star.dot(a)
assert isinstance(v_star_dot, np.ndarray)
return (v_star_dot.dot(v)) / (v_star.dot(v))
def tests() -> None:
a = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]])
v = np.array([[1], [2], [3]])
assert is_hermitian(a), f"{a} is not hermitian."
print(rayleigh_quotient(a, v))
a = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]])
assert is_hermitian(a), f"{a} is not hermitian."
assert rayleigh_quotient(a, v) == float(3)
if __name__ == "__main__":
import doctest
doctest.testmod()
tests()
| """
https://en.wikipedia.org/wiki/Rayleigh_quotient
"""
from typing import Any
import numpy as np
def is_hermitian(matrix: np.ndarray) -> bool:
"""
Checks if a matrix is Hermitian.
>>> import numpy as np
>>> A = np.array([
... [2, 2+1j, 4],
... [2-1j, 3, 1j],
... [4, -1j, 1]])
>>> is_hermitian(A)
True
>>> A = np.array([
... [2, 2+1j, 4+1j],
... [2-1j, 3, 1j],
... [4, -1j, 1]])
>>> is_hermitian(A)
False
"""
return np.array_equal(matrix, matrix.conjugate().T)
def rayleigh_quotient(a: np.ndarray, v: np.ndarray) -> Any:
"""
Returns the Rayleigh quotient of a Hermitian matrix A and
vector v.
>>> import numpy as np
>>> A = np.array([
... [1, 2, 4],
... [2, 3, -1],
... [4, -1, 1]
... ])
>>> v = np.array([
... [1],
... [2],
... [3]
... ])
>>> rayleigh_quotient(A, v)
array([[3.]])
"""
v_star = v.conjugate().T
v_star_dot = v_star.dot(a)
assert isinstance(v_star_dot, np.ndarray)
return (v_star_dot.dot(v)) / (v_star.dot(v))
def tests() -> None:
a = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]])
v = np.array([[1], [2], [3]])
assert is_hermitian(a), f"{a} is not hermitian."
print(rayleigh_quotient(a, v))
a = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]])
assert is_hermitian(a), f"{a} is not hermitian."
assert rayleigh_quotient(a, v) == float(3)
if __name__ == "__main__":
import doctest
doctest.testmod()
tests()
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | """
Implementation of finding nth fibonacci number using matrix exponentiation.
Time Complexity is about O(log(n)*8), where 8 is the complexity of matrix
multiplication of size 2 by 2.
And on the other hand complexity of bruteforce solution is O(n).
As we know
f[n] = f[n-1] + f[n-1]
Converting to matrix,
[f(n),f(n-1)] = [[1,1],[1,0]] * [f(n-1),f(n-2)]
-> [f(n),f(n-1)] = [[1,1],[1,0]]^2 * [f(n-2),f(n-3)]
...
...
-> [f(n),f(n-1)] = [[1,1],[1,0]]^(n-1) * [f(1),f(0)]
So we just need the n times multiplication of the matrix [1,1],[1,0]].
We can decrease the n times multiplication by following the divide and conquer approach.
"""
def multiply(matrix_a: list[list[int]], matrix_b: list[list[int]]) -> list[list[int]]:
matrix_c = []
n = len(matrix_a)
for i in range(n):
list_1 = []
for j in range(n):
val = 0
for k in range(n):
val = val + matrix_a[i][k] * matrix_b[k][j]
list_1.append(val)
matrix_c.append(list_1)
return matrix_c
def identity(n: int) -> list[list[int]]:
return [[int(row == column) for column in range(n)] for row in range(n)]
def nth_fibonacci_matrix(n: int) -> int:
"""
>>> nth_fibonacci_matrix(100)
354224848179261915075
>>> nth_fibonacci_matrix(-100)
-100
"""
if n <= 1:
return n
res_matrix = identity(2)
fibonacci_matrix = [[1, 1], [1, 0]]
n = n - 1
while n > 0:
if n % 2 == 1:
res_matrix = multiply(res_matrix, fibonacci_matrix)
fibonacci_matrix = multiply(fibonacci_matrix, fibonacci_matrix)
n = int(n / 2)
return res_matrix[0][0]
def nth_fibonacci_bruteforce(n: int) -> int:
"""
>>> nth_fibonacci_bruteforce(100)
354224848179261915075
>>> nth_fibonacci_bruteforce(-100)
-100
"""
if n <= 1:
return n
fib0 = 0
fib1 = 1
for _ in range(2, n + 1):
fib0, fib1 = fib1, fib0 + fib1
return fib1
def main() -> None:
for ordinal in "0th 1st 2nd 3rd 10th 100th 1000th".split():
n = int("".join(c for c in ordinal if c in "0123456789")) # 1000th --> 1000
print(
f"{ordinal} fibonacci number using matrix exponentiation is "
f"{nth_fibonacci_matrix(n)} and using bruteforce is "
f"{nth_fibonacci_bruteforce(n)}\n"
)
# from timeit import timeit
# print(timeit("nth_fibonacci_matrix(1000000)",
# "from main import nth_fibonacci_matrix", number=5))
# print(timeit("nth_fibonacci_bruteforce(1000000)",
# "from main import nth_fibonacci_bruteforce", number=5))
# 2.3342058970001744
# 57.256506615000035
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| """
Implementation of finding nth fibonacci number using matrix exponentiation.
Time Complexity is about O(log(n)*8), where 8 is the complexity of matrix
multiplication of size 2 by 2.
And on the other hand complexity of bruteforce solution is O(n).
As we know
f[n] = f[n-1] + f[n-1]
Converting to matrix,
[f(n),f(n-1)] = [[1,1],[1,0]] * [f(n-1),f(n-2)]
-> [f(n),f(n-1)] = [[1,1],[1,0]]^2 * [f(n-2),f(n-3)]
...
...
-> [f(n),f(n-1)] = [[1,1],[1,0]]^(n-1) * [f(1),f(0)]
So we just need the n times multiplication of the matrix [1,1],[1,0]].
We can decrease the n times multiplication by following the divide and conquer approach.
"""
def multiply(matrix_a: list[list[int]], matrix_b: list[list[int]]) -> list[list[int]]:
matrix_c = []
n = len(matrix_a)
for i in range(n):
list_1 = []
for j in range(n):
val = 0
for k in range(n):
val = val + matrix_a[i][k] * matrix_b[k][j]
list_1.append(val)
matrix_c.append(list_1)
return matrix_c
def identity(n: int) -> list[list[int]]:
return [[int(row == column) for column in range(n)] for row in range(n)]
def nth_fibonacci_matrix(n: int) -> int:
"""
>>> nth_fibonacci_matrix(100)
354224848179261915075
>>> nth_fibonacci_matrix(-100)
-100
"""
if n <= 1:
return n
res_matrix = identity(2)
fibonacci_matrix = [[1, 1], [1, 0]]
n = n - 1
while n > 0:
if n % 2 == 1:
res_matrix = multiply(res_matrix, fibonacci_matrix)
fibonacci_matrix = multiply(fibonacci_matrix, fibonacci_matrix)
n = int(n / 2)
return res_matrix[0][0]
def nth_fibonacci_bruteforce(n: int) -> int:
"""
>>> nth_fibonacci_bruteforce(100)
354224848179261915075
>>> nth_fibonacci_bruteforce(-100)
-100
"""
if n <= 1:
return n
fib0 = 0
fib1 = 1
for _ in range(2, n + 1):
fib0, fib1 = fib1, fib0 + fib1
return fib1
def main() -> None:
for ordinal in "0th 1st 2nd 3rd 10th 100th 1000th".split():
n = int("".join(c for c in ordinal if c in "0123456789")) # 1000th --> 1000
print(
f"{ordinal} fibonacci number using matrix exponentiation is "
f"{nth_fibonacci_matrix(n)} and using bruteforce is "
f"{nth_fibonacci_bruteforce(n)}\n"
)
# from timeit import timeit
# print(timeit("nth_fibonacci_matrix(1000000)",
# "from main import nth_fibonacci_matrix", number=5))
# print(timeit("nth_fibonacci_bruteforce(1000000)",
# "from main import nth_fibonacci_bruteforce", number=5))
# 2.3342058970001744
# 57.256506615000035
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | """Created by Nathan Damon, @bizzfitch on github
>>> test_miller_rabin()
"""
def miller_rabin(n: int, allow_probable: bool = False) -> bool:
"""Deterministic Miller-Rabin algorithm for primes ~< 3.32e24.
Uses numerical analysis results to return whether or not the passed number
is prime. If the passed number is above the upper limit, and
allow_probable is True, then a return value of True indicates that n is
probably prime. This test does not allow False negatives- a return value
of False is ALWAYS composite.
Parameters
----------
n : int
The integer to be tested. Since we usually care if a number is prime,
n < 2 returns False instead of raising a ValueError.
allow_probable: bool, default False
Whether or not to test n above the upper bound of the deterministic test.
Raises
------
ValueError
Reference
---------
https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test
"""
if n == 2:
return True
if not n % 2 or n < 2:
return False
if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit
return False
if n > 3_317_044_064_679_887_385_961_981 and not allow_probable:
raise ValueError(
"Warning: upper bound of deterministic test is exceeded. "
"Pass allow_probable=True to allow probabilistic test. "
"A return value of True indicates a probable prime."
)
# array bounds provided by analysis
bounds = [
2_047,
1_373_653,
25_326_001,
3_215_031_751,
2_152_302_898_747,
3_474_749_660_383,
341_550_071_728_321,
1,
3_825_123_056_546_413_051,
1,
1,
318_665_857_834_031_151_167_461,
3_317_044_064_679_887_385_961_981,
]
primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41]
for idx, _p in enumerate(bounds, 1):
if n < _p:
# then we have our last prime to check
plist = primes[:idx]
break
d, s = n - 1, 0
# break up n -1 into a power of 2 (s) and
# remaining odd component
# essentially, solve for d * 2 ** s == n - 1
while d % 2 == 0:
d //= 2
s += 1
for prime in plist:
pr = False
for r in range(s):
m = pow(prime, d * 2**r, n)
# see article for analysis explanation for m
if (r == 0 and m == 1) or ((m + 1) % n == 0):
pr = True
# this loop will not determine compositeness
break
if pr:
continue
# if pr is False, then the above loop never evaluated to true,
# and the n MUST be composite
return False
return True
def test_miller_rabin() -> None:
"""Testing a nontrivial (ends in 1, 3, 7, 9) composite
and a prime in each range.
"""
assert not miller_rabin(561)
assert miller_rabin(563)
# 2047
assert not miller_rabin(838_201)
assert miller_rabin(838_207)
# 1_373_653
assert not miller_rabin(17_316_001)
assert miller_rabin(17_316_017)
# 25_326_001
assert not miller_rabin(3_078_386_641)
assert miller_rabin(3_078_386_653)
# 3_215_031_751
assert not miller_rabin(1_713_045_574_801)
assert miller_rabin(1_713_045_574_819)
# 2_152_302_898_747
assert not miller_rabin(2_779_799_728_307)
assert miller_rabin(2_779_799_728_327)
# 3_474_749_660_383
assert not miller_rabin(113_850_023_909_441)
assert miller_rabin(113_850_023_909_527)
# 341_550_071_728_321
assert not miller_rabin(1_275_041_018_848_804_351)
assert miller_rabin(1_275_041_018_848_804_391)
# 3_825_123_056_546_413_051
assert not miller_rabin(79_666_464_458_507_787_791_867)
assert miller_rabin(79_666_464_458_507_787_791_951)
# 318_665_857_834_031_151_167_461
assert not miller_rabin(552_840_677_446_647_897_660_333)
assert miller_rabin(552_840_677_446_647_897_660_359)
# 3_317_044_064_679_887_385_961_981
# upper limit for probabilistic test
if __name__ == "__main__":
test_miller_rabin()
| """Created by Nathan Damon, @bizzfitch on github
>>> test_miller_rabin()
"""
def miller_rabin(n: int, allow_probable: bool = False) -> bool:
"""Deterministic Miller-Rabin algorithm for primes ~< 3.32e24.
Uses numerical analysis results to return whether or not the passed number
is prime. If the passed number is above the upper limit, and
allow_probable is True, then a return value of True indicates that n is
probably prime. This test does not allow False negatives- a return value
of False is ALWAYS composite.
Parameters
----------
n : int
The integer to be tested. Since we usually care if a number is prime,
n < 2 returns False instead of raising a ValueError.
allow_probable: bool, default False
Whether or not to test n above the upper bound of the deterministic test.
Raises
------
ValueError
Reference
---------
https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test
"""
if n == 2:
return True
if not n % 2 or n < 2:
return False
if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit
return False
if n > 3_317_044_064_679_887_385_961_981 and not allow_probable:
raise ValueError(
"Warning: upper bound of deterministic test is exceeded. "
"Pass allow_probable=True to allow probabilistic test. "
"A return value of True indicates a probable prime."
)
# array bounds provided by analysis
bounds = [
2_047,
1_373_653,
25_326_001,
3_215_031_751,
2_152_302_898_747,
3_474_749_660_383,
341_550_071_728_321,
1,
3_825_123_056_546_413_051,
1,
1,
318_665_857_834_031_151_167_461,
3_317_044_064_679_887_385_961_981,
]
primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41]
for idx, _p in enumerate(bounds, 1):
if n < _p:
# then we have our last prime to check
plist = primes[:idx]
break
d, s = n - 1, 0
# break up n -1 into a power of 2 (s) and
# remaining odd component
# essentially, solve for d * 2 ** s == n - 1
while d % 2 == 0:
d //= 2
s += 1
for prime in plist:
pr = False
for r in range(s):
m = pow(prime, d * 2**r, n)
# see article for analysis explanation for m
if (r == 0 and m == 1) or ((m + 1) % n == 0):
pr = True
# this loop will not determine compositeness
break
if pr:
continue
# if pr is False, then the above loop never evaluated to true,
# and the n MUST be composite
return False
return True
def test_miller_rabin() -> None:
"""Testing a nontrivial (ends in 1, 3, 7, 9) composite
and a prime in each range.
"""
assert not miller_rabin(561)
assert miller_rabin(563)
# 2047
assert not miller_rabin(838_201)
assert miller_rabin(838_207)
# 1_373_653
assert not miller_rabin(17_316_001)
assert miller_rabin(17_316_017)
# 25_326_001
assert not miller_rabin(3_078_386_641)
assert miller_rabin(3_078_386_653)
# 3_215_031_751
assert not miller_rabin(1_713_045_574_801)
assert miller_rabin(1_713_045_574_819)
# 2_152_302_898_747
assert not miller_rabin(2_779_799_728_307)
assert miller_rabin(2_779_799_728_327)
# 3_474_749_660_383
assert not miller_rabin(113_850_023_909_441)
assert miller_rabin(113_850_023_909_527)
# 341_550_071_728_321
assert not miller_rabin(1_275_041_018_848_804_351)
assert miller_rabin(1_275_041_018_848_804_391)
# 3_825_123_056_546_413_051
assert not miller_rabin(79_666_464_458_507_787_791_867)
assert miller_rabin(79_666_464_458_507_787_791_951)
# 318_665_857_834_031_151_167_461
assert not miller_rabin(552_840_677_446_647_897_660_333)
assert miller_rabin(552_840_677_446_647_897_660_359)
# 3_317_044_064_679_887_385_961_981
# upper limit for probabilistic test
if __name__ == "__main__":
test_miller_rabin()
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | """
This module contains the functions to calculate the focal length, object distance
and image distance of a mirror.
The mirror formula is an equation that relates the object distance (u),
image distance (v), and focal length (f) of a spherical mirror.
It is commonly used in optics to determine the position and characteristics
of an image formed by a mirror. It is expressed using the formulae :
-------------------
| 1/f = 1/v + 1/u |
-------------------
Where,
f = Focal length of the spherical mirror (metre)
v = Image distance from the mirror (metre)
u = Object distance from the mirror (metre)
The signs of the distances are taken with respect to the sign convention.
The sign convention is as follows:
1) Object is always placed to the left of mirror
2) Distances measured in the direction of the incident ray are positive
and the distances measured in the direction opposite to that of the incident
rays are negative.
3) All distances are measured from the pole of the mirror.
There are a few assumptions that are made while using the mirror formulae.
They are as follows:
1) Thin Mirror: The mirror is assumed to be thin, meaning its thickness is
negligible compared to its radius of curvature. This assumption allows
us to treat the mirror as a two-dimensional surface.
2) Spherical Mirror: The mirror is assumed to have a spherical shape. While this
assumption may not hold exactly for all mirrors, it is a reasonable approximation
for most practical purposes.
3) Small Angles: The angles involved in the derivation are assumed to be small.
This assumption allows us to use the small-angle approximation, where the tangent
of a small angle is approximately equal to the angle itself. It simplifies the
calculations and makes the derivation more manageable.
4) Paraxial Rays: The mirror formula is derived using paraxial rays, which are
rays that are close to the principal axis and make small angles with it. This
assumption ensures that the rays are close enough to the principal axis, making the
calculations more accurate.
5) Reflection and Refraction Laws: The derivation assumes that the laws of
reflection and refraction hold.
These laws state that the angle of incidence is equal to the angle of reflection
for reflection, and the incident and refracted rays lie in the same plane and
obey Snell's law for refraction.
(Description and Assumptions adapted from
https://www.collegesearch.in/articles/mirror-formula-derivation)
(Sign Convention adapted from
https://www.toppr.com/ask/content/concept/sign-convention-for-mirrors-210189/)
"""
def focal_length(distance_of_object: float, distance_of_image: float) -> float:
"""
>>> from math import isclose
>>> isclose(focal_length(10, 20), 6.66666666666666)
True
>>> from math import isclose
>>> isclose(focal_length(9.5, 6.7), 3.929012346)
True
>>> focal_length(0, 20) # doctest: +NORMALIZE_WHITESPACE
Traceback (most recent call last):
...
ValueError: Invalid inputs. Enter non zero values with respect
to the sign convention.
"""
if distance_of_object == 0 or distance_of_image == 0:
raise ValueError(
"Invalid inputs. Enter non zero values with respect to the sign convention."
)
focal_length = 1 / ((1 / distance_of_object) + (1 / distance_of_image))
return focal_length
def object_distance(focal_length: float, distance_of_image: float) -> float:
"""
>>> from math import isclose
>>> isclose(object_distance(30, 20), -60.0)
True
>>> from math import isclose
>>> isclose(object_distance(10.5, 11.7), 102.375)
True
>>> object_distance(90, 0) # doctest: +NORMALIZE_WHITESPACE
Traceback (most recent call last):
...
ValueError: Invalid inputs. Enter non zero values with respect
to the sign convention.
"""
if distance_of_image == 0 or focal_length == 0:
raise ValueError(
"Invalid inputs. Enter non zero values with respect to the sign convention."
)
object_distance = 1 / ((1 / focal_length) - (1 / distance_of_image))
return object_distance
def image_distance(focal_length: float, distance_of_object: float) -> float:
"""
>>> from math import isclose
>>> isclose(image_distance(10, 40), 13.33333333)
True
>>> from math import isclose
>>> isclose(image_distance(1.5, 6.7), 1.932692308)
True
>>> image_distance(0, 0) # doctest: +NORMALIZE_WHITESPACE
Traceback (most recent call last):
...
ValueError: Invalid inputs. Enter non zero values with respect
to the sign convention.
"""
if distance_of_object == 0 or focal_length == 0:
raise ValueError(
"Invalid inputs. Enter non zero values with respect to the sign convention."
)
image_distance = 1 / ((1 / focal_length) - (1 / distance_of_object))
return image_distance
| """
This module contains the functions to calculate the focal length, object distance
and image distance of a mirror.
The mirror formula is an equation that relates the object distance (u),
image distance (v), and focal length (f) of a spherical mirror.
It is commonly used in optics to determine the position and characteristics
of an image formed by a mirror. It is expressed using the formulae :
-------------------
| 1/f = 1/v + 1/u |
-------------------
Where,
f = Focal length of the spherical mirror (metre)
v = Image distance from the mirror (metre)
u = Object distance from the mirror (metre)
The signs of the distances are taken with respect to the sign convention.
The sign convention is as follows:
1) Object is always placed to the left of mirror
2) Distances measured in the direction of the incident ray are positive
and the distances measured in the direction opposite to that of the incident
rays are negative.
3) All distances are measured from the pole of the mirror.
There are a few assumptions that are made while using the mirror formulae.
They are as follows:
1) Thin Mirror: The mirror is assumed to be thin, meaning its thickness is
negligible compared to its radius of curvature. This assumption allows
us to treat the mirror as a two-dimensional surface.
2) Spherical Mirror: The mirror is assumed to have a spherical shape. While this
assumption may not hold exactly for all mirrors, it is a reasonable approximation
for most practical purposes.
3) Small Angles: The angles involved in the derivation are assumed to be small.
This assumption allows us to use the small-angle approximation, where the tangent
of a small angle is approximately equal to the angle itself. It simplifies the
calculations and makes the derivation more manageable.
4) Paraxial Rays: The mirror formula is derived using paraxial rays, which are
rays that are close to the principal axis and make small angles with it. This
assumption ensures that the rays are close enough to the principal axis, making the
calculations more accurate.
5) Reflection and Refraction Laws: The derivation assumes that the laws of
reflection and refraction hold.
These laws state that the angle of incidence is equal to the angle of reflection
for reflection, and the incident and refracted rays lie in the same plane and
obey Snell's law for refraction.
(Description and Assumptions adapted from
https://www.collegesearch.in/articles/mirror-formula-derivation)
(Sign Convention adapted from
https://www.toppr.com/ask/content/concept/sign-convention-for-mirrors-210189/)
"""
def focal_length(distance_of_object: float, distance_of_image: float) -> float:
"""
>>> from math import isclose
>>> isclose(focal_length(10, 20), 6.66666666666666)
True
>>> from math import isclose
>>> isclose(focal_length(9.5, 6.7), 3.929012346)
True
>>> focal_length(0, 20) # doctest: +NORMALIZE_WHITESPACE
Traceback (most recent call last):
...
ValueError: Invalid inputs. Enter non zero values with respect
to the sign convention.
"""
if distance_of_object == 0 or distance_of_image == 0:
raise ValueError(
"Invalid inputs. Enter non zero values with respect to the sign convention."
)
focal_length = 1 / ((1 / distance_of_object) + (1 / distance_of_image))
return focal_length
def object_distance(focal_length: float, distance_of_image: float) -> float:
"""
>>> from math import isclose
>>> isclose(object_distance(30, 20), -60.0)
True
>>> from math import isclose
>>> isclose(object_distance(10.5, 11.7), 102.375)
True
>>> object_distance(90, 0) # doctest: +NORMALIZE_WHITESPACE
Traceback (most recent call last):
...
ValueError: Invalid inputs. Enter non zero values with respect
to the sign convention.
"""
if distance_of_image == 0 or focal_length == 0:
raise ValueError(
"Invalid inputs. Enter non zero values with respect to the sign convention."
)
object_distance = 1 / ((1 / focal_length) - (1 / distance_of_image))
return object_distance
def image_distance(focal_length: float, distance_of_object: float) -> float:
"""
>>> from math import isclose
>>> isclose(image_distance(10, 40), 13.33333333)
True
>>> from math import isclose
>>> isclose(image_distance(1.5, 6.7), 1.932692308)
True
>>> image_distance(0, 0) # doctest: +NORMALIZE_WHITESPACE
Traceback (most recent call last):
...
ValueError: Invalid inputs. Enter non zero values with respect
to the sign convention.
"""
if distance_of_object == 0 or focal_length == 0:
raise ValueError(
"Invalid inputs. Enter non zero values with respect to the sign convention."
)
image_distance = 1 / ((1 / focal_length) - (1 / distance_of_object))
return image_distance
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | """
A Radix Tree is a data structure that represents a space-optimized
trie (prefix tree) in whicheach node that is the only child is merged
with its parent [https://en.wikipedia.org/wiki/Radix_tree]
"""
class RadixNode:
def __init__(self, prefix: str = "", is_leaf: bool = False) -> None:
# Mapping from the first character of the prefix of the node
self.nodes: dict[str, RadixNode] = {}
# A node will be a leaf if the tree contains its word
self.is_leaf = is_leaf
self.prefix = prefix
def match(self, word: str) -> tuple[str, str, str]:
"""Compute the common substring of the prefix of the node and a word
Args:
word (str): word to compare
Returns:
(str, str, str): common substring, remaining prefix, remaining word
>>> RadixNode("myprefix").match("mystring")
('my', 'prefix', 'string')
"""
x = 0
for q, w in zip(self.prefix, word):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def insert_many(self, words: list[str]) -> None:
"""Insert many words in the tree
Args:
words (list[str]): list of words
>>> RadixNode("myprefix").insert_many(["mystring", "hello"])
"""
for word in words:
self.insert(word)
def insert(self, word: str) -> None:
"""Insert a word into the tree
Args:
word (str): word to insert
>>> RadixNode("myprefix").insert("mystring")
>>> root = RadixNode()
>>> root.insert_many(['myprefix', 'myprefixA', 'myprefixAA'])
>>> root.print_tree()
- myprefix (leaf)
-- A (leaf)
--- A (leaf)
"""
# Case 1: If the word is the prefix of the node
# Solution: We set the current node as leaf
if self.prefix == word and not self.is_leaf:
self.is_leaf = True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
self.nodes[word[0]] = RadixNode(prefix=word, is_leaf=True)
else:
incoming_node = self.nodes[word[0]]
matching_string, remaining_prefix, remaining_word = incoming_node.match(
word
)
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(remaining_word)
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
incoming_node.prefix = remaining_prefix
aux_node = self.nodes[matching_string[0]]
self.nodes[matching_string[0]] = RadixNode(matching_string, False)
self.nodes[matching_string[0]].nodes[remaining_prefix[0]] = aux_node
if remaining_word == "":
self.nodes[matching_string[0]].is_leaf = True
else:
self.nodes[matching_string[0]].insert(remaining_word)
def find(self, word: str) -> bool:
"""Returns if the word is on the tree
Args:
word (str): word to check
Returns:
bool: True if the word appears on the tree
>>> RadixNode("myprefix").find("mystring")
False
"""
incoming_node = self.nodes.get(word[0], None)
if not incoming_node:
return False
else:
matching_string, remaining_prefix, remaining_word = incoming_node.match(
word
)
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(remaining_word)
def delete(self, word: str) -> bool:
"""Deletes a word from the tree if it exists
Args:
word (str): word to be deleted
Returns:
bool: True if the word was found and deleted. False if word is not found
>>> RadixNode("myprefix").delete("mystring")
False
"""
incoming_node = self.nodes.get(word[0], None)
if not incoming_node:
return False
else:
matching_string, remaining_prefix, remaining_word = incoming_node.match(
word
)
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(remaining_word)
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes) == 1 and not self.is_leaf:
merging_node = next(iter(self.nodes.values()))
self.is_leaf = merging_node.is_leaf
self.prefix += merging_node.prefix
self.nodes = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes) > 1:
incoming_node.is_leaf = False
# If there is 1 edge, we merge it with its child
else:
merging_node = next(iter(incoming_node.nodes.values()))
incoming_node.is_leaf = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
incoming_node.nodes = merging_node.nodes
return True
def print_tree(self, height: int = 0) -> None:
"""Print the tree
Args:
height (int, optional): Height of the printed node
"""
if self.prefix != "":
print("-" * height, self.prefix, " (leaf)" if self.is_leaf else "")
for value in self.nodes.values():
value.print_tree(height + 1)
def test_trie() -> bool:
words = "banana bananas bandana band apple all beast".split()
root = RadixNode()
root.insert_many(words)
assert all(root.find(word) for word in words)
assert not root.find("bandanas")
assert not root.find("apps")
root.delete("all")
assert not root.find("all")
root.delete("banana")
assert not root.find("banana")
assert root.find("bananas")
return True
def pytests() -> None:
assert test_trie()
def main() -> None:
"""
>>> pytests()
"""
root = RadixNode()
words = "banana bananas bandanas bandana band apple all beast".split()
root.insert_many(words)
print("Words:", words)
print("Tree:")
root.print_tree()
if __name__ == "__main__":
main()
| """
A Radix Tree is a data structure that represents a space-optimized
trie (prefix tree) in whicheach node that is the only child is merged
with its parent [https://en.wikipedia.org/wiki/Radix_tree]
"""
class RadixNode:
def __init__(self, prefix: str = "", is_leaf: bool = False) -> None:
# Mapping from the first character of the prefix of the node
self.nodes: dict[str, RadixNode] = {}
# A node will be a leaf if the tree contains its word
self.is_leaf = is_leaf
self.prefix = prefix
def match(self, word: str) -> tuple[str, str, str]:
"""Compute the common substring of the prefix of the node and a word
Args:
word (str): word to compare
Returns:
(str, str, str): common substring, remaining prefix, remaining word
>>> RadixNode("myprefix").match("mystring")
('my', 'prefix', 'string')
"""
x = 0
for q, w in zip(self.prefix, word):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def insert_many(self, words: list[str]) -> None:
"""Insert many words in the tree
Args:
words (list[str]): list of words
>>> RadixNode("myprefix").insert_many(["mystring", "hello"])
"""
for word in words:
self.insert(word)
def insert(self, word: str) -> None:
"""Insert a word into the tree
Args:
word (str): word to insert
>>> RadixNode("myprefix").insert("mystring")
>>> root = RadixNode()
>>> root.insert_many(['myprefix', 'myprefixA', 'myprefixAA'])
>>> root.print_tree()
- myprefix (leaf)
-- A (leaf)
--- A (leaf)
"""
# Case 1: If the word is the prefix of the node
# Solution: We set the current node as leaf
if self.prefix == word and not self.is_leaf:
self.is_leaf = True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
self.nodes[word[0]] = RadixNode(prefix=word, is_leaf=True)
else:
incoming_node = self.nodes[word[0]]
matching_string, remaining_prefix, remaining_word = incoming_node.match(
word
)
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(remaining_word)
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
incoming_node.prefix = remaining_prefix
aux_node = self.nodes[matching_string[0]]
self.nodes[matching_string[0]] = RadixNode(matching_string, False)
self.nodes[matching_string[0]].nodes[remaining_prefix[0]] = aux_node
if remaining_word == "":
self.nodes[matching_string[0]].is_leaf = True
else:
self.nodes[matching_string[0]].insert(remaining_word)
def find(self, word: str) -> bool:
"""Returns if the word is on the tree
Args:
word (str): word to check
Returns:
bool: True if the word appears on the tree
>>> RadixNode("myprefix").find("mystring")
False
"""
incoming_node = self.nodes.get(word[0], None)
if not incoming_node:
return False
else:
matching_string, remaining_prefix, remaining_word = incoming_node.match(
word
)
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(remaining_word)
def delete(self, word: str) -> bool:
"""Deletes a word from the tree if it exists
Args:
word (str): word to be deleted
Returns:
bool: True if the word was found and deleted. False if word is not found
>>> RadixNode("myprefix").delete("mystring")
False
"""
incoming_node = self.nodes.get(word[0], None)
if not incoming_node:
return False
else:
matching_string, remaining_prefix, remaining_word = incoming_node.match(
word
)
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(remaining_word)
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes) == 1 and not self.is_leaf:
merging_node = next(iter(self.nodes.values()))
self.is_leaf = merging_node.is_leaf
self.prefix += merging_node.prefix
self.nodes = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes) > 1:
incoming_node.is_leaf = False
# If there is 1 edge, we merge it with its child
else:
merging_node = next(iter(incoming_node.nodes.values()))
incoming_node.is_leaf = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
incoming_node.nodes = merging_node.nodes
return True
def print_tree(self, height: int = 0) -> None:
"""Print the tree
Args:
height (int, optional): Height of the printed node
"""
if self.prefix != "":
print("-" * height, self.prefix, " (leaf)" if self.is_leaf else "")
for value in self.nodes.values():
value.print_tree(height + 1)
def test_trie() -> bool:
words = "banana bananas bandana band apple all beast".split()
root = RadixNode()
root.insert_many(words)
assert all(root.find(word) for word in words)
assert not root.find("bandanas")
assert not root.find("apps")
root.delete("all")
assert not root.find("all")
root.delete("banana")
assert not root.find("banana")
assert root.find("bananas")
return True
def pytests() -> None:
assert test_trie()
def main() -> None:
"""
>>> pytests()
"""
root = RadixNode()
words = "banana bananas bandanas bandana band apple all beast".split()
root.insert_many(words)
print("Words:", words)
print("Tree:")
root.print_tree()
if __name__ == "__main__":
main()
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | #!/usr/bin/env python3
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
filepaths = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
upper_files = [file for file in filepaths if file != file.lower()]
if upper_files:
print(f"{len(upper_files)} files contain uppercase characters:")
print("\n".join(upper_files) + "\n")
space_files = [file for file in filepaths if " " in file]
if space_files:
print(f"{len(space_files)} files contain space characters:")
print("\n".join(space_files) + "\n")
hyphen_files = [file for file in filepaths if "-" in file]
if hyphen_files:
print(f"{len(hyphen_files)} files contain hyphen characters:")
print("\n".join(hyphen_files) + "\n")
nodir_files = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(f"{len(nodir_files)} files are not in a directory:")
print("\n".join(nodir_files) + "\n")
bad_files = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| #!/usr/bin/env python3
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
filepaths = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
upper_files = [file for file in filepaths if file != file.lower()]
if upper_files:
print(f"{len(upper_files)} files contain uppercase characters:")
print("\n".join(upper_files) + "\n")
space_files = [file for file in filepaths if " " in file]
if space_files:
print(f"{len(space_files)} files contain space characters:")
print("\n".join(space_files) + "\n")
hyphen_files = [file for file in filepaths if "-" in file]
if hyphen_files:
print(f"{len(hyphen_files)} files contain hyphen characters:")
print("\n".join(hyphen_files) + "\n")
nodir_files = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(f"{len(nodir_files)} files are not in a directory:")
print("\n".join(nodir_files) + "\n")
bad_files = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | """
README, Author - Jigyasa Gandhi(mailto:[email protected])
Requirements:
- scikit-fuzzy
- numpy
- matplotlib
Python:
- 3.5
"""
import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
X = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function
# (trapmf(), gbellmf(), gaussmf(), etc).
abc1 = [0, 25, 50]
abc2 = [25, 50, 75]
young = fuzz.membership.trimf(X, abc1)
middle_aged = fuzz.membership.trimf(X, abc2)
# Compute the different operations using inbuilt functions.
one = np.ones(75)
zero = np.zeros((75,))
# 1. Union = max(µA(x), µB(x))
union = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
intersection = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
complement_a = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
difference = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
alg_sum = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
alg_product = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
bdd_sum = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
bdd_difference = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
from matplotlib import pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title("Young")
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title("Middle aged")
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title("union")
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title("intersection")
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title("complement_a")
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title("difference a/b")
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title("alg_sum")
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title("alg_product")
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title("bdd_sum")
plt.grid(True)
plt.subplot(4, 3, 10)
plt.plot(X, bdd_difference)
plt.title("bdd_difference")
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show()
| """
README, Author - Jigyasa Gandhi(mailto:[email protected])
Requirements:
- scikit-fuzzy
- numpy
- matplotlib
Python:
- 3.5
"""
import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
X = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function
# (trapmf(), gbellmf(), gaussmf(), etc).
abc1 = [0, 25, 50]
abc2 = [25, 50, 75]
young = fuzz.membership.trimf(X, abc1)
middle_aged = fuzz.membership.trimf(X, abc2)
# Compute the different operations using inbuilt functions.
one = np.ones(75)
zero = np.zeros((75,))
# 1. Union = max(µA(x), µB(x))
union = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
intersection = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
complement_a = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
difference = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
alg_sum = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
alg_product = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
bdd_sum = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
bdd_difference = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
from matplotlib import pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title("Young")
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title("Middle aged")
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title("union")
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title("intersection")
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title("complement_a")
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title("difference a/b")
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title("alg_sum")
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title("alg_product")
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title("bdd_sum")
plt.grid(True)
plt.subplot(4, 3, 10)
plt.plot(X, bdd_difference)
plt.title("bdd_difference")
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show()
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | """
Project Euler Problem 72: https://projecteuler.net/problem=72
Consider the fraction, n/d, where n and d are positive integers. If n<d and HCF(n,d)=1,
it is called a reduced proper fraction.
If we list the set of reduced proper fractions for d ≤ 8 in ascending order of size,
we get:
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2,
4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
It can be seen that there are 21 elements in this set.
How many elements would be contained in the set of reduced proper fractions
for d ≤ 1,000,000?
"""
def solution(limit: int = 1000000) -> int:
"""
Return the number of reduced proper fractions with denominator less than limit.
>>> solution(8)
21
>>> solution(1000)
304191
"""
primes = set(range(3, limit, 2))
primes.add(2)
for p in range(3, limit, 2):
if p not in primes:
continue
primes.difference_update(set(range(p * p, limit, p)))
phi = [float(n) for n in range(limit + 1)]
for p in primes:
for n in range(p, limit + 1, p):
phi[n] *= 1 - 1 / p
return int(sum(phi[2:]))
if __name__ == "__main__":
print(f"{solution() = }")
| """
Project Euler Problem 72: https://projecteuler.net/problem=72
Consider the fraction, n/d, where n and d are positive integers. If n<d and HCF(n,d)=1,
it is called a reduced proper fraction.
If we list the set of reduced proper fractions for d ≤ 8 in ascending order of size,
we get:
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2,
4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
It can be seen that there are 21 elements in this set.
How many elements would be contained in the set of reduced proper fractions
for d ≤ 1,000,000?
"""
def solution(limit: int = 1000000) -> int:
"""
Return the number of reduced proper fractions with denominator less than limit.
>>> solution(8)
21
>>> solution(1000)
304191
"""
primes = set(range(3, limit, 2))
primes.add(2)
for p in range(3, limit, 2):
if p not in primes:
continue
primes.difference_update(set(range(p * p, limit, p)))
phi = [float(n) for n in range(limit + 1)]
for p in primes:
for n in range(p, limit + 1, p):
phi[n] *= 1 - 1 / p
return int(sum(phi[2:]))
if __name__ == "__main__":
print(f"{solution() = }")
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | """
Project Euler Problem 131: https://projecteuler.net/problem=131
There are some prime values, p, for which there exists a positive integer, n,
such that the expression n^3 + n^2p is a perfect cube.
For example, when p = 19, 8^3 + 8^2 x 19 = 12^3.
What is perhaps most surprising is that for each prime with this property
the value of n is unique, and there are only four such primes below one-hundred.
How many primes below one million have this remarkable property?
"""
from math import isqrt
def is_prime(number: int) -> bool:
"""
Determines whether number is prime
>>> is_prime(3)
True
>>> is_prime(4)
False
"""
return all(number % divisor != 0 for divisor in range(2, isqrt(number) + 1))
def solution(max_prime: int = 10**6) -> int:
"""
Returns number of primes below max_prime with the property
>>> solution(100)
4
"""
primes_count = 0
cube_index = 1
prime_candidate = 7
while prime_candidate < max_prime:
primes_count += is_prime(prime_candidate)
cube_index += 1
prime_candidate += 6 * cube_index
return primes_count
if __name__ == "__main__":
print(f"{solution() = }")
| """
Project Euler Problem 131: https://projecteuler.net/problem=131
There are some prime values, p, for which there exists a positive integer, n,
such that the expression n^3 + n^2p is a perfect cube.
For example, when p = 19, 8^3 + 8^2 x 19 = 12^3.
What is perhaps most surprising is that for each prime with this property
the value of n is unique, and there are only four such primes below one-hundred.
How many primes below one million have this remarkable property?
"""
from math import isqrt
def is_prime(number: int) -> bool:
"""
Determines whether number is prime
>>> is_prime(3)
True
>>> is_prime(4)
False
"""
return all(number % divisor != 0 for divisor in range(2, isqrt(number) + 1))
def solution(max_prime: int = 10**6) -> int:
"""
Returns number of primes below max_prime with the property
>>> solution(100)
4
"""
primes_count = 0
cube_index = 1
prime_candidate = 7
while prime_candidate < max_prime:
primes_count += is_prime(prime_candidate)
cube_index += 1
prime_candidate += 6 * cube_index
return primes_count
if __name__ == "__main__":
print(f"{solution() = }")
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | def binary_search(lst, item, start, end):
if start == end:
return start if lst[start] > item else start + 1
if start > end:
return start
mid = (start + end) // 2
if lst[mid] < item:
return binary_search(lst, item, mid + 1, end)
elif lst[mid] > item:
return binary_search(lst, item, start, mid - 1)
else:
return mid
def insertion_sort(lst):
length = len(lst)
for index in range(1, length):
value = lst[index]
pos = binary_search(lst, value, 0, index - 1)
lst = lst[:pos] + [value] + lst[pos:index] + lst[index + 1 :]
return lst
def merge(left, right):
if not left:
return right
if not right:
return left
if left[0] < right[0]:
return [left[0], *merge(left[1:], right)]
return [right[0], *merge(left, right[1:])]
def tim_sort(lst):
"""
>>> tim_sort("Python")
['P', 'h', 'n', 'o', 't', 'y']
>>> tim_sort((1.1, 1, 0, -1, -1.1))
[-1.1, -1, 0, 1, 1.1]
>>> tim_sort(list(reversed(list(range(7)))))
[0, 1, 2, 3, 4, 5, 6]
>>> tim_sort([3, 2, 1]) == insertion_sort([3, 2, 1])
True
>>> tim_sort([3, 2, 1]) == sorted([3, 2, 1])
True
"""
length = len(lst)
runs, sorted_runs = [], []
new_run = [lst[0]]
sorted_array = []
i = 1
while i < length:
if lst[i] < lst[i - 1]:
runs.append(new_run)
new_run = [lst[i]]
else:
new_run.append(lst[i])
i += 1
runs.append(new_run)
for run in runs:
sorted_runs.append(insertion_sort(run))
for run in sorted_runs:
sorted_array = merge(sorted_array, run)
return sorted_array
def main():
lst = [5, 9, 10, 3, -4, 5, 178, 92, 46, -18, 0, 7]
sorted_lst = tim_sort(lst)
print(sorted_lst)
if __name__ == "__main__":
main()
| def binary_search(lst, item, start, end):
if start == end:
return start if lst[start] > item else start + 1
if start > end:
return start
mid = (start + end) // 2
if lst[mid] < item:
return binary_search(lst, item, mid + 1, end)
elif lst[mid] > item:
return binary_search(lst, item, start, mid - 1)
else:
return mid
def insertion_sort(lst):
length = len(lst)
for index in range(1, length):
value = lst[index]
pos = binary_search(lst, value, 0, index - 1)
lst = lst[:pos] + [value] + lst[pos:index] + lst[index + 1 :]
return lst
def merge(left, right):
if not left:
return right
if not right:
return left
if left[0] < right[0]:
return [left[0], *merge(left[1:], right)]
return [right[0], *merge(left, right[1:])]
def tim_sort(lst):
"""
>>> tim_sort("Python")
['P', 'h', 'n', 'o', 't', 'y']
>>> tim_sort((1.1, 1, 0, -1, -1.1))
[-1.1, -1, 0, 1, 1.1]
>>> tim_sort(list(reversed(list(range(7)))))
[0, 1, 2, 3, 4, 5, 6]
>>> tim_sort([3, 2, 1]) == insertion_sort([3, 2, 1])
True
>>> tim_sort([3, 2, 1]) == sorted([3, 2, 1])
True
"""
length = len(lst)
runs, sorted_runs = [], []
new_run = [lst[0]]
sorted_array = []
i = 1
while i < length:
if lst[i] < lst[i - 1]:
runs.append(new_run)
new_run = [lst[i]]
else:
new_run.append(lst[i])
i += 1
runs.append(new_run)
for run in runs:
sorted_runs.append(insertion_sort(run))
for run in sorted_runs:
sorted_array = merge(sorted_array, run)
return sorted_array
def main():
lst = [5, 9, 10, 3, -4, 5, 178, 92, 46, -18, 0, 7]
sorted_lst = tim_sort(lst)
print(sorted_lst)
if __name__ == "__main__":
main()
| -1 |
TheAlgorithms/Python | 11,154 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-13T18:22:48Z" | "2023-11-25T13:53:19Z" | 050b2a6e2cf0e474b75cf48abe4aa134b97643e4 | 8b39a0fb54d0f63489952606d2036d1a63f981e3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.4 → v0.1.6](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.4...v0.1.6)
- [github.com/psf/black: 23.10.1 → 23.11.0](https://github.com/psf/black/compare/23.10.1...23.11.0)
- [github.com/tox-dev/pyproject-fmt: 1.4.1 → 1.5.1](https://github.com/tox-dev/pyproject-fmt/compare/1.4.1...1.5.1)
- [github.com/pre-commit/mirrors-mypy: v1.6.1 → v1.7.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.6.1...v1.7.0)
<!--pre-commit.ci end--> | """
Given a function on floating number f(x) and two floating numbers ‘a’ and ‘b’ such that
f(a) * f(b) < 0 and f(x) is continuous in [a, b].
Here f(x) represents algebraic or transcendental equation.
Find root of function in interval [a, b] (Or find a value of x such that f(x) is 0)
https://en.wikipedia.org/wiki/Bisection_method
"""
def equation(x: float) -> float:
"""
>>> equation(5)
-15
>>> equation(0)
10
>>> equation(-5)
-15
>>> equation(0.1)
9.99
>>> equation(-0.1)
9.99
"""
return 10 - x * x
def bisection(a: float, b: float) -> float:
"""
>>> bisection(-2, 5)
3.1611328125
>>> bisection(0, 6)
3.158203125
>>> bisection(2, 3)
Traceback (most recent call last):
...
ValueError: Wrong space!
"""
# Bolzano theory in order to find if there is a root between a and b
if equation(a) * equation(b) >= 0:
raise ValueError("Wrong space!")
c = a
while (b - a) >= 0.01:
# Find middle point
c = (a + b) / 2
# Check if middle point is root
if equation(c) == 0.0:
break
# Decide the side to repeat the steps
if equation(c) * equation(a) < 0:
b = c
else:
a = c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| """
Given a function on floating number f(x) and two floating numbers ‘a’ and ‘b’ such that
f(a) * f(b) < 0 and f(x) is continuous in [a, b].
Here f(x) represents algebraic or transcendental equation.
Find root of function in interval [a, b] (Or find a value of x such that f(x) is 0)
https://en.wikipedia.org/wiki/Bisection_method
"""
def equation(x: float) -> float:
"""
>>> equation(5)
-15
>>> equation(0)
10
>>> equation(-5)
-15
>>> equation(0.1)
9.99
>>> equation(-0.1)
9.99
"""
return 10 - x * x
def bisection(a: float, b: float) -> float:
"""
>>> bisection(-2, 5)
3.1611328125
>>> bisection(0, 6)
3.158203125
>>> bisection(2, 3)
Traceback (most recent call last):
...
ValueError: Wrong space!
"""
# Bolzano theory in order to find if there is a root between a and b
if equation(a) * equation(b) >= 0:
raise ValueError("Wrong space!")
c = a
while (b - a) >= 0.01:
# Find middle point
c = (a + b) / 2
# Check if middle point is root
if equation(c) == 0.0:
break
# Decide the side to repeat the steps
if equation(c) * equation(a) < 0:
b = c
else:
a = c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.5.0
hooks:
- id: check-executables-have-shebangs
- id: check-toml
- id: check-yaml
- id: end-of-file-fixer
types: [python]
- id: trailing-whitespace
- id: requirements-txt-fixer
- repo: https://github.com/MarcoGorelli/auto-walrus
rev: v0.2.2
hooks:
- id: auto-walrus
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.1.3
hooks:
- id: ruff
- repo: https://github.com/psf/black
rev: 23.10.1
hooks:
- id: black
- repo: https://github.com/codespell-project/codespell
rev: v2.2.6
hooks:
- id: codespell
additional_dependencies:
- tomli
- repo: https://github.com/tox-dev/pyproject-fmt
rev: "1.3.0"
hooks:
- id: pyproject-fmt
- repo: local
hooks:
- id: validate-filenames
name: Validate filenames
entry: ./scripts/validate_filenames.py
language: script
pass_filenames: false
- repo: https://github.com/abravalheri/validate-pyproject
rev: v0.15
hooks:
- id: validate-pyproject
- repo: https://github.com/pre-commit/mirrors-mypy
rev: v1.6.1
hooks:
- id: mypy
args:
- --ignore-missing-imports
- --install-types # See mirrors-mypy README.md
- --non-interactive
additional_dependencies: [types-requests]
| repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.5.0
hooks:
- id: check-executables-have-shebangs
- id: check-toml
- id: check-yaml
- id: end-of-file-fixer
types: [python]
- id: trailing-whitespace
- id: requirements-txt-fixer
- repo: https://github.com/MarcoGorelli/auto-walrus
rev: v0.2.2
hooks:
- id: auto-walrus
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.1.4
hooks:
- id: ruff
- repo: https://github.com/psf/black
rev: 23.10.1
hooks:
- id: black
- repo: https://github.com/codespell-project/codespell
rev: v2.2.6
hooks:
- id: codespell
additional_dependencies:
- tomli
- repo: https://github.com/tox-dev/pyproject-fmt
rev: "1.4.1"
hooks:
- id: pyproject-fmt
- repo: local
hooks:
- id: validate-filenames
name: Validate filenames
entry: ./scripts/validate_filenames.py
language: script
pass_filenames: false
- repo: https://github.com/abravalheri/validate-pyproject
rev: v0.15
hooks:
- id: validate-pyproject
- repo: https://github.com/pre-commit/mirrors-mypy
rev: v1.6.1
hooks:
- id: mypy
args:
- --ignore-missing-imports
- --install-types # See mirrors-mypy README.md
- --non-interactive
additional_dependencies: [types-requests]
| 1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> |
## Audio Filters
* [Butterworth Filter](audio_filters/butterworth_filter.py)
* [Iir Filter](audio_filters/iir_filter.py)
* [Show Response](audio_filters/show_response.py)
## Backtracking
* [All Combinations](backtracking/all_combinations.py)
* [All Permutations](backtracking/all_permutations.py)
* [All Subsequences](backtracking/all_subsequences.py)
* [Coloring](backtracking/coloring.py)
* [Combination Sum](backtracking/combination_sum.py)
* [Crossword Puzzle Solver](backtracking/crossword_puzzle_solver.py)
* [Generate Parentheses](backtracking/generate_parentheses.py)
* [Hamiltonian Cycle](backtracking/hamiltonian_cycle.py)
* [Knight Tour](backtracking/knight_tour.py)
* [Match Word Pattern](backtracking/match_word_pattern.py)
* [Minimax](backtracking/minimax.py)
* [N Queens](backtracking/n_queens.py)
* [N Queens Math](backtracking/n_queens_math.py)
* [Power Sum](backtracking/power_sum.py)
* [Rat In Maze](backtracking/rat_in_maze.py)
* [Sudoku](backtracking/sudoku.py)
* [Sum Of Subsets](backtracking/sum_of_subsets.py)
* [Word Search](backtracking/word_search.py)
## Bit Manipulation
* [Binary And Operator](bit_manipulation/binary_and_operator.py)
* [Binary Coded Decimal](bit_manipulation/binary_coded_decimal.py)
* [Binary Count Setbits](bit_manipulation/binary_count_setbits.py)
* [Binary Count Trailing Zeros](bit_manipulation/binary_count_trailing_zeros.py)
* [Binary Or Operator](bit_manipulation/binary_or_operator.py)
* [Binary Shifts](bit_manipulation/binary_shifts.py)
* [Binary Twos Complement](bit_manipulation/binary_twos_complement.py)
* [Binary Xor Operator](bit_manipulation/binary_xor_operator.py)
* [Bitwise Addition Recursive](bit_manipulation/bitwise_addition_recursive.py)
* [Count 1S Brian Kernighan Method](bit_manipulation/count_1s_brian_kernighan_method.py)
* [Count Number Of One Bits](bit_manipulation/count_number_of_one_bits.py)
* [Excess 3 Code](bit_manipulation/excess_3_code.py)
* [Find Previous Power Of Two](bit_manipulation/find_previous_power_of_two.py)
* [Gray Code Sequence](bit_manipulation/gray_code_sequence.py)
* [Highest Set Bit](bit_manipulation/highest_set_bit.py)
* [Index Of Rightmost Set Bit](bit_manipulation/index_of_rightmost_set_bit.py)
* [Is Even](bit_manipulation/is_even.py)
* [Is Power Of Two](bit_manipulation/is_power_of_two.py)
* [Largest Pow Of Two Le Num](bit_manipulation/largest_pow_of_two_le_num.py)
* [Missing Number](bit_manipulation/missing_number.py)
* [Numbers Different Signs](bit_manipulation/numbers_different_signs.py)
* [Power Of 4](bit_manipulation/power_of_4.py)
* [Reverse Bits](bit_manipulation/reverse_bits.py)
* [Single Bit Manipulation Operations](bit_manipulation/single_bit_manipulation_operations.py)
* [Swap All Odd And Even Bits](bit_manipulation/swap_all_odd_and_even_bits.py)
## Blockchain
* [Diophantine Equation](blockchain/diophantine_equation.py)
## Boolean Algebra
* [And Gate](boolean_algebra/and_gate.py)
* [Imply Gate](boolean_algebra/imply_gate.py)
* [Karnaugh Map Simplification](boolean_algebra/karnaugh_map_simplification.py)
* [Multiplexer](boolean_algebra/multiplexer.py)
* [Nand Gate](boolean_algebra/nand_gate.py)
* [Nimply Gate](boolean_algebra/nimply_gate.py)
* [Nor Gate](boolean_algebra/nor_gate.py)
* [Not Gate](boolean_algebra/not_gate.py)
* [Or Gate](boolean_algebra/or_gate.py)
* [Quine Mc Cluskey](boolean_algebra/quine_mc_cluskey.py)
* [Xnor Gate](boolean_algebra/xnor_gate.py)
* [Xor Gate](boolean_algebra/xor_gate.py)
## Cellular Automata
* [Conways Game Of Life](cellular_automata/conways_game_of_life.py)
* [Game Of Life](cellular_automata/game_of_life.py)
* [Langtons Ant](cellular_automata/langtons_ant.py)
* [Nagel Schrekenberg](cellular_automata/nagel_schrekenberg.py)
* [One Dimensional](cellular_automata/one_dimensional.py)
* [Wa Tor](cellular_automata/wa_tor.py)
## Ciphers
* [A1Z26](ciphers/a1z26.py)
* [Affine Cipher](ciphers/affine_cipher.py)
* [Atbash](ciphers/atbash.py)
* [Autokey](ciphers/autokey.py)
* [Baconian Cipher](ciphers/baconian_cipher.py)
* [Base16](ciphers/base16.py)
* [Base32](ciphers/base32.py)
* [Base64](ciphers/base64.py)
* [Base85](ciphers/base85.py)
* [Beaufort Cipher](ciphers/beaufort_cipher.py)
* [Bifid](ciphers/bifid.py)
* [Brute Force Caesar Cipher](ciphers/brute_force_caesar_cipher.py)
* [Caesar Cipher](ciphers/caesar_cipher.py)
* [Cryptomath Module](ciphers/cryptomath_module.py)
* [Decrypt Caesar With Chi Squared](ciphers/decrypt_caesar_with_chi_squared.py)
* [Deterministic Miller Rabin](ciphers/deterministic_miller_rabin.py)
* [Diffie](ciphers/diffie.py)
* [Diffie Hellman](ciphers/diffie_hellman.py)
* [Elgamal Key Generator](ciphers/elgamal_key_generator.py)
* [Enigma Machine2](ciphers/enigma_machine2.py)
* [Fractionated Morse Cipher](ciphers/fractionated_morse_cipher.py)
* [Hill Cipher](ciphers/hill_cipher.py)
* [Mixed Keyword Cypher](ciphers/mixed_keyword_cypher.py)
* [Mono Alphabetic Ciphers](ciphers/mono_alphabetic_ciphers.py)
* [Morse Code](ciphers/morse_code.py)
* [Onepad Cipher](ciphers/onepad_cipher.py)
* [Permutation Cipher](ciphers/permutation_cipher.py)
* [Playfair Cipher](ciphers/playfair_cipher.py)
* [Polybius](ciphers/polybius.py)
* [Porta Cipher](ciphers/porta_cipher.py)
* [Rabin Miller](ciphers/rabin_miller.py)
* [Rail Fence Cipher](ciphers/rail_fence_cipher.py)
* [Rot13](ciphers/rot13.py)
* [Rsa Cipher](ciphers/rsa_cipher.py)
* [Rsa Factorization](ciphers/rsa_factorization.py)
* [Rsa Key Generator](ciphers/rsa_key_generator.py)
* [Running Key Cipher](ciphers/running_key_cipher.py)
* [Shuffled Shift Cipher](ciphers/shuffled_shift_cipher.py)
* [Simple Keyword Cypher](ciphers/simple_keyword_cypher.py)
* [Simple Substitution Cipher](ciphers/simple_substitution_cipher.py)
* [Transposition Cipher](ciphers/transposition_cipher.py)
* [Transposition Cipher Encrypt Decrypt File](ciphers/transposition_cipher_encrypt_decrypt_file.py)
* [Trifid Cipher](ciphers/trifid_cipher.py)
* [Vernam Cipher](ciphers/vernam_cipher.py)
* [Vigenere Cipher](ciphers/vigenere_cipher.py)
* [Xor Cipher](ciphers/xor_cipher.py)
## Compression
* [Burrows Wheeler](compression/burrows_wheeler.py)
* [Huffman](compression/huffman.py)
* [Lempel Ziv](compression/lempel_ziv.py)
* [Lempel Ziv Decompress](compression/lempel_ziv_decompress.py)
* [Lz77](compression/lz77.py)
* [Peak Signal To Noise Ratio](compression/peak_signal_to_noise_ratio.py)
* [Run Length Encoding](compression/run_length_encoding.py)
## Computer Vision
* [Flip Augmentation](computer_vision/flip_augmentation.py)
* [Haralick Descriptors](computer_vision/haralick_descriptors.py)
* [Harris Corner](computer_vision/harris_corner.py)
* [Horn Schunck](computer_vision/horn_schunck.py)
* [Mean Threshold](computer_vision/mean_threshold.py)
* [Mosaic Augmentation](computer_vision/mosaic_augmentation.py)
* [Pooling Functions](computer_vision/pooling_functions.py)
## Conversions
* [Astronomical Length Scale Conversion](conversions/astronomical_length_scale_conversion.py)
* [Binary To Decimal](conversions/binary_to_decimal.py)
* [Binary To Hexadecimal](conversions/binary_to_hexadecimal.py)
* [Binary To Octal](conversions/binary_to_octal.py)
* [Convert Number To Words](conversions/convert_number_to_words.py)
* [Decimal To Any](conversions/decimal_to_any.py)
* [Decimal To Binary](conversions/decimal_to_binary.py)
* [Decimal To Hexadecimal](conversions/decimal_to_hexadecimal.py)
* [Decimal To Octal](conversions/decimal_to_octal.py)
* [Energy Conversions](conversions/energy_conversions.py)
* [Excel Title To Column](conversions/excel_title_to_column.py)
* [Hex To Bin](conversions/hex_to_bin.py)
* [Hexadecimal To Decimal](conversions/hexadecimal_to_decimal.py)
* [Ipv4 Conversion](conversions/ipv4_conversion.py)
* [Length Conversion](conversions/length_conversion.py)
* [Molecular Chemistry](conversions/molecular_chemistry.py)
* [Octal To Binary](conversions/octal_to_binary.py)
* [Octal To Decimal](conversions/octal_to_decimal.py)
* [Octal To Hexadecimal](conversions/octal_to_hexadecimal.py)
* [Prefix Conversions](conversions/prefix_conversions.py)
* [Prefix Conversions String](conversions/prefix_conversions_string.py)
* [Pressure Conversions](conversions/pressure_conversions.py)
* [Rgb Cmyk Conversion](conversions/rgb_cmyk_conversion.py)
* [Rgb Hsv Conversion](conversions/rgb_hsv_conversion.py)
* [Roman Numerals](conversions/roman_numerals.py)
* [Speed Conversions](conversions/speed_conversions.py)
* [Temperature Conversions](conversions/temperature_conversions.py)
* [Time Conversions](conversions/time_conversions.py)
* [Volume Conversions](conversions/volume_conversions.py)
* [Weight Conversion](conversions/weight_conversion.py)
## Data Structures
* Arrays
* [Equilibrium Index In Array](data_structures/arrays/equilibrium_index_in_array.py)
* [Find Triplets With 0 Sum](data_structures/arrays/find_triplets_with_0_sum.py)
* [Index 2D Array In 1D](data_structures/arrays/index_2d_array_in_1d.py)
* [Kth Largest Element](data_structures/arrays/kth_largest_element.py)
* [Median Two Array](data_structures/arrays/median_two_array.py)
* [Monotonic Array](data_structures/arrays/monotonic_array.py)
* [Pairs With Given Sum](data_structures/arrays/pairs_with_given_sum.py)
* [Permutations](data_structures/arrays/permutations.py)
* [Prefix Sum](data_structures/arrays/prefix_sum.py)
* [Product Sum](data_structures/arrays/product_sum.py)
* [Sparse Table](data_structures/arrays/sparse_table.py)
* [Sudoku Solver](data_structures/arrays/sudoku_solver.py)
* Binary Tree
* [Avl Tree](data_structures/binary_tree/avl_tree.py)
* [Basic Binary Tree](data_structures/binary_tree/basic_binary_tree.py)
* [Binary Search Tree](data_structures/binary_tree/binary_search_tree.py)
* [Binary Search Tree Recursive](data_structures/binary_tree/binary_search_tree_recursive.py)
* [Binary Tree Mirror](data_structures/binary_tree/binary_tree_mirror.py)
* [Binary Tree Node Sum](data_structures/binary_tree/binary_tree_node_sum.py)
* [Binary Tree Path Sum](data_structures/binary_tree/binary_tree_path_sum.py)
* [Binary Tree Traversals](data_structures/binary_tree/binary_tree_traversals.py)
* [Diameter Of Binary Tree](data_structures/binary_tree/diameter_of_binary_tree.py)
* [Diff Views Of Binary Tree](data_structures/binary_tree/diff_views_of_binary_tree.py)
* [Distribute Coins](data_structures/binary_tree/distribute_coins.py)
* [Fenwick Tree](data_structures/binary_tree/fenwick_tree.py)
* [Flatten Binarytree To Linkedlist](data_structures/binary_tree/flatten_binarytree_to_linkedlist.py)
* [Floor And Ceiling](data_structures/binary_tree/floor_and_ceiling.py)
* [Inorder Tree Traversal 2022](data_structures/binary_tree/inorder_tree_traversal_2022.py)
* [Is Sorted](data_structures/binary_tree/is_sorted.py)
* [Is Sum Tree](data_structures/binary_tree/is_sum_tree.py)
* [Lazy Segment Tree](data_structures/binary_tree/lazy_segment_tree.py)
* [Lowest Common Ancestor](data_structures/binary_tree/lowest_common_ancestor.py)
* [Maximum Fenwick Tree](data_structures/binary_tree/maximum_fenwick_tree.py)
* [Merge Two Binary Trees](data_structures/binary_tree/merge_two_binary_trees.py)
* [Mirror Binary Tree](data_structures/binary_tree/mirror_binary_tree.py)
* [Non Recursive Segment Tree](data_structures/binary_tree/non_recursive_segment_tree.py)
* [Number Of Possible Binary Trees](data_structures/binary_tree/number_of_possible_binary_trees.py)
* [Red Black Tree](data_structures/binary_tree/red_black_tree.py)
* [Segment Tree](data_structures/binary_tree/segment_tree.py)
* [Segment Tree Other](data_structures/binary_tree/segment_tree_other.py)
* [Serialize Deserialize Binary Tree](data_structures/binary_tree/serialize_deserialize_binary_tree.py)
* [Symmetric Tree](data_structures/binary_tree/symmetric_tree.py)
* [Treap](data_structures/binary_tree/treap.py)
* [Wavelet Tree](data_structures/binary_tree/wavelet_tree.py)
* Disjoint Set
* [Alternate Disjoint Set](data_structures/disjoint_set/alternate_disjoint_set.py)
* [Disjoint Set](data_structures/disjoint_set/disjoint_set.py)
* Hashing
* [Bloom Filter](data_structures/hashing/bloom_filter.py)
* [Double Hash](data_structures/hashing/double_hash.py)
* [Hash Map](data_structures/hashing/hash_map.py)
* [Hash Table](data_structures/hashing/hash_table.py)
* [Hash Table With Linked List](data_structures/hashing/hash_table_with_linked_list.py)
* Number Theory
* [Prime Numbers](data_structures/hashing/number_theory/prime_numbers.py)
* [Quadratic Probing](data_structures/hashing/quadratic_probing.py)
* Tests
* [Test Hash Map](data_structures/hashing/tests/test_hash_map.py)
* Heap
* [Binomial Heap](data_structures/heap/binomial_heap.py)
* [Heap](data_structures/heap/heap.py)
* [Heap Generic](data_structures/heap/heap_generic.py)
* [Max Heap](data_structures/heap/max_heap.py)
* [Min Heap](data_structures/heap/min_heap.py)
* [Randomized Heap](data_structures/heap/randomized_heap.py)
* [Skew Heap](data_structures/heap/skew_heap.py)
* Linked List
* [Circular Linked List](data_structures/linked_list/circular_linked_list.py)
* [Deque Doubly](data_structures/linked_list/deque_doubly.py)
* [Doubly Linked List](data_structures/linked_list/doubly_linked_list.py)
* [Doubly Linked List Two](data_structures/linked_list/doubly_linked_list_two.py)
* [Floyds Cycle Detection](data_structures/linked_list/floyds_cycle_detection.py)
* [From Sequence](data_structures/linked_list/from_sequence.py)
* [Has Loop](data_structures/linked_list/has_loop.py)
* [Is Palindrome](data_structures/linked_list/is_palindrome.py)
* [Merge Two Lists](data_structures/linked_list/merge_two_lists.py)
* [Middle Element Of Linked List](data_structures/linked_list/middle_element_of_linked_list.py)
* [Print Reverse](data_structures/linked_list/print_reverse.py)
* [Reverse K Group](data_structures/linked_list/reverse_k_group.py)
* [Rotate To The Right](data_structures/linked_list/rotate_to_the_right.py)
* [Singly Linked List](data_structures/linked_list/singly_linked_list.py)
* [Skip List](data_structures/linked_list/skip_list.py)
* [Swap Nodes](data_structures/linked_list/swap_nodes.py)
* Queue
* [Circular Queue](data_structures/queue/circular_queue.py)
* [Circular Queue Linked List](data_structures/queue/circular_queue_linked_list.py)
* [Double Ended Queue](data_structures/queue/double_ended_queue.py)
* [Linked Queue](data_structures/queue/linked_queue.py)
* [Priority Queue Using List](data_structures/queue/priority_queue_using_list.py)
* [Queue By List](data_structures/queue/queue_by_list.py)
* [Queue By Two Stacks](data_structures/queue/queue_by_two_stacks.py)
* [Queue On Pseudo Stack](data_structures/queue/queue_on_pseudo_stack.py)
* Stacks
* [Balanced Parentheses](data_structures/stacks/balanced_parentheses.py)
* [Dijkstras Two Stack Algorithm](data_structures/stacks/dijkstras_two_stack_algorithm.py)
* [Infix To Postfix Conversion](data_structures/stacks/infix_to_postfix_conversion.py)
* [Infix To Prefix Conversion](data_structures/stacks/infix_to_prefix_conversion.py)
* [Next Greater Element](data_structures/stacks/next_greater_element.py)
* [Postfix Evaluation](data_structures/stacks/postfix_evaluation.py)
* [Prefix Evaluation](data_structures/stacks/prefix_evaluation.py)
* [Stack](data_structures/stacks/stack.py)
* [Stack Using Two Queues](data_structures/stacks/stack_using_two_queues.py)
* [Stack With Doubly Linked List](data_structures/stacks/stack_with_doubly_linked_list.py)
* [Stack With Singly Linked List](data_structures/stacks/stack_with_singly_linked_list.py)
* [Stock Span Problem](data_structures/stacks/stock_span_problem.py)
* Trie
* [Radix Tree](data_structures/trie/radix_tree.py)
* [Trie](data_structures/trie/trie.py)
## Digital Image Processing
* [Change Brightness](digital_image_processing/change_brightness.py)
* [Change Contrast](digital_image_processing/change_contrast.py)
* [Convert To Negative](digital_image_processing/convert_to_negative.py)
* Dithering
* [Burkes](digital_image_processing/dithering/burkes.py)
* Edge Detection
* [Canny](digital_image_processing/edge_detection/canny.py)
* Filters
* [Bilateral Filter](digital_image_processing/filters/bilateral_filter.py)
* [Convolve](digital_image_processing/filters/convolve.py)
* [Gabor Filter](digital_image_processing/filters/gabor_filter.py)
* [Gaussian Filter](digital_image_processing/filters/gaussian_filter.py)
* [Laplacian Filter](digital_image_processing/filters/laplacian_filter.py)
* [Local Binary Pattern](digital_image_processing/filters/local_binary_pattern.py)
* [Median Filter](digital_image_processing/filters/median_filter.py)
* [Sobel Filter](digital_image_processing/filters/sobel_filter.py)
* Histogram Equalization
* [Histogram Stretch](digital_image_processing/histogram_equalization/histogram_stretch.py)
* [Index Calculation](digital_image_processing/index_calculation.py)
* Morphological Operations
* [Dilation Operation](digital_image_processing/morphological_operations/dilation_operation.py)
* [Erosion Operation](digital_image_processing/morphological_operations/erosion_operation.py)
* Resize
* [Resize](digital_image_processing/resize/resize.py)
* Rotation
* [Rotation](digital_image_processing/rotation/rotation.py)
* [Sepia](digital_image_processing/sepia.py)
* [Test Digital Image Processing](digital_image_processing/test_digital_image_processing.py)
## Divide And Conquer
* [Closest Pair Of Points](divide_and_conquer/closest_pair_of_points.py)
* [Convex Hull](divide_and_conquer/convex_hull.py)
* [Heaps Algorithm](divide_and_conquer/heaps_algorithm.py)
* [Heaps Algorithm Iterative](divide_and_conquer/heaps_algorithm_iterative.py)
* [Inversions](divide_and_conquer/inversions.py)
* [Kth Order Statistic](divide_and_conquer/kth_order_statistic.py)
* [Max Difference Pair](divide_and_conquer/max_difference_pair.py)
* [Max Subarray](divide_and_conquer/max_subarray.py)
* [Mergesort](divide_and_conquer/mergesort.py)
* [Peak](divide_and_conquer/peak.py)
* [Power](divide_and_conquer/power.py)
* [Strassen Matrix Multiplication](divide_and_conquer/strassen_matrix_multiplication.py)
## Dynamic Programming
* [Abbreviation](dynamic_programming/abbreviation.py)
* [All Construct](dynamic_programming/all_construct.py)
* [Bitmask](dynamic_programming/bitmask.py)
* [Catalan Numbers](dynamic_programming/catalan_numbers.py)
* [Climbing Stairs](dynamic_programming/climbing_stairs.py)
* [Combination Sum Iv](dynamic_programming/combination_sum_iv.py)
* [Edit Distance](dynamic_programming/edit_distance.py)
* [Factorial](dynamic_programming/factorial.py)
* [Fast Fibonacci](dynamic_programming/fast_fibonacci.py)
* [Fibonacci](dynamic_programming/fibonacci.py)
* [Fizz Buzz](dynamic_programming/fizz_buzz.py)
* [Floyd Warshall](dynamic_programming/floyd_warshall.py)
* [Integer Partition](dynamic_programming/integer_partition.py)
* [Iterating Through Submasks](dynamic_programming/iterating_through_submasks.py)
* [Knapsack](dynamic_programming/knapsack.py)
* [Largest Divisible Subset](dynamic_programming/largest_divisible_subset.py)
* [Longest Common Subsequence](dynamic_programming/longest_common_subsequence.py)
* [Longest Common Substring](dynamic_programming/longest_common_substring.py)
* [Longest Increasing Subsequence](dynamic_programming/longest_increasing_subsequence.py)
* [Longest Increasing Subsequence O(Nlogn)](dynamic_programming/longest_increasing_subsequence_o(nlogn).py)
* [Longest Palindromic Subsequence](dynamic_programming/longest_palindromic_subsequence.py)
* [Matrix Chain Multiplication](dynamic_programming/matrix_chain_multiplication.py)
* [Matrix Chain Order](dynamic_programming/matrix_chain_order.py)
* [Max Non Adjacent Sum](dynamic_programming/max_non_adjacent_sum.py)
* [Max Product Subarray](dynamic_programming/max_product_subarray.py)
* [Max Subarray Sum](dynamic_programming/max_subarray_sum.py)
* [Min Distance Up Bottom](dynamic_programming/min_distance_up_bottom.py)
* [Minimum Coin Change](dynamic_programming/minimum_coin_change.py)
* [Minimum Cost Path](dynamic_programming/minimum_cost_path.py)
* [Minimum Partition](dynamic_programming/minimum_partition.py)
* [Minimum Size Subarray Sum](dynamic_programming/minimum_size_subarray_sum.py)
* [Minimum Squares To Represent A Number](dynamic_programming/minimum_squares_to_represent_a_number.py)
* [Minimum Steps To One](dynamic_programming/minimum_steps_to_one.py)
* [Minimum Tickets Cost](dynamic_programming/minimum_tickets_cost.py)
* [Optimal Binary Search Tree](dynamic_programming/optimal_binary_search_tree.py)
* [Palindrome Partitioning](dynamic_programming/palindrome_partitioning.py)
* [Regex Match](dynamic_programming/regex_match.py)
* [Rod Cutting](dynamic_programming/rod_cutting.py)
* [Smith Waterman](dynamic_programming/smith_waterman.py)
* [Subset Generation](dynamic_programming/subset_generation.py)
* [Sum Of Subset](dynamic_programming/sum_of_subset.py)
* [Trapped Water](dynamic_programming/trapped_water.py)
* [Tribonacci](dynamic_programming/tribonacci.py)
* [Viterbi](dynamic_programming/viterbi.py)
* [Wildcard Matching](dynamic_programming/wildcard_matching.py)
* [Word Break](dynamic_programming/word_break.py)
## Electronics
* [Apparent Power](electronics/apparent_power.py)
* [Builtin Voltage](electronics/builtin_voltage.py)
* [Capacitor Equivalence](electronics/capacitor_equivalence.py)
* [Carrier Concentration](electronics/carrier_concentration.py)
* [Charging Capacitor](electronics/charging_capacitor.py)
* [Charging Inductor](electronics/charging_inductor.py)
* [Circular Convolution](electronics/circular_convolution.py)
* [Coulombs Law](electronics/coulombs_law.py)
* [Electric Conductivity](electronics/electric_conductivity.py)
* [Electric Power](electronics/electric_power.py)
* [Electrical Impedance](electronics/electrical_impedance.py)
* [Ic 555 Timer](electronics/ic_555_timer.py)
* [Ind Reactance](electronics/ind_reactance.py)
* [Ohms Law](electronics/ohms_law.py)
* [Real And Reactive Power](electronics/real_and_reactive_power.py)
* [Resistor Color Code](electronics/resistor_color_code.py)
* [Resistor Equivalence](electronics/resistor_equivalence.py)
* [Resonant Frequency](electronics/resonant_frequency.py)
* [Wheatstone Bridge](electronics/wheatstone_bridge.py)
## File Transfer
* [Receive File](file_transfer/receive_file.py)
* [Send File](file_transfer/send_file.py)
* Tests
* [Test Send File](file_transfer/tests/test_send_file.py)
## Financial
* [Equated Monthly Installments](financial/equated_monthly_installments.py)
* [Exponential Moving Average](financial/exponential_moving_average.py)
* [Interest](financial/interest.py)
* [Present Value](financial/present_value.py)
* [Price Plus Tax](financial/price_plus_tax.py)
* [Simple Moving Average](financial/simple_moving_average.py)
## Fractals
* [Julia Sets](fractals/julia_sets.py)
* [Koch Snowflake](fractals/koch_snowflake.py)
* [Mandelbrot](fractals/mandelbrot.py)
* [Sierpinski Triangle](fractals/sierpinski_triangle.py)
## Fuzzy Logic
* [Fuzzy Operations](fuzzy_logic/fuzzy_operations.py)
## Genetic Algorithm
* [Basic String](genetic_algorithm/basic_string.py)
## Geodesy
* [Haversine Distance](geodesy/haversine_distance.py)
* [Lamberts Ellipsoidal Distance](geodesy/lamberts_ellipsoidal_distance.py)
## Graphics
* [Bezier Curve](graphics/bezier_curve.py)
* [Vector3 For 2D Rendering](graphics/vector3_for_2d_rendering.py)
## Graphs
* [A Star](graphs/a_star.py)
* [Articulation Points](graphs/articulation_points.py)
* [Basic Graphs](graphs/basic_graphs.py)
* [Bellman Ford](graphs/bellman_ford.py)
* [Bi Directional Dijkstra](graphs/bi_directional_dijkstra.py)
* [Bidirectional A Star](graphs/bidirectional_a_star.py)
* [Bidirectional Breadth First Search](graphs/bidirectional_breadth_first_search.py)
* [Boruvka](graphs/boruvka.py)
* [Breadth First Search](graphs/breadth_first_search.py)
* [Breadth First Search 2](graphs/breadth_first_search_2.py)
* [Breadth First Search Shortest Path](graphs/breadth_first_search_shortest_path.py)
* [Breadth First Search Shortest Path 2](graphs/breadth_first_search_shortest_path_2.py)
* [Breadth First Search Zero One Shortest Path](graphs/breadth_first_search_zero_one_shortest_path.py)
* [Check Bipatrite](graphs/check_bipatrite.py)
* [Check Cycle](graphs/check_cycle.py)
* [Connected Components](graphs/connected_components.py)
* [Deep Clone Graph](graphs/deep_clone_graph.py)
* [Depth First Search](graphs/depth_first_search.py)
* [Depth First Search 2](graphs/depth_first_search_2.py)
* [Dijkstra](graphs/dijkstra.py)
* [Dijkstra 2](graphs/dijkstra_2.py)
* [Dijkstra Algorithm](graphs/dijkstra_algorithm.py)
* [Dijkstra Alternate](graphs/dijkstra_alternate.py)
* [Dijkstra Binary Grid](graphs/dijkstra_binary_grid.py)
* [Dinic](graphs/dinic.py)
* [Directed And Undirected (Weighted) Graph](graphs/directed_and_undirected_(weighted)_graph.py)
* [Edmonds Karp Multiple Source And Sink](graphs/edmonds_karp_multiple_source_and_sink.py)
* [Eulerian Path And Circuit For Undirected Graph](graphs/eulerian_path_and_circuit_for_undirected_graph.py)
* [Even Tree](graphs/even_tree.py)
* [Finding Bridges](graphs/finding_bridges.py)
* [Frequent Pattern Graph Miner](graphs/frequent_pattern_graph_miner.py)
* [G Topological Sort](graphs/g_topological_sort.py)
* [Gale Shapley Bigraph](graphs/gale_shapley_bigraph.py)
* [Graph Adjacency List](graphs/graph_adjacency_list.py)
* [Graph Adjacency Matrix](graphs/graph_adjacency_matrix.py)
* [Graph List](graphs/graph_list.py)
* [Graphs Floyd Warshall](graphs/graphs_floyd_warshall.py)
* [Greedy Best First](graphs/greedy_best_first.py)
* [Greedy Min Vertex Cover](graphs/greedy_min_vertex_cover.py)
* [Kahns Algorithm Long](graphs/kahns_algorithm_long.py)
* [Kahns Algorithm Topo](graphs/kahns_algorithm_topo.py)
* [Karger](graphs/karger.py)
* [Markov Chain](graphs/markov_chain.py)
* [Matching Min Vertex Cover](graphs/matching_min_vertex_cover.py)
* [Minimum Path Sum](graphs/minimum_path_sum.py)
* [Minimum Spanning Tree Boruvka](graphs/minimum_spanning_tree_boruvka.py)
* [Minimum Spanning Tree Kruskal](graphs/minimum_spanning_tree_kruskal.py)
* [Minimum Spanning Tree Kruskal2](graphs/minimum_spanning_tree_kruskal2.py)
* [Minimum Spanning Tree Prims](graphs/minimum_spanning_tree_prims.py)
* [Minimum Spanning Tree Prims2](graphs/minimum_spanning_tree_prims2.py)
* [Multi Heuristic Astar](graphs/multi_heuristic_astar.py)
* [Page Rank](graphs/page_rank.py)
* [Prim](graphs/prim.py)
* [Random Graph Generator](graphs/random_graph_generator.py)
* [Scc Kosaraju](graphs/scc_kosaraju.py)
* [Strongly Connected Components](graphs/strongly_connected_components.py)
* [Tarjans Scc](graphs/tarjans_scc.py)
* Tests
* [Test Min Spanning Tree Kruskal](graphs/tests/test_min_spanning_tree_kruskal.py)
* [Test Min Spanning Tree Prim](graphs/tests/test_min_spanning_tree_prim.py)
## Greedy Methods
* [Best Time To Buy And Sell Stock](greedy_methods/best_time_to_buy_and_sell_stock.py)
* [Fractional Cover Problem](greedy_methods/fractional_cover_problem.py)
* [Fractional Knapsack](greedy_methods/fractional_knapsack.py)
* [Fractional Knapsack 2](greedy_methods/fractional_knapsack_2.py)
* [Gas Station](greedy_methods/gas_station.py)
* [Minimum Coin Change](greedy_methods/minimum_coin_change.py)
* [Minimum Waiting Time](greedy_methods/minimum_waiting_time.py)
* [Optimal Merge Pattern](greedy_methods/optimal_merge_pattern.py)
## Hashes
* [Adler32](hashes/adler32.py)
* [Chaos Machine](hashes/chaos_machine.py)
* [Djb2](hashes/djb2.py)
* [Elf](hashes/elf.py)
* [Enigma Machine](hashes/enigma_machine.py)
* [Fletcher16](hashes/fletcher16.py)
* [Hamming Code](hashes/hamming_code.py)
* [Luhn](hashes/luhn.py)
* [Md5](hashes/md5.py)
* [Sdbm](hashes/sdbm.py)
* [Sha1](hashes/sha1.py)
* [Sha256](hashes/sha256.py)
## Knapsack
* [Greedy Knapsack](knapsack/greedy_knapsack.py)
* [Knapsack](knapsack/knapsack.py)
* [Recursive Approach Knapsack](knapsack/recursive_approach_knapsack.py)
* Tests
* [Test Greedy Knapsack](knapsack/tests/test_greedy_knapsack.py)
* [Test Knapsack](knapsack/tests/test_knapsack.py)
## Linear Algebra
* [Gaussian Elimination](linear_algebra/gaussian_elimination.py)
* [Jacobi Iteration Method](linear_algebra/jacobi_iteration_method.py)
* [Lu Decomposition](linear_algebra/lu_decomposition.py)
* Src
* [Conjugate Gradient](linear_algebra/src/conjugate_gradient.py)
* Gaussian Elimination Pivoting
* [Gaussian Elimination Pivoting](linear_algebra/src/gaussian_elimination_pivoting/gaussian_elimination_pivoting.py)
* [Lib](linear_algebra/src/lib.py)
* [Polynom For Points](linear_algebra/src/polynom_for_points.py)
* [Power Iteration](linear_algebra/src/power_iteration.py)
* [Rank Of Matrix](linear_algebra/src/rank_of_matrix.py)
* [Rayleigh Quotient](linear_algebra/src/rayleigh_quotient.py)
* [Schur Complement](linear_algebra/src/schur_complement.py)
* [Test Linear Algebra](linear_algebra/src/test_linear_algebra.py)
* [Transformations 2D](linear_algebra/src/transformations_2d.py)
## Linear Programming
* [Simplex](linear_programming/simplex.py)
## Machine Learning
* [Apriori Algorithm](machine_learning/apriori_algorithm.py)
* [Astar](machine_learning/astar.py)
* [Automatic Differentiation](machine_learning/automatic_differentiation.py)
* [Data Transformations](machine_learning/data_transformations.py)
* [Decision Tree](machine_learning/decision_tree.py)
* [Dimensionality Reduction](machine_learning/dimensionality_reduction.py)
* Forecasting
* [Run](machine_learning/forecasting/run.py)
* [Frequent Pattern Growth](machine_learning/frequent_pattern_growth.py)
* [Gradient Boosting Classifier](machine_learning/gradient_boosting_classifier.py)
* [Gradient Descent](machine_learning/gradient_descent.py)
* [K Means Clust](machine_learning/k_means_clust.py)
* [K Nearest Neighbours](machine_learning/k_nearest_neighbours.py)
* [Linear Discriminant Analysis](machine_learning/linear_discriminant_analysis.py)
* [Linear Regression](machine_learning/linear_regression.py)
* Local Weighted Learning
* [Local Weighted Learning](machine_learning/local_weighted_learning/local_weighted_learning.py)
* [Logistic Regression](machine_learning/logistic_regression.py)
* [Loss Functions](machine_learning/loss_functions.py)
* [Mfcc](machine_learning/mfcc.py)
* [Multilayer Perceptron Classifier](machine_learning/multilayer_perceptron_classifier.py)
* [Polynomial Regression](machine_learning/polynomial_regression.py)
* [Scoring Functions](machine_learning/scoring_functions.py)
* [Self Organizing Map](machine_learning/self_organizing_map.py)
* [Sequential Minimum Optimization](machine_learning/sequential_minimum_optimization.py)
* [Similarity Search](machine_learning/similarity_search.py)
* [Support Vector Machines](machine_learning/support_vector_machines.py)
* [Word Frequency Functions](machine_learning/word_frequency_functions.py)
* [Xgboost Classifier](machine_learning/xgboost_classifier.py)
* [Xgboost Regressor](machine_learning/xgboost_regressor.py)
## Maths
* [Abs](maths/abs.py)
* [Addition Without Arithmetic](maths/addition_without_arithmetic.py)
* [Aliquot Sum](maths/aliquot_sum.py)
* [Allocation Number](maths/allocation_number.py)
* [Arc Length](maths/arc_length.py)
* [Area](maths/area.py)
* [Area Under Curve](maths/area_under_curve.py)
* [Average Absolute Deviation](maths/average_absolute_deviation.py)
* [Average Mean](maths/average_mean.py)
* [Average Median](maths/average_median.py)
* [Average Mode](maths/average_mode.py)
* [Bailey Borwein Plouffe](maths/bailey_borwein_plouffe.py)
* [Base Neg2 Conversion](maths/base_neg2_conversion.py)
* [Basic Maths](maths/basic_maths.py)
* [Binary Exponentiation](maths/binary_exponentiation.py)
* [Binary Multiplication](maths/binary_multiplication.py)
* [Binomial Coefficient](maths/binomial_coefficient.py)
* [Binomial Distribution](maths/binomial_distribution.py)
* [Ceil](maths/ceil.py)
* [Chebyshev Distance](maths/chebyshev_distance.py)
* [Check Polygon](maths/check_polygon.py)
* [Chinese Remainder Theorem](maths/chinese_remainder_theorem.py)
* [Chudnovsky Algorithm](maths/chudnovsky_algorithm.py)
* [Collatz Sequence](maths/collatz_sequence.py)
* [Combinations](maths/combinations.py)
* [Continued Fraction](maths/continued_fraction.py)
* [Decimal Isolate](maths/decimal_isolate.py)
* [Decimal To Fraction](maths/decimal_to_fraction.py)
* [Dodecahedron](maths/dodecahedron.py)
* [Double Factorial](maths/double_factorial.py)
* [Dual Number Automatic Differentiation](maths/dual_number_automatic_differentiation.py)
* [Entropy](maths/entropy.py)
* [Euclidean Distance](maths/euclidean_distance.py)
* [Euler Method](maths/euler_method.py)
* [Euler Modified](maths/euler_modified.py)
* [Eulers Totient](maths/eulers_totient.py)
* [Extended Euclidean Algorithm](maths/extended_euclidean_algorithm.py)
* [Factorial](maths/factorial.py)
* [Factors](maths/factors.py)
* [Fast Inverse Sqrt](maths/fast_inverse_sqrt.py)
* [Fermat Little Theorem](maths/fermat_little_theorem.py)
* [Fibonacci](maths/fibonacci.py)
* [Find Max](maths/find_max.py)
* [Find Min](maths/find_min.py)
* [Floor](maths/floor.py)
* [Gamma](maths/gamma.py)
* [Gaussian](maths/gaussian.py)
* [Gaussian Error Linear Unit](maths/gaussian_error_linear_unit.py)
* [Gcd Of N Numbers](maths/gcd_of_n_numbers.py)
* [Germain Primes](maths/germain_primes.py)
* [Greatest Common Divisor](maths/greatest_common_divisor.py)
* [Hardy Ramanujanalgo](maths/hardy_ramanujanalgo.py)
* [Integer Square Root](maths/integer_square_root.py)
* [Interquartile Range](maths/interquartile_range.py)
* [Is Int Palindrome](maths/is_int_palindrome.py)
* [Is Ip V4 Address Valid](maths/is_ip_v4_address_valid.py)
* [Is Square Free](maths/is_square_free.py)
* [Jaccard Similarity](maths/jaccard_similarity.py)
* [Joint Probability Distribution](maths/joint_probability_distribution.py)
* [Josephus Problem](maths/josephus_problem.py)
* [Juggler Sequence](maths/juggler_sequence.py)
* [Karatsuba](maths/karatsuba.py)
* [Kth Lexicographic Permutation](maths/kth_lexicographic_permutation.py)
* [Largest Of Very Large Numbers](maths/largest_of_very_large_numbers.py)
* [Least Common Multiple](maths/least_common_multiple.py)
* [Line Length](maths/line_length.py)
* [Liouville Lambda](maths/liouville_lambda.py)
* [Lucas Lehmer Primality Test](maths/lucas_lehmer_primality_test.py)
* [Lucas Series](maths/lucas_series.py)
* [Maclaurin Series](maths/maclaurin_series.py)
* [Manhattan Distance](maths/manhattan_distance.py)
* [Matrix Exponentiation](maths/matrix_exponentiation.py)
* [Max Sum Sliding Window](maths/max_sum_sliding_window.py)
* [Median Of Two Arrays](maths/median_of_two_arrays.py)
* [Minkowski Distance](maths/minkowski_distance.py)
* [Mobius Function](maths/mobius_function.py)
* [Modular Division](maths/modular_division.py)
* [Modular Exponential](maths/modular_exponential.py)
* [Monte Carlo](maths/monte_carlo.py)
* [Monte Carlo Dice](maths/monte_carlo_dice.py)
* [Number Of Digits](maths/number_of_digits.py)
* Numerical Analysis
* [Adams Bashforth](maths/numerical_analysis/adams_bashforth.py)
* [Bisection](maths/numerical_analysis/bisection.py)
* [Bisection 2](maths/numerical_analysis/bisection_2.py)
* [Integration By Simpson Approx](maths/numerical_analysis/integration_by_simpson_approx.py)
* [Intersection](maths/numerical_analysis/intersection.py)
* [Nevilles Method](maths/numerical_analysis/nevilles_method.py)
* [Newton Forward Interpolation](maths/numerical_analysis/newton_forward_interpolation.py)
* [Newton Raphson](maths/numerical_analysis/newton_raphson.py)
* [Numerical Integration](maths/numerical_analysis/numerical_integration.py)
* [Runge Kutta](maths/numerical_analysis/runge_kutta.py)
* [Runge Kutta Fehlberg 45](maths/numerical_analysis/runge_kutta_fehlberg_45.py)
* [Runge Kutta Gills](maths/numerical_analysis/runge_kutta_gills.py)
* [Secant Method](maths/numerical_analysis/secant_method.py)
* [Simpson Rule](maths/numerical_analysis/simpson_rule.py)
* [Square Root](maths/numerical_analysis/square_root.py)
* [Odd Sieve](maths/odd_sieve.py)
* [Perfect Cube](maths/perfect_cube.py)
* [Perfect Number](maths/perfect_number.py)
* [Perfect Square](maths/perfect_square.py)
* [Persistence](maths/persistence.py)
* [Pi Generator](maths/pi_generator.py)
* [Pi Monte Carlo Estimation](maths/pi_monte_carlo_estimation.py)
* [Points Are Collinear 3D](maths/points_are_collinear_3d.py)
* [Pollard Rho](maths/pollard_rho.py)
* [Polynomial Evaluation](maths/polynomial_evaluation.py)
* Polynomials
* [Single Indeterminate Operations](maths/polynomials/single_indeterminate_operations.py)
* [Power Using Recursion](maths/power_using_recursion.py)
* [Prime Check](maths/prime_check.py)
* [Prime Factors](maths/prime_factors.py)
* [Prime Numbers](maths/prime_numbers.py)
* [Prime Sieve Eratosthenes](maths/prime_sieve_eratosthenes.py)
* [Primelib](maths/primelib.py)
* [Print Multiplication Table](maths/print_multiplication_table.py)
* [Pythagoras](maths/pythagoras.py)
* [Qr Decomposition](maths/qr_decomposition.py)
* [Quadratic Equations Complex Numbers](maths/quadratic_equations_complex_numbers.py)
* [Radians](maths/radians.py)
* [Radix2 Fft](maths/radix2_fft.py)
* [Remove Digit](maths/remove_digit.py)
* [Segmented Sieve](maths/segmented_sieve.py)
* Series
* [Arithmetic](maths/series/arithmetic.py)
* [Geometric](maths/series/geometric.py)
* [Geometric Series](maths/series/geometric_series.py)
* [Harmonic](maths/series/harmonic.py)
* [Harmonic Series](maths/series/harmonic_series.py)
* [Hexagonal Numbers](maths/series/hexagonal_numbers.py)
* [P Series](maths/series/p_series.py)
* [Sieve Of Eratosthenes](maths/sieve_of_eratosthenes.py)
* [Sigmoid](maths/sigmoid.py)
* [Signum](maths/signum.py)
* [Simultaneous Linear Equation Solver](maths/simultaneous_linear_equation_solver.py)
* [Sin](maths/sin.py)
* [Sock Merchant](maths/sock_merchant.py)
* [Softmax](maths/softmax.py)
* [Solovay Strassen Primality Test](maths/solovay_strassen_primality_test.py)
* Special Numbers
* [Armstrong Numbers](maths/special_numbers/armstrong_numbers.py)
* [Automorphic Number](maths/special_numbers/automorphic_number.py)
* [Bell Numbers](maths/special_numbers/bell_numbers.py)
* [Carmichael Number](maths/special_numbers/carmichael_number.py)
* [Catalan Number](maths/special_numbers/catalan_number.py)
* [Hamming Numbers](maths/special_numbers/hamming_numbers.py)
* [Harshad Numbers](maths/special_numbers/harshad_numbers.py)
* [Hexagonal Number](maths/special_numbers/hexagonal_number.py)
* [Krishnamurthy Number](maths/special_numbers/krishnamurthy_number.py)
* [Perfect Number](maths/special_numbers/perfect_number.py)
* [Polygonal Numbers](maths/special_numbers/polygonal_numbers.py)
* [Pronic Number](maths/special_numbers/pronic_number.py)
* [Proth Number](maths/special_numbers/proth_number.py)
* [Triangular Numbers](maths/special_numbers/triangular_numbers.py)
* [Ugly Numbers](maths/special_numbers/ugly_numbers.py)
* [Weird Number](maths/special_numbers/weird_number.py)
* [Sum Of Arithmetic Series](maths/sum_of_arithmetic_series.py)
* [Sum Of Digits](maths/sum_of_digits.py)
* [Sum Of Geometric Progression](maths/sum_of_geometric_progression.py)
* [Sum Of Harmonic Series](maths/sum_of_harmonic_series.py)
* [Sumset](maths/sumset.py)
* [Sylvester Sequence](maths/sylvester_sequence.py)
* [Tanh](maths/tanh.py)
* [Test Prime Check](maths/test_prime_check.py)
* [Three Sum](maths/three_sum.py)
* [Trapezoidal Rule](maths/trapezoidal_rule.py)
* [Triplet Sum](maths/triplet_sum.py)
* [Twin Prime](maths/twin_prime.py)
* [Two Pointer](maths/two_pointer.py)
* [Two Sum](maths/two_sum.py)
* [Volume](maths/volume.py)
* [Zellers Congruence](maths/zellers_congruence.py)
## Matrix
* [Binary Search Matrix](matrix/binary_search_matrix.py)
* [Count Islands In Matrix](matrix/count_islands_in_matrix.py)
* [Count Negative Numbers In Sorted Matrix](matrix/count_negative_numbers_in_sorted_matrix.py)
* [Count Paths](matrix/count_paths.py)
* [Cramers Rule 2X2](matrix/cramers_rule_2x2.py)
* [Inverse Of Matrix](matrix/inverse_of_matrix.py)
* [Largest Square Area In Matrix](matrix/largest_square_area_in_matrix.py)
* [Matrix Class](matrix/matrix_class.py)
* [Matrix Multiplication Recursion](matrix/matrix_multiplication_recursion.py)
* [Matrix Operation](matrix/matrix_operation.py)
* [Max Area Of Island](matrix/max_area_of_island.py)
* [Median Matrix](matrix/median_matrix.py)
* [Nth Fibonacci Using Matrix Exponentiation](matrix/nth_fibonacci_using_matrix_exponentiation.py)
* [Pascal Triangle](matrix/pascal_triangle.py)
* [Rotate Matrix](matrix/rotate_matrix.py)
* [Searching In Sorted Matrix](matrix/searching_in_sorted_matrix.py)
* [Sherman Morrison](matrix/sherman_morrison.py)
* [Spiral Print](matrix/spiral_print.py)
* Tests
* [Test Matrix Operation](matrix/tests/test_matrix_operation.py)
* [Validate Sudoku Board](matrix/validate_sudoku_board.py)
## Networking Flow
* [Ford Fulkerson](networking_flow/ford_fulkerson.py)
* [Minimum Cut](networking_flow/minimum_cut.py)
## Neural Network
* [2 Hidden Layers Neural Network](neural_network/2_hidden_layers_neural_network.py)
* Activation Functions
* [Binary Step](neural_network/activation_functions/binary_step.py)
* [Exponential Linear Unit](neural_network/activation_functions/exponential_linear_unit.py)
* [Leaky Rectified Linear Unit](neural_network/activation_functions/leaky_rectified_linear_unit.py)
* [Mish](neural_network/activation_functions/mish.py)
* [Rectified Linear Unit](neural_network/activation_functions/rectified_linear_unit.py)
* [Scaled Exponential Linear Unit](neural_network/activation_functions/scaled_exponential_linear_unit.py)
* [Soboleva Modified Hyperbolic Tangent](neural_network/activation_functions/soboleva_modified_hyperbolic_tangent.py)
* [Softplus](neural_network/activation_functions/softplus.py)
* [Squareplus](neural_network/activation_functions/squareplus.py)
* [Swish](neural_network/activation_functions/swish.py)
* [Back Propagation Neural Network](neural_network/back_propagation_neural_network.py)
* [Convolution Neural Network](neural_network/convolution_neural_network.py)
* [Simple Neural Network](neural_network/simple_neural_network.py)
## Other
* [Activity Selection](other/activity_selection.py)
* [Alternative List Arrange](other/alternative_list_arrange.py)
* [Bankers Algorithm](other/bankers_algorithm.py)
* [Davis Putnam Logemann Loveland](other/davis_putnam_logemann_loveland.py)
* [Doomsday](other/doomsday.py)
* [Fischer Yates Shuffle](other/fischer_yates_shuffle.py)
* [Gauss Easter](other/gauss_easter.py)
* [Graham Scan](other/graham_scan.py)
* [Greedy](other/greedy.py)
* [Guess The Number Search](other/guess_the_number_search.py)
* [H Index](other/h_index.py)
* [Least Recently Used](other/least_recently_used.py)
* [Lfu Cache](other/lfu_cache.py)
* [Linear Congruential Generator](other/linear_congruential_generator.py)
* [Lru Cache](other/lru_cache.py)
* [Magicdiamondpattern](other/magicdiamondpattern.py)
* [Majority Vote Algorithm](other/majority_vote_algorithm.py)
* [Maximum Subsequence](other/maximum_subsequence.py)
* [Nested Brackets](other/nested_brackets.py)
* [Number Container System](other/number_container_system.py)
* [Password](other/password.py)
* [Quine](other/quine.py)
* [Scoring Algorithm](other/scoring_algorithm.py)
* [Sdes](other/sdes.py)
* [Tower Of Hanoi](other/tower_of_hanoi.py)
* [Word Search](other/word_search.py)
## Physics
* [Altitude Pressure](physics/altitude_pressure.py)
* [Archimedes Principle Of Buoyant Force](physics/archimedes_principle_of_buoyant_force.py)
* [Basic Orbital Capture](physics/basic_orbital_capture.py)
* [Casimir Effect](physics/casimir_effect.py)
* [Center Of Mass](physics/center_of_mass.py)
* [Centripetal Force](physics/centripetal_force.py)
* [Coulombs Law](physics/coulombs_law.py)
* [Doppler Frequency](physics/doppler_frequency.py)
* [Grahams Law](physics/grahams_law.py)
* [Horizontal Projectile Motion](physics/horizontal_projectile_motion.py)
* [Hubble Parameter](physics/hubble_parameter.py)
* [Ideal Gas Law](physics/ideal_gas_law.py)
* [In Static Equilibrium](physics/in_static_equilibrium.py)
* [Kinetic Energy](physics/kinetic_energy.py)
* [Lens Formulae](physics/lens_formulae.py)
* [Lorentz Transformation Four Vector](physics/lorentz_transformation_four_vector.py)
* [Malus Law](physics/malus_law.py)
* [Mass Energy Equivalence](physics/mass_energy_equivalence.py)
* [Mirror Formulae](physics/mirror_formulae.py)
* [N Body Simulation](physics/n_body_simulation.py)
* [Newtons Law Of Gravitation](physics/newtons_law_of_gravitation.py)
* [Newtons Second Law Of Motion](physics/newtons_second_law_of_motion.py)
* [Photoelectric Effect](physics/photoelectric_effect.py)
* [Potential Energy](physics/potential_energy.py)
* [Reynolds Number](physics/reynolds_number.py)
* [Rms Speed Of Molecule](physics/rms_speed_of_molecule.py)
* [Shear Stress](physics/shear_stress.py)
* [Speed Of Sound](physics/speed_of_sound.py)
* [Speeds Of Gas Molecules](physics/speeds_of_gas_molecules.py)
* [Terminal Velocity](physics/terminal_velocity.py)
## Project Euler
* Problem 001
* [Sol1](project_euler/problem_001/sol1.py)
* [Sol2](project_euler/problem_001/sol2.py)
* [Sol3](project_euler/problem_001/sol3.py)
* [Sol4](project_euler/problem_001/sol4.py)
* [Sol5](project_euler/problem_001/sol5.py)
* [Sol6](project_euler/problem_001/sol6.py)
* [Sol7](project_euler/problem_001/sol7.py)
* Problem 002
* [Sol1](project_euler/problem_002/sol1.py)
* [Sol2](project_euler/problem_002/sol2.py)
* [Sol3](project_euler/problem_002/sol3.py)
* [Sol4](project_euler/problem_002/sol4.py)
* [Sol5](project_euler/problem_002/sol5.py)
* Problem 003
* [Sol1](project_euler/problem_003/sol1.py)
* [Sol2](project_euler/problem_003/sol2.py)
* [Sol3](project_euler/problem_003/sol3.py)
* Problem 004
* [Sol1](project_euler/problem_004/sol1.py)
* [Sol2](project_euler/problem_004/sol2.py)
* Problem 005
* [Sol1](project_euler/problem_005/sol1.py)
* [Sol2](project_euler/problem_005/sol2.py)
* Problem 006
* [Sol1](project_euler/problem_006/sol1.py)
* [Sol2](project_euler/problem_006/sol2.py)
* [Sol3](project_euler/problem_006/sol3.py)
* [Sol4](project_euler/problem_006/sol4.py)
* Problem 007
* [Sol1](project_euler/problem_007/sol1.py)
* [Sol2](project_euler/problem_007/sol2.py)
* [Sol3](project_euler/problem_007/sol3.py)
* Problem 008
* [Sol1](project_euler/problem_008/sol1.py)
* [Sol2](project_euler/problem_008/sol2.py)
* [Sol3](project_euler/problem_008/sol3.py)
* Problem 009
* [Sol1](project_euler/problem_009/sol1.py)
* [Sol2](project_euler/problem_009/sol2.py)
* [Sol3](project_euler/problem_009/sol3.py)
* Problem 010
* [Sol1](project_euler/problem_010/sol1.py)
* [Sol2](project_euler/problem_010/sol2.py)
* [Sol3](project_euler/problem_010/sol3.py)
* Problem 011
* [Sol1](project_euler/problem_011/sol1.py)
* [Sol2](project_euler/problem_011/sol2.py)
* Problem 012
* [Sol1](project_euler/problem_012/sol1.py)
* [Sol2](project_euler/problem_012/sol2.py)
* Problem 013
* [Sol1](project_euler/problem_013/sol1.py)
* Problem 014
* [Sol1](project_euler/problem_014/sol1.py)
* [Sol2](project_euler/problem_014/sol2.py)
* Problem 015
* [Sol1](project_euler/problem_015/sol1.py)
* Problem 016
* [Sol1](project_euler/problem_016/sol1.py)
* [Sol2](project_euler/problem_016/sol2.py)
* Problem 017
* [Sol1](project_euler/problem_017/sol1.py)
* Problem 018
* [Solution](project_euler/problem_018/solution.py)
* Problem 019
* [Sol1](project_euler/problem_019/sol1.py)
* Problem 020
* [Sol1](project_euler/problem_020/sol1.py)
* [Sol2](project_euler/problem_020/sol2.py)
* [Sol3](project_euler/problem_020/sol3.py)
* [Sol4](project_euler/problem_020/sol4.py)
* Problem 021
* [Sol1](project_euler/problem_021/sol1.py)
* Problem 022
* [Sol1](project_euler/problem_022/sol1.py)
* [Sol2](project_euler/problem_022/sol2.py)
* Problem 023
* [Sol1](project_euler/problem_023/sol1.py)
* Problem 024
* [Sol1](project_euler/problem_024/sol1.py)
* Problem 025
* [Sol1](project_euler/problem_025/sol1.py)
* [Sol2](project_euler/problem_025/sol2.py)
* [Sol3](project_euler/problem_025/sol3.py)
* Problem 026
* [Sol1](project_euler/problem_026/sol1.py)
* Problem 027
* [Sol1](project_euler/problem_027/sol1.py)
* Problem 028
* [Sol1](project_euler/problem_028/sol1.py)
* Problem 029
* [Sol1](project_euler/problem_029/sol1.py)
* Problem 030
* [Sol1](project_euler/problem_030/sol1.py)
* Problem 031
* [Sol1](project_euler/problem_031/sol1.py)
* [Sol2](project_euler/problem_031/sol2.py)
* Problem 032
* [Sol32](project_euler/problem_032/sol32.py)
* Problem 033
* [Sol1](project_euler/problem_033/sol1.py)
* Problem 034
* [Sol1](project_euler/problem_034/sol1.py)
* Problem 035
* [Sol1](project_euler/problem_035/sol1.py)
* Problem 036
* [Sol1](project_euler/problem_036/sol1.py)
* Problem 037
* [Sol1](project_euler/problem_037/sol1.py)
* Problem 038
* [Sol1](project_euler/problem_038/sol1.py)
* Problem 039
* [Sol1](project_euler/problem_039/sol1.py)
* Problem 040
* [Sol1](project_euler/problem_040/sol1.py)
* Problem 041
* [Sol1](project_euler/problem_041/sol1.py)
* Problem 042
* [Solution42](project_euler/problem_042/solution42.py)
* Problem 043
* [Sol1](project_euler/problem_043/sol1.py)
* Problem 044
* [Sol1](project_euler/problem_044/sol1.py)
* Problem 045
* [Sol1](project_euler/problem_045/sol1.py)
* Problem 046
* [Sol1](project_euler/problem_046/sol1.py)
* Problem 047
* [Sol1](project_euler/problem_047/sol1.py)
* Problem 048
* [Sol1](project_euler/problem_048/sol1.py)
* Problem 049
* [Sol1](project_euler/problem_049/sol1.py)
* Problem 050
* [Sol1](project_euler/problem_050/sol1.py)
* Problem 051
* [Sol1](project_euler/problem_051/sol1.py)
* Problem 052
* [Sol1](project_euler/problem_052/sol1.py)
* Problem 053
* [Sol1](project_euler/problem_053/sol1.py)
* Problem 054
* [Sol1](project_euler/problem_054/sol1.py)
* [Test Poker Hand](project_euler/problem_054/test_poker_hand.py)
* Problem 055
* [Sol1](project_euler/problem_055/sol1.py)
* Problem 056
* [Sol1](project_euler/problem_056/sol1.py)
* Problem 057
* [Sol1](project_euler/problem_057/sol1.py)
* Problem 058
* [Sol1](project_euler/problem_058/sol1.py)
* Problem 059
* [Sol1](project_euler/problem_059/sol1.py)
* Problem 062
* [Sol1](project_euler/problem_062/sol1.py)
* Problem 063
* [Sol1](project_euler/problem_063/sol1.py)
* Problem 064
* [Sol1](project_euler/problem_064/sol1.py)
* Problem 065
* [Sol1](project_euler/problem_065/sol1.py)
* Problem 067
* [Sol1](project_euler/problem_067/sol1.py)
* [Sol2](project_euler/problem_067/sol2.py)
* Problem 068
* [Sol1](project_euler/problem_068/sol1.py)
* Problem 069
* [Sol1](project_euler/problem_069/sol1.py)
* Problem 070
* [Sol1](project_euler/problem_070/sol1.py)
* Problem 071
* [Sol1](project_euler/problem_071/sol1.py)
* Problem 072
* [Sol1](project_euler/problem_072/sol1.py)
* [Sol2](project_euler/problem_072/sol2.py)
* Problem 073
* [Sol1](project_euler/problem_073/sol1.py)
* Problem 074
* [Sol1](project_euler/problem_074/sol1.py)
* [Sol2](project_euler/problem_074/sol2.py)
* Problem 075
* [Sol1](project_euler/problem_075/sol1.py)
* Problem 076
* [Sol1](project_euler/problem_076/sol1.py)
* Problem 077
* [Sol1](project_euler/problem_077/sol1.py)
* Problem 078
* [Sol1](project_euler/problem_078/sol1.py)
* Problem 079
* [Sol1](project_euler/problem_079/sol1.py)
* Problem 080
* [Sol1](project_euler/problem_080/sol1.py)
* Problem 081
* [Sol1](project_euler/problem_081/sol1.py)
* Problem 082
* [Sol1](project_euler/problem_082/sol1.py)
* Problem 085
* [Sol1](project_euler/problem_085/sol1.py)
* Problem 086
* [Sol1](project_euler/problem_086/sol1.py)
* Problem 087
* [Sol1](project_euler/problem_087/sol1.py)
* Problem 089
* [Sol1](project_euler/problem_089/sol1.py)
* Problem 091
* [Sol1](project_euler/problem_091/sol1.py)
* Problem 092
* [Sol1](project_euler/problem_092/sol1.py)
* Problem 094
* [Sol1](project_euler/problem_094/sol1.py)
* Problem 097
* [Sol1](project_euler/problem_097/sol1.py)
* Problem 099
* [Sol1](project_euler/problem_099/sol1.py)
* Problem 100
* [Sol1](project_euler/problem_100/sol1.py)
* Problem 101
* [Sol1](project_euler/problem_101/sol1.py)
* Problem 102
* [Sol1](project_euler/problem_102/sol1.py)
* Problem 104
* [Sol1](project_euler/problem_104/sol1.py)
* Problem 107
* [Sol1](project_euler/problem_107/sol1.py)
* Problem 109
* [Sol1](project_euler/problem_109/sol1.py)
* Problem 112
* [Sol1](project_euler/problem_112/sol1.py)
* Problem 113
* [Sol1](project_euler/problem_113/sol1.py)
* Problem 114
* [Sol1](project_euler/problem_114/sol1.py)
* Problem 115
* [Sol1](project_euler/problem_115/sol1.py)
* Problem 116
* [Sol1](project_euler/problem_116/sol1.py)
* Problem 117
* [Sol1](project_euler/problem_117/sol1.py)
* Problem 119
* [Sol1](project_euler/problem_119/sol1.py)
* Problem 120
* [Sol1](project_euler/problem_120/sol1.py)
* Problem 121
* [Sol1](project_euler/problem_121/sol1.py)
* Problem 123
* [Sol1](project_euler/problem_123/sol1.py)
* Problem 125
* [Sol1](project_euler/problem_125/sol1.py)
* Problem 129
* [Sol1](project_euler/problem_129/sol1.py)
* Problem 131
* [Sol1](project_euler/problem_131/sol1.py)
* Problem 135
* [Sol1](project_euler/problem_135/sol1.py)
* Problem 144
* [Sol1](project_euler/problem_144/sol1.py)
* Problem 145
* [Sol1](project_euler/problem_145/sol1.py)
* Problem 173
* [Sol1](project_euler/problem_173/sol1.py)
* Problem 174
* [Sol1](project_euler/problem_174/sol1.py)
* Problem 180
* [Sol1](project_euler/problem_180/sol1.py)
* Problem 187
* [Sol1](project_euler/problem_187/sol1.py)
* Problem 188
* [Sol1](project_euler/problem_188/sol1.py)
* Problem 191
* [Sol1](project_euler/problem_191/sol1.py)
* Problem 203
* [Sol1](project_euler/problem_203/sol1.py)
* Problem 205
* [Sol1](project_euler/problem_205/sol1.py)
* Problem 206
* [Sol1](project_euler/problem_206/sol1.py)
* Problem 207
* [Sol1](project_euler/problem_207/sol1.py)
* Problem 234
* [Sol1](project_euler/problem_234/sol1.py)
* Problem 301
* [Sol1](project_euler/problem_301/sol1.py)
* Problem 493
* [Sol1](project_euler/problem_493/sol1.py)
* Problem 551
* [Sol1](project_euler/problem_551/sol1.py)
* Problem 587
* [Sol1](project_euler/problem_587/sol1.py)
* Problem 686
* [Sol1](project_euler/problem_686/sol1.py)
* Problem 800
* [Sol1](project_euler/problem_800/sol1.py)
## Quantum
* [Q Fourier Transform](quantum/q_fourier_transform.py)
## Scheduling
* [First Come First Served](scheduling/first_come_first_served.py)
* [Highest Response Ratio Next](scheduling/highest_response_ratio_next.py)
* [Job Sequence With Deadline](scheduling/job_sequence_with_deadline.py)
* [Job Sequencing With Deadline](scheduling/job_sequencing_with_deadline.py)
* [Multi Level Feedback Queue](scheduling/multi_level_feedback_queue.py)
* [Non Preemptive Shortest Job First](scheduling/non_preemptive_shortest_job_first.py)
* [Round Robin](scheduling/round_robin.py)
* [Shortest Job First](scheduling/shortest_job_first.py)
## Searches
* [Binary Search](searches/binary_search.py)
* [Binary Tree Traversal](searches/binary_tree_traversal.py)
* [Double Linear Search](searches/double_linear_search.py)
* [Double Linear Search Recursion](searches/double_linear_search_recursion.py)
* [Fibonacci Search](searches/fibonacci_search.py)
* [Hill Climbing](searches/hill_climbing.py)
* [Interpolation Search](searches/interpolation_search.py)
* [Jump Search](searches/jump_search.py)
* [Linear Search](searches/linear_search.py)
* [Median Of Medians](searches/median_of_medians.py)
* [Quick Select](searches/quick_select.py)
* [Sentinel Linear Search](searches/sentinel_linear_search.py)
* [Simple Binary Search](searches/simple_binary_search.py)
* [Simulated Annealing](searches/simulated_annealing.py)
* [Tabu Search](searches/tabu_search.py)
* [Ternary Search](searches/ternary_search.py)
## Sorts
* [Bead Sort](sorts/bead_sort.py)
* [Binary Insertion Sort](sorts/binary_insertion_sort.py)
* [Bitonic Sort](sorts/bitonic_sort.py)
* [Bogo Sort](sorts/bogo_sort.py)
* [Bubble Sort](sorts/bubble_sort.py)
* [Bucket Sort](sorts/bucket_sort.py)
* [Circle Sort](sorts/circle_sort.py)
* [Cocktail Shaker Sort](sorts/cocktail_shaker_sort.py)
* [Comb Sort](sorts/comb_sort.py)
* [Counting Sort](sorts/counting_sort.py)
* [Cycle Sort](sorts/cycle_sort.py)
* [Double Sort](sorts/double_sort.py)
* [Dutch National Flag Sort](sorts/dutch_national_flag_sort.py)
* [Exchange Sort](sorts/exchange_sort.py)
* [External Sort](sorts/external_sort.py)
* [Gnome Sort](sorts/gnome_sort.py)
* [Heap Sort](sorts/heap_sort.py)
* [Insertion Sort](sorts/insertion_sort.py)
* [Intro Sort](sorts/intro_sort.py)
* [Iterative Merge Sort](sorts/iterative_merge_sort.py)
* [Merge Insertion Sort](sorts/merge_insertion_sort.py)
* [Merge Sort](sorts/merge_sort.py)
* [Msd Radix Sort](sorts/msd_radix_sort.py)
* [Natural Sort](sorts/natural_sort.py)
* [Odd Even Sort](sorts/odd_even_sort.py)
* [Odd Even Transposition Parallel](sorts/odd_even_transposition_parallel.py)
* [Odd Even Transposition Single Threaded](sorts/odd_even_transposition_single_threaded.py)
* [Pancake Sort](sorts/pancake_sort.py)
* [Patience Sort](sorts/patience_sort.py)
* [Pigeon Sort](sorts/pigeon_sort.py)
* [Pigeonhole Sort](sorts/pigeonhole_sort.py)
* [Quick Sort](sorts/quick_sort.py)
* [Quick Sort 3 Partition](sorts/quick_sort_3_partition.py)
* [Radix Sort](sorts/radix_sort.py)
* [Recursive Insertion Sort](sorts/recursive_insertion_sort.py)
* [Recursive Mergesort Array](sorts/recursive_mergesort_array.py)
* [Recursive Quick Sort](sorts/recursive_quick_sort.py)
* [Selection Sort](sorts/selection_sort.py)
* [Shell Sort](sorts/shell_sort.py)
* [Shrink Shell Sort](sorts/shrink_shell_sort.py)
* [Slowsort](sorts/slowsort.py)
* [Stooge Sort](sorts/stooge_sort.py)
* [Strand Sort](sorts/strand_sort.py)
* [Tim Sort](sorts/tim_sort.py)
* [Topological Sort](sorts/topological_sort.py)
* [Tree Sort](sorts/tree_sort.py)
* [Unknown Sort](sorts/unknown_sort.py)
* [Wiggle Sort](sorts/wiggle_sort.py)
## Strings
* [Aho Corasick](strings/aho_corasick.py)
* [Alternative String Arrange](strings/alternative_string_arrange.py)
* [Anagrams](strings/anagrams.py)
* [Autocomplete Using Trie](strings/autocomplete_using_trie.py)
* [Barcode Validator](strings/barcode_validator.py)
* [Bitap String Match](strings/bitap_string_match.py)
* [Boyer Moore Search](strings/boyer_moore_search.py)
* [Camel Case To Snake Case](strings/camel_case_to_snake_case.py)
* [Can String Be Rearranged As Palindrome](strings/can_string_be_rearranged_as_palindrome.py)
* [Capitalize](strings/capitalize.py)
* [Check Anagrams](strings/check_anagrams.py)
* [Credit Card Validator](strings/credit_card_validator.py)
* [Damerau Levenshtein Distance](strings/damerau_levenshtein_distance.py)
* [Detecting English Programmatically](strings/detecting_english_programmatically.py)
* [Dna](strings/dna.py)
* [Edit Distance](strings/edit_distance.py)
* [Frequency Finder](strings/frequency_finder.py)
* [Hamming Distance](strings/hamming_distance.py)
* [Indian Phone Validator](strings/indian_phone_validator.py)
* [Is Contains Unique Chars](strings/is_contains_unique_chars.py)
* [Is Isogram](strings/is_isogram.py)
* [Is Pangram](strings/is_pangram.py)
* [Is Polish National Id](strings/is_polish_national_id.py)
* [Is Spain National Id](strings/is_spain_national_id.py)
* [Is Srilankan Phone Number](strings/is_srilankan_phone_number.py)
* [Is Valid Email Address](strings/is_valid_email_address.py)
* [Jaro Winkler](strings/jaro_winkler.py)
* [Join](strings/join.py)
* [Knuth Morris Pratt](strings/knuth_morris_pratt.py)
* [Levenshtein Distance](strings/levenshtein_distance.py)
* [Lower](strings/lower.py)
* [Manacher](strings/manacher.py)
* [Min Cost String Conversion](strings/min_cost_string_conversion.py)
* [Naive String Search](strings/naive_string_search.py)
* [Ngram](strings/ngram.py)
* [Palindrome](strings/palindrome.py)
* [Pig Latin](strings/pig_latin.py)
* [Prefix Function](strings/prefix_function.py)
* [Rabin Karp](strings/rabin_karp.py)
* [Remove Duplicate](strings/remove_duplicate.py)
* [Reverse Letters](strings/reverse_letters.py)
* [Reverse Words](strings/reverse_words.py)
* [Snake Case To Camel Pascal Case](strings/snake_case_to_camel_pascal_case.py)
* [Split](strings/split.py)
* [String Switch Case](strings/string_switch_case.py)
* [Strip](strings/strip.py)
* [Text Justification](strings/text_justification.py)
* [Title](strings/title.py)
* [Top K Frequent Words](strings/top_k_frequent_words.py)
* [Upper](strings/upper.py)
* [Wave](strings/wave.py)
* [Wildcard Pattern Matching](strings/wildcard_pattern_matching.py)
* [Word Occurrence](strings/word_occurrence.py)
* [Word Patterns](strings/word_patterns.py)
* [Z Function](strings/z_function.py)
## Web Programming
* [Co2 Emission](web_programming/co2_emission.py)
* [Covid Stats Via Xpath](web_programming/covid_stats_via_xpath.py)
* [Crawl Google Results](web_programming/crawl_google_results.py)
* [Crawl Google Scholar Citation](web_programming/crawl_google_scholar_citation.py)
* [Currency Converter](web_programming/currency_converter.py)
* [Current Stock Price](web_programming/current_stock_price.py)
* [Current Weather](web_programming/current_weather.py)
* [Daily Horoscope](web_programming/daily_horoscope.py)
* [Download Images From Google Query](web_programming/download_images_from_google_query.py)
* [Emails From Url](web_programming/emails_from_url.py)
* [Fetch Anime And Play](web_programming/fetch_anime_and_play.py)
* [Fetch Bbc News](web_programming/fetch_bbc_news.py)
* [Fetch Github Info](web_programming/fetch_github_info.py)
* [Fetch Jobs](web_programming/fetch_jobs.py)
* [Fetch Quotes](web_programming/fetch_quotes.py)
* [Fetch Well Rx Price](web_programming/fetch_well_rx_price.py)
* [Get Amazon Product Data](web_programming/get_amazon_product_data.py)
* [Get Imdb Top 250 Movies Csv](web_programming/get_imdb_top_250_movies_csv.py)
* [Get Imdbtop](web_programming/get_imdbtop.py)
* [Get Top Billionaires](web_programming/get_top_billionaires.py)
* [Get Top Hn Posts](web_programming/get_top_hn_posts.py)
* [Get User Tweets](web_programming/get_user_tweets.py)
* [Giphy](web_programming/giphy.py)
* [Instagram Crawler](web_programming/instagram_crawler.py)
* [Instagram Pic](web_programming/instagram_pic.py)
* [Instagram Video](web_programming/instagram_video.py)
* [Nasa Data](web_programming/nasa_data.py)
* [Open Google Results](web_programming/open_google_results.py)
* [Random Anime Character](web_programming/random_anime_character.py)
* [Recaptcha Verification](web_programming/recaptcha_verification.py)
* [Reddit](web_programming/reddit.py)
* [Search Books By Isbn](web_programming/search_books_by_isbn.py)
* [Slack Message](web_programming/slack_message.py)
* [Test Fetch Github Info](web_programming/test_fetch_github_info.py)
* [World Covid19 Stats](web_programming/world_covid19_stats.py)
|
## Audio Filters
* [Butterworth Filter](audio_filters/butterworth_filter.py)
* [Iir Filter](audio_filters/iir_filter.py)
* [Show Response](audio_filters/show_response.py)
## Backtracking
* [All Combinations](backtracking/all_combinations.py)
* [All Permutations](backtracking/all_permutations.py)
* [All Subsequences](backtracking/all_subsequences.py)
* [Coloring](backtracking/coloring.py)
* [Combination Sum](backtracking/combination_sum.py)
* [Crossword Puzzle Solver](backtracking/crossword_puzzle_solver.py)
* [Generate Parentheses](backtracking/generate_parentheses.py)
* [Hamiltonian Cycle](backtracking/hamiltonian_cycle.py)
* [Knight Tour](backtracking/knight_tour.py)
* [Match Word Pattern](backtracking/match_word_pattern.py)
* [Minimax](backtracking/minimax.py)
* [N Queens](backtracking/n_queens.py)
* [N Queens Math](backtracking/n_queens_math.py)
* [Power Sum](backtracking/power_sum.py)
* [Rat In Maze](backtracking/rat_in_maze.py)
* [Sudoku](backtracking/sudoku.py)
* [Sum Of Subsets](backtracking/sum_of_subsets.py)
* [Word Search](backtracking/word_search.py)
## Bit Manipulation
* [Binary And Operator](bit_manipulation/binary_and_operator.py)
* [Binary Coded Decimal](bit_manipulation/binary_coded_decimal.py)
* [Binary Count Setbits](bit_manipulation/binary_count_setbits.py)
* [Binary Count Trailing Zeros](bit_manipulation/binary_count_trailing_zeros.py)
* [Binary Or Operator](bit_manipulation/binary_or_operator.py)
* [Binary Shifts](bit_manipulation/binary_shifts.py)
* [Binary Twos Complement](bit_manipulation/binary_twos_complement.py)
* [Binary Xor Operator](bit_manipulation/binary_xor_operator.py)
* [Bitwise Addition Recursive](bit_manipulation/bitwise_addition_recursive.py)
* [Count 1S Brian Kernighan Method](bit_manipulation/count_1s_brian_kernighan_method.py)
* [Count Number Of One Bits](bit_manipulation/count_number_of_one_bits.py)
* [Excess 3 Code](bit_manipulation/excess_3_code.py)
* [Find Previous Power Of Two](bit_manipulation/find_previous_power_of_two.py)
* [Gray Code Sequence](bit_manipulation/gray_code_sequence.py)
* [Highest Set Bit](bit_manipulation/highest_set_bit.py)
* [Index Of Rightmost Set Bit](bit_manipulation/index_of_rightmost_set_bit.py)
* [Is Even](bit_manipulation/is_even.py)
* [Is Power Of Two](bit_manipulation/is_power_of_two.py)
* [Largest Pow Of Two Le Num](bit_manipulation/largest_pow_of_two_le_num.py)
* [Missing Number](bit_manipulation/missing_number.py)
* [Numbers Different Signs](bit_manipulation/numbers_different_signs.py)
* [Power Of 4](bit_manipulation/power_of_4.py)
* [Reverse Bits](bit_manipulation/reverse_bits.py)
* [Single Bit Manipulation Operations](bit_manipulation/single_bit_manipulation_operations.py)
* [Swap All Odd And Even Bits](bit_manipulation/swap_all_odd_and_even_bits.py)
## Blockchain
* [Diophantine Equation](blockchain/diophantine_equation.py)
## Boolean Algebra
* [And Gate](boolean_algebra/and_gate.py)
* [Imply Gate](boolean_algebra/imply_gate.py)
* [Karnaugh Map Simplification](boolean_algebra/karnaugh_map_simplification.py)
* [Multiplexer](boolean_algebra/multiplexer.py)
* [Nand Gate](boolean_algebra/nand_gate.py)
* [Nimply Gate](boolean_algebra/nimply_gate.py)
* [Nor Gate](boolean_algebra/nor_gate.py)
* [Not Gate](boolean_algebra/not_gate.py)
* [Or Gate](boolean_algebra/or_gate.py)
* [Quine Mc Cluskey](boolean_algebra/quine_mc_cluskey.py)
* [Xnor Gate](boolean_algebra/xnor_gate.py)
* [Xor Gate](boolean_algebra/xor_gate.py)
## Cellular Automata
* [Conways Game Of Life](cellular_automata/conways_game_of_life.py)
* [Game Of Life](cellular_automata/game_of_life.py)
* [Langtons Ant](cellular_automata/langtons_ant.py)
* [Nagel Schrekenberg](cellular_automata/nagel_schrekenberg.py)
* [One Dimensional](cellular_automata/one_dimensional.py)
* [Wa Tor](cellular_automata/wa_tor.py)
## Ciphers
* [A1Z26](ciphers/a1z26.py)
* [Affine Cipher](ciphers/affine_cipher.py)
* [Atbash](ciphers/atbash.py)
* [Autokey](ciphers/autokey.py)
* [Baconian Cipher](ciphers/baconian_cipher.py)
* [Base16](ciphers/base16.py)
* [Base32](ciphers/base32.py)
* [Base64](ciphers/base64.py)
* [Base85](ciphers/base85.py)
* [Beaufort Cipher](ciphers/beaufort_cipher.py)
* [Bifid](ciphers/bifid.py)
* [Brute Force Caesar Cipher](ciphers/brute_force_caesar_cipher.py)
* [Caesar Cipher](ciphers/caesar_cipher.py)
* [Cryptomath Module](ciphers/cryptomath_module.py)
* [Decrypt Caesar With Chi Squared](ciphers/decrypt_caesar_with_chi_squared.py)
* [Deterministic Miller Rabin](ciphers/deterministic_miller_rabin.py)
* [Diffie](ciphers/diffie.py)
* [Diffie Hellman](ciphers/diffie_hellman.py)
* [Elgamal Key Generator](ciphers/elgamal_key_generator.py)
* [Enigma Machine2](ciphers/enigma_machine2.py)
* [Fractionated Morse Cipher](ciphers/fractionated_morse_cipher.py)
* [Hill Cipher](ciphers/hill_cipher.py)
* [Mixed Keyword Cypher](ciphers/mixed_keyword_cypher.py)
* [Mono Alphabetic Ciphers](ciphers/mono_alphabetic_ciphers.py)
* [Morse Code](ciphers/morse_code.py)
* [Onepad Cipher](ciphers/onepad_cipher.py)
* [Permutation Cipher](ciphers/permutation_cipher.py)
* [Playfair Cipher](ciphers/playfair_cipher.py)
* [Polybius](ciphers/polybius.py)
* [Porta Cipher](ciphers/porta_cipher.py)
* [Rabin Miller](ciphers/rabin_miller.py)
* [Rail Fence Cipher](ciphers/rail_fence_cipher.py)
* [Rot13](ciphers/rot13.py)
* [Rsa Cipher](ciphers/rsa_cipher.py)
* [Rsa Factorization](ciphers/rsa_factorization.py)
* [Rsa Key Generator](ciphers/rsa_key_generator.py)
* [Running Key Cipher](ciphers/running_key_cipher.py)
* [Shuffled Shift Cipher](ciphers/shuffled_shift_cipher.py)
* [Simple Keyword Cypher](ciphers/simple_keyword_cypher.py)
* [Simple Substitution Cipher](ciphers/simple_substitution_cipher.py)
* [Transposition Cipher](ciphers/transposition_cipher.py)
* [Transposition Cipher Encrypt Decrypt File](ciphers/transposition_cipher_encrypt_decrypt_file.py)
* [Trifid Cipher](ciphers/trifid_cipher.py)
* [Vernam Cipher](ciphers/vernam_cipher.py)
* [Vigenere Cipher](ciphers/vigenere_cipher.py)
* [Xor Cipher](ciphers/xor_cipher.py)
## Compression
* [Burrows Wheeler](compression/burrows_wheeler.py)
* [Huffman](compression/huffman.py)
* [Lempel Ziv](compression/lempel_ziv.py)
* [Lempel Ziv Decompress](compression/lempel_ziv_decompress.py)
* [Lz77](compression/lz77.py)
* [Peak Signal To Noise Ratio](compression/peak_signal_to_noise_ratio.py)
* [Run Length Encoding](compression/run_length_encoding.py)
## Computer Vision
* [Flip Augmentation](computer_vision/flip_augmentation.py)
* [Haralick Descriptors](computer_vision/haralick_descriptors.py)
* [Harris Corner](computer_vision/harris_corner.py)
* [Horn Schunck](computer_vision/horn_schunck.py)
* [Mean Threshold](computer_vision/mean_threshold.py)
* [Mosaic Augmentation](computer_vision/mosaic_augmentation.py)
* [Pooling Functions](computer_vision/pooling_functions.py)
## Conversions
* [Astronomical Length Scale Conversion](conversions/astronomical_length_scale_conversion.py)
* [Binary To Decimal](conversions/binary_to_decimal.py)
* [Binary To Hexadecimal](conversions/binary_to_hexadecimal.py)
* [Binary To Octal](conversions/binary_to_octal.py)
* [Convert Number To Words](conversions/convert_number_to_words.py)
* [Decimal To Any](conversions/decimal_to_any.py)
* [Decimal To Binary](conversions/decimal_to_binary.py)
* [Decimal To Hexadecimal](conversions/decimal_to_hexadecimal.py)
* [Decimal To Octal](conversions/decimal_to_octal.py)
* [Energy Conversions](conversions/energy_conversions.py)
* [Excel Title To Column](conversions/excel_title_to_column.py)
* [Hex To Bin](conversions/hex_to_bin.py)
* [Hexadecimal To Decimal](conversions/hexadecimal_to_decimal.py)
* [Ipv4 Conversion](conversions/ipv4_conversion.py)
* [Length Conversion](conversions/length_conversion.py)
* [Molecular Chemistry](conversions/molecular_chemistry.py)
* [Octal To Binary](conversions/octal_to_binary.py)
* [Octal To Decimal](conversions/octal_to_decimal.py)
* [Octal To Hexadecimal](conversions/octal_to_hexadecimal.py)
* [Prefix Conversions](conversions/prefix_conversions.py)
* [Prefix Conversions String](conversions/prefix_conversions_string.py)
* [Pressure Conversions](conversions/pressure_conversions.py)
* [Rgb Cmyk Conversion](conversions/rgb_cmyk_conversion.py)
* [Rgb Hsv Conversion](conversions/rgb_hsv_conversion.py)
* [Roman Numerals](conversions/roman_numerals.py)
* [Speed Conversions](conversions/speed_conversions.py)
* [Temperature Conversions](conversions/temperature_conversions.py)
* [Time Conversions](conversions/time_conversions.py)
* [Volume Conversions](conversions/volume_conversions.py)
* [Weight Conversion](conversions/weight_conversion.py)
## Data Structures
* Arrays
* [Equilibrium Index In Array](data_structures/arrays/equilibrium_index_in_array.py)
* [Find Triplets With 0 Sum](data_structures/arrays/find_triplets_with_0_sum.py)
* [Index 2D Array In 1D](data_structures/arrays/index_2d_array_in_1d.py)
* [Kth Largest Element](data_structures/arrays/kth_largest_element.py)
* [Median Two Array](data_structures/arrays/median_two_array.py)
* [Monotonic Array](data_structures/arrays/monotonic_array.py)
* [Pairs With Given Sum](data_structures/arrays/pairs_with_given_sum.py)
* [Permutations](data_structures/arrays/permutations.py)
* [Prefix Sum](data_structures/arrays/prefix_sum.py)
* [Product Sum](data_structures/arrays/product_sum.py)
* [Sparse Table](data_structures/arrays/sparse_table.py)
* [Sudoku Solver](data_structures/arrays/sudoku_solver.py)
* Binary Tree
* [Avl Tree](data_structures/binary_tree/avl_tree.py)
* [Basic Binary Tree](data_structures/binary_tree/basic_binary_tree.py)
* [Binary Search Tree](data_structures/binary_tree/binary_search_tree.py)
* [Binary Search Tree Recursive](data_structures/binary_tree/binary_search_tree_recursive.py)
* [Binary Tree Mirror](data_structures/binary_tree/binary_tree_mirror.py)
* [Binary Tree Node Sum](data_structures/binary_tree/binary_tree_node_sum.py)
* [Binary Tree Path Sum](data_structures/binary_tree/binary_tree_path_sum.py)
* [Binary Tree Traversals](data_structures/binary_tree/binary_tree_traversals.py)
* [Diameter Of Binary Tree](data_structures/binary_tree/diameter_of_binary_tree.py)
* [Diff Views Of Binary Tree](data_structures/binary_tree/diff_views_of_binary_tree.py)
* [Distribute Coins](data_structures/binary_tree/distribute_coins.py)
* [Fenwick Tree](data_structures/binary_tree/fenwick_tree.py)
* [Flatten Binarytree To Linkedlist](data_structures/binary_tree/flatten_binarytree_to_linkedlist.py)
* [Floor And Ceiling](data_structures/binary_tree/floor_and_ceiling.py)
* [Inorder Tree Traversal 2022](data_structures/binary_tree/inorder_tree_traversal_2022.py)
* [Is Sorted](data_structures/binary_tree/is_sorted.py)
* [Is Sum Tree](data_structures/binary_tree/is_sum_tree.py)
* [Lazy Segment Tree](data_structures/binary_tree/lazy_segment_tree.py)
* [Lowest Common Ancestor](data_structures/binary_tree/lowest_common_ancestor.py)
* [Maximum Fenwick Tree](data_structures/binary_tree/maximum_fenwick_tree.py)
* [Merge Two Binary Trees](data_structures/binary_tree/merge_two_binary_trees.py)
* [Mirror Binary Tree](data_structures/binary_tree/mirror_binary_tree.py)
* [Non Recursive Segment Tree](data_structures/binary_tree/non_recursive_segment_tree.py)
* [Number Of Possible Binary Trees](data_structures/binary_tree/number_of_possible_binary_trees.py)
* [Red Black Tree](data_structures/binary_tree/red_black_tree.py)
* [Segment Tree](data_structures/binary_tree/segment_tree.py)
* [Segment Tree Other](data_structures/binary_tree/segment_tree_other.py)
* [Serialize Deserialize Binary Tree](data_structures/binary_tree/serialize_deserialize_binary_tree.py)
* [Symmetric Tree](data_structures/binary_tree/symmetric_tree.py)
* [Treap](data_structures/binary_tree/treap.py)
* [Wavelet Tree](data_structures/binary_tree/wavelet_tree.py)
* Disjoint Set
* [Alternate Disjoint Set](data_structures/disjoint_set/alternate_disjoint_set.py)
* [Disjoint Set](data_structures/disjoint_set/disjoint_set.py)
* Hashing
* [Bloom Filter](data_structures/hashing/bloom_filter.py)
* [Double Hash](data_structures/hashing/double_hash.py)
* [Hash Map](data_structures/hashing/hash_map.py)
* [Hash Table](data_structures/hashing/hash_table.py)
* [Hash Table With Linked List](data_structures/hashing/hash_table_with_linked_list.py)
* Number Theory
* [Prime Numbers](data_structures/hashing/number_theory/prime_numbers.py)
* [Quadratic Probing](data_structures/hashing/quadratic_probing.py)
* Tests
* [Test Hash Map](data_structures/hashing/tests/test_hash_map.py)
* Heap
* [Binomial Heap](data_structures/heap/binomial_heap.py)
* [Heap](data_structures/heap/heap.py)
* [Heap Generic](data_structures/heap/heap_generic.py)
* [Max Heap](data_structures/heap/max_heap.py)
* [Min Heap](data_structures/heap/min_heap.py)
* [Randomized Heap](data_structures/heap/randomized_heap.py)
* [Skew Heap](data_structures/heap/skew_heap.py)
* Linked List
* [Circular Linked List](data_structures/linked_list/circular_linked_list.py)
* [Deque Doubly](data_structures/linked_list/deque_doubly.py)
* [Doubly Linked List](data_structures/linked_list/doubly_linked_list.py)
* [Doubly Linked List Two](data_structures/linked_list/doubly_linked_list_two.py)
* [Floyds Cycle Detection](data_structures/linked_list/floyds_cycle_detection.py)
* [From Sequence](data_structures/linked_list/from_sequence.py)
* [Has Loop](data_structures/linked_list/has_loop.py)
* [Is Palindrome](data_structures/linked_list/is_palindrome.py)
* [Merge Two Lists](data_structures/linked_list/merge_two_lists.py)
* [Middle Element Of Linked List](data_structures/linked_list/middle_element_of_linked_list.py)
* [Print Reverse](data_structures/linked_list/print_reverse.py)
* [Reverse K Group](data_structures/linked_list/reverse_k_group.py)
* [Rotate To The Right](data_structures/linked_list/rotate_to_the_right.py)
* [Singly Linked List](data_structures/linked_list/singly_linked_list.py)
* [Skip List](data_structures/linked_list/skip_list.py)
* [Swap Nodes](data_structures/linked_list/swap_nodes.py)
* Queue
* [Circular Queue](data_structures/queue/circular_queue.py)
* [Circular Queue Linked List](data_structures/queue/circular_queue_linked_list.py)
* [Double Ended Queue](data_structures/queue/double_ended_queue.py)
* [Linked Queue](data_structures/queue/linked_queue.py)
* [Priority Queue Using List](data_structures/queue/priority_queue_using_list.py)
* [Queue By List](data_structures/queue/queue_by_list.py)
* [Queue By Two Stacks](data_structures/queue/queue_by_two_stacks.py)
* [Queue On Pseudo Stack](data_structures/queue/queue_on_pseudo_stack.py)
* Stacks
* [Balanced Parentheses](data_structures/stacks/balanced_parentheses.py)
* [Dijkstras Two Stack Algorithm](data_structures/stacks/dijkstras_two_stack_algorithm.py)
* [Infix To Postfix Conversion](data_structures/stacks/infix_to_postfix_conversion.py)
* [Infix To Prefix Conversion](data_structures/stacks/infix_to_prefix_conversion.py)
* [Next Greater Element](data_structures/stacks/next_greater_element.py)
* [Postfix Evaluation](data_structures/stacks/postfix_evaluation.py)
* [Prefix Evaluation](data_structures/stacks/prefix_evaluation.py)
* [Stack](data_structures/stacks/stack.py)
* [Stack Using Two Queues](data_structures/stacks/stack_using_two_queues.py)
* [Stack With Doubly Linked List](data_structures/stacks/stack_with_doubly_linked_list.py)
* [Stack With Singly Linked List](data_structures/stacks/stack_with_singly_linked_list.py)
* [Stock Span Problem](data_structures/stacks/stock_span_problem.py)
* Trie
* [Radix Tree](data_structures/trie/radix_tree.py)
* [Trie](data_structures/trie/trie.py)
## Digital Image Processing
* [Change Brightness](digital_image_processing/change_brightness.py)
* [Change Contrast](digital_image_processing/change_contrast.py)
* [Convert To Negative](digital_image_processing/convert_to_negative.py)
* Dithering
* [Burkes](digital_image_processing/dithering/burkes.py)
* Edge Detection
* [Canny](digital_image_processing/edge_detection/canny.py)
* Filters
* [Bilateral Filter](digital_image_processing/filters/bilateral_filter.py)
* [Convolve](digital_image_processing/filters/convolve.py)
* [Gabor Filter](digital_image_processing/filters/gabor_filter.py)
* [Gaussian Filter](digital_image_processing/filters/gaussian_filter.py)
* [Laplacian Filter](digital_image_processing/filters/laplacian_filter.py)
* [Local Binary Pattern](digital_image_processing/filters/local_binary_pattern.py)
* [Median Filter](digital_image_processing/filters/median_filter.py)
* [Sobel Filter](digital_image_processing/filters/sobel_filter.py)
* Histogram Equalization
* [Histogram Stretch](digital_image_processing/histogram_equalization/histogram_stretch.py)
* [Index Calculation](digital_image_processing/index_calculation.py)
* Morphological Operations
* [Dilation Operation](digital_image_processing/morphological_operations/dilation_operation.py)
* [Erosion Operation](digital_image_processing/morphological_operations/erosion_operation.py)
* Resize
* [Resize](digital_image_processing/resize/resize.py)
* Rotation
* [Rotation](digital_image_processing/rotation/rotation.py)
* [Sepia](digital_image_processing/sepia.py)
* [Test Digital Image Processing](digital_image_processing/test_digital_image_processing.py)
## Divide And Conquer
* [Closest Pair Of Points](divide_and_conquer/closest_pair_of_points.py)
* [Convex Hull](divide_and_conquer/convex_hull.py)
* [Heaps Algorithm](divide_and_conquer/heaps_algorithm.py)
* [Heaps Algorithm Iterative](divide_and_conquer/heaps_algorithm_iterative.py)
* [Inversions](divide_and_conquer/inversions.py)
* [Kth Order Statistic](divide_and_conquer/kth_order_statistic.py)
* [Max Difference Pair](divide_and_conquer/max_difference_pair.py)
* [Max Subarray](divide_and_conquer/max_subarray.py)
* [Mergesort](divide_and_conquer/mergesort.py)
* [Peak](divide_and_conquer/peak.py)
* [Power](divide_and_conquer/power.py)
* [Strassen Matrix Multiplication](divide_and_conquer/strassen_matrix_multiplication.py)
## Dynamic Programming
* [Abbreviation](dynamic_programming/abbreviation.py)
* [All Construct](dynamic_programming/all_construct.py)
* [Bitmask](dynamic_programming/bitmask.py)
* [Catalan Numbers](dynamic_programming/catalan_numbers.py)
* [Climbing Stairs](dynamic_programming/climbing_stairs.py)
* [Combination Sum Iv](dynamic_programming/combination_sum_iv.py)
* [Edit Distance](dynamic_programming/edit_distance.py)
* [Factorial](dynamic_programming/factorial.py)
* [Fast Fibonacci](dynamic_programming/fast_fibonacci.py)
* [Fibonacci](dynamic_programming/fibonacci.py)
* [Fizz Buzz](dynamic_programming/fizz_buzz.py)
* [Floyd Warshall](dynamic_programming/floyd_warshall.py)
* [Integer Partition](dynamic_programming/integer_partition.py)
* [Iterating Through Submasks](dynamic_programming/iterating_through_submasks.py)
* [Knapsack](dynamic_programming/knapsack.py)
* [Largest Divisible Subset](dynamic_programming/largest_divisible_subset.py)
* [Longest Common Subsequence](dynamic_programming/longest_common_subsequence.py)
* [Longest Common Substring](dynamic_programming/longest_common_substring.py)
* [Longest Increasing Subsequence](dynamic_programming/longest_increasing_subsequence.py)
* [Longest Increasing Subsequence O(Nlogn)](dynamic_programming/longest_increasing_subsequence_o(nlogn).py)
* [Longest Palindromic Subsequence](dynamic_programming/longest_palindromic_subsequence.py)
* [Matrix Chain Multiplication](dynamic_programming/matrix_chain_multiplication.py)
* [Matrix Chain Order](dynamic_programming/matrix_chain_order.py)
* [Max Non Adjacent Sum](dynamic_programming/max_non_adjacent_sum.py)
* [Max Product Subarray](dynamic_programming/max_product_subarray.py)
* [Max Subarray Sum](dynamic_programming/max_subarray_sum.py)
* [Min Distance Up Bottom](dynamic_programming/min_distance_up_bottom.py)
* [Minimum Coin Change](dynamic_programming/minimum_coin_change.py)
* [Minimum Cost Path](dynamic_programming/minimum_cost_path.py)
* [Minimum Partition](dynamic_programming/minimum_partition.py)
* [Minimum Size Subarray Sum](dynamic_programming/minimum_size_subarray_sum.py)
* [Minimum Squares To Represent A Number](dynamic_programming/minimum_squares_to_represent_a_number.py)
* [Minimum Steps To One](dynamic_programming/minimum_steps_to_one.py)
* [Minimum Tickets Cost](dynamic_programming/minimum_tickets_cost.py)
* [Optimal Binary Search Tree](dynamic_programming/optimal_binary_search_tree.py)
* [Palindrome Partitioning](dynamic_programming/palindrome_partitioning.py)
* [Regex Match](dynamic_programming/regex_match.py)
* [Rod Cutting](dynamic_programming/rod_cutting.py)
* [Smith Waterman](dynamic_programming/smith_waterman.py)
* [Subset Generation](dynamic_programming/subset_generation.py)
* [Sum Of Subset](dynamic_programming/sum_of_subset.py)
* [Trapped Water](dynamic_programming/trapped_water.py)
* [Tribonacci](dynamic_programming/tribonacci.py)
* [Viterbi](dynamic_programming/viterbi.py)
* [Wildcard Matching](dynamic_programming/wildcard_matching.py)
* [Word Break](dynamic_programming/word_break.py)
## Electronics
* [Apparent Power](electronics/apparent_power.py)
* [Builtin Voltage](electronics/builtin_voltage.py)
* [Capacitor Equivalence](electronics/capacitor_equivalence.py)
* [Carrier Concentration](electronics/carrier_concentration.py)
* [Charging Capacitor](electronics/charging_capacitor.py)
* [Charging Inductor](electronics/charging_inductor.py)
* [Circular Convolution](electronics/circular_convolution.py)
* [Coulombs Law](electronics/coulombs_law.py)
* [Electric Conductivity](electronics/electric_conductivity.py)
* [Electric Power](electronics/electric_power.py)
* [Electrical Impedance](electronics/electrical_impedance.py)
* [Ic 555 Timer](electronics/ic_555_timer.py)
* [Ind Reactance](electronics/ind_reactance.py)
* [Ohms Law](electronics/ohms_law.py)
* [Real And Reactive Power](electronics/real_and_reactive_power.py)
* [Resistor Color Code](electronics/resistor_color_code.py)
* [Resistor Equivalence](electronics/resistor_equivalence.py)
* [Resonant Frequency](electronics/resonant_frequency.py)
* [Wheatstone Bridge](electronics/wheatstone_bridge.py)
## File Transfer
* [Receive File](file_transfer/receive_file.py)
* [Send File](file_transfer/send_file.py)
* Tests
* [Test Send File](file_transfer/tests/test_send_file.py)
## Financial
* [Equated Monthly Installments](financial/equated_monthly_installments.py)
* [Exponential Moving Average](financial/exponential_moving_average.py)
* [Interest](financial/interest.py)
* [Present Value](financial/present_value.py)
* [Price Plus Tax](financial/price_plus_tax.py)
* [Simple Moving Average](financial/simple_moving_average.py)
## Fractals
* [Julia Sets](fractals/julia_sets.py)
* [Koch Snowflake](fractals/koch_snowflake.py)
* [Mandelbrot](fractals/mandelbrot.py)
* [Sierpinski Triangle](fractals/sierpinski_triangle.py)
## Fuzzy Logic
* [Fuzzy Operations](fuzzy_logic/fuzzy_operations.py)
## Genetic Algorithm
* [Basic String](genetic_algorithm/basic_string.py)
## Geodesy
* [Haversine Distance](geodesy/haversine_distance.py)
* [Lamberts Ellipsoidal Distance](geodesy/lamberts_ellipsoidal_distance.py)
## Graphics
* [Bezier Curve](graphics/bezier_curve.py)
* [Vector3 For 2D Rendering](graphics/vector3_for_2d_rendering.py)
## Graphs
* [A Star](graphs/a_star.py)
* [Articulation Points](graphs/articulation_points.py)
* [Basic Graphs](graphs/basic_graphs.py)
* [Bellman Ford](graphs/bellman_ford.py)
* [Bi Directional Dijkstra](graphs/bi_directional_dijkstra.py)
* [Bidirectional A Star](graphs/bidirectional_a_star.py)
* [Bidirectional Breadth First Search](graphs/bidirectional_breadth_first_search.py)
* [Boruvka](graphs/boruvka.py)
* [Breadth First Search](graphs/breadth_first_search.py)
* [Breadth First Search 2](graphs/breadth_first_search_2.py)
* [Breadth First Search Shortest Path](graphs/breadth_first_search_shortest_path.py)
* [Breadth First Search Shortest Path 2](graphs/breadth_first_search_shortest_path_2.py)
* [Breadth First Search Zero One Shortest Path](graphs/breadth_first_search_zero_one_shortest_path.py)
* [Check Bipatrite](graphs/check_bipatrite.py)
* [Check Cycle](graphs/check_cycle.py)
* [Connected Components](graphs/connected_components.py)
* [Deep Clone Graph](graphs/deep_clone_graph.py)
* [Depth First Search](graphs/depth_first_search.py)
* [Depth First Search 2](graphs/depth_first_search_2.py)
* [Dijkstra](graphs/dijkstra.py)
* [Dijkstra 2](graphs/dijkstra_2.py)
* [Dijkstra Algorithm](graphs/dijkstra_algorithm.py)
* [Dijkstra Alternate](graphs/dijkstra_alternate.py)
* [Dijkstra Binary Grid](graphs/dijkstra_binary_grid.py)
* [Dinic](graphs/dinic.py)
* [Directed And Undirected (Weighted) Graph](graphs/directed_and_undirected_(weighted)_graph.py)
* [Edmonds Karp Multiple Source And Sink](graphs/edmonds_karp_multiple_source_and_sink.py)
* [Eulerian Path And Circuit For Undirected Graph](graphs/eulerian_path_and_circuit_for_undirected_graph.py)
* [Even Tree](graphs/even_tree.py)
* [Finding Bridges](graphs/finding_bridges.py)
* [Frequent Pattern Graph Miner](graphs/frequent_pattern_graph_miner.py)
* [G Topological Sort](graphs/g_topological_sort.py)
* [Gale Shapley Bigraph](graphs/gale_shapley_bigraph.py)
* [Graph Adjacency List](graphs/graph_adjacency_list.py)
* [Graph Adjacency Matrix](graphs/graph_adjacency_matrix.py)
* [Graph List](graphs/graph_list.py)
* [Graphs Floyd Warshall](graphs/graphs_floyd_warshall.py)
* [Greedy Best First](graphs/greedy_best_first.py)
* [Greedy Min Vertex Cover](graphs/greedy_min_vertex_cover.py)
* [Kahns Algorithm Long](graphs/kahns_algorithm_long.py)
* [Kahns Algorithm Topo](graphs/kahns_algorithm_topo.py)
* [Karger](graphs/karger.py)
* [Markov Chain](graphs/markov_chain.py)
* [Matching Min Vertex Cover](graphs/matching_min_vertex_cover.py)
* [Minimum Path Sum](graphs/minimum_path_sum.py)
* [Minimum Spanning Tree Boruvka](graphs/minimum_spanning_tree_boruvka.py)
* [Minimum Spanning Tree Kruskal](graphs/minimum_spanning_tree_kruskal.py)
* [Minimum Spanning Tree Kruskal2](graphs/minimum_spanning_tree_kruskal2.py)
* [Minimum Spanning Tree Prims](graphs/minimum_spanning_tree_prims.py)
* [Minimum Spanning Tree Prims2](graphs/minimum_spanning_tree_prims2.py)
* [Multi Heuristic Astar](graphs/multi_heuristic_astar.py)
* [Page Rank](graphs/page_rank.py)
* [Prim](graphs/prim.py)
* [Random Graph Generator](graphs/random_graph_generator.py)
* [Scc Kosaraju](graphs/scc_kosaraju.py)
* [Strongly Connected Components](graphs/strongly_connected_components.py)
* [Tarjans Scc](graphs/tarjans_scc.py)
* Tests
* [Test Min Spanning Tree Kruskal](graphs/tests/test_min_spanning_tree_kruskal.py)
* [Test Min Spanning Tree Prim](graphs/tests/test_min_spanning_tree_prim.py)
## Greedy Methods
* [Best Time To Buy And Sell Stock](greedy_methods/best_time_to_buy_and_sell_stock.py)
* [Fractional Cover Problem](greedy_methods/fractional_cover_problem.py)
* [Fractional Knapsack](greedy_methods/fractional_knapsack.py)
* [Fractional Knapsack 2](greedy_methods/fractional_knapsack_2.py)
* [Gas Station](greedy_methods/gas_station.py)
* [Minimum Coin Change](greedy_methods/minimum_coin_change.py)
* [Minimum Waiting Time](greedy_methods/minimum_waiting_time.py)
* [Optimal Merge Pattern](greedy_methods/optimal_merge_pattern.py)
## Hashes
* [Adler32](hashes/adler32.py)
* [Chaos Machine](hashes/chaos_machine.py)
* [Djb2](hashes/djb2.py)
* [Elf](hashes/elf.py)
* [Enigma Machine](hashes/enigma_machine.py)
* [Fletcher16](hashes/fletcher16.py)
* [Hamming Code](hashes/hamming_code.py)
* [Luhn](hashes/luhn.py)
* [Md5](hashes/md5.py)
* [Sdbm](hashes/sdbm.py)
* [Sha1](hashes/sha1.py)
* [Sha256](hashes/sha256.py)
## Knapsack
* [Greedy Knapsack](knapsack/greedy_knapsack.py)
* [Knapsack](knapsack/knapsack.py)
* [Recursive Approach Knapsack](knapsack/recursive_approach_knapsack.py)
* Tests
* [Test Greedy Knapsack](knapsack/tests/test_greedy_knapsack.py)
* [Test Knapsack](knapsack/tests/test_knapsack.py)
## Linear Algebra
* [Gaussian Elimination](linear_algebra/gaussian_elimination.py)
* [Jacobi Iteration Method](linear_algebra/jacobi_iteration_method.py)
* [Lu Decomposition](linear_algebra/lu_decomposition.py)
* Src
* [Conjugate Gradient](linear_algebra/src/conjugate_gradient.py)
* Gaussian Elimination Pivoting
* [Gaussian Elimination Pivoting](linear_algebra/src/gaussian_elimination_pivoting/gaussian_elimination_pivoting.py)
* [Lib](linear_algebra/src/lib.py)
* [Polynom For Points](linear_algebra/src/polynom_for_points.py)
* [Power Iteration](linear_algebra/src/power_iteration.py)
* [Rank Of Matrix](linear_algebra/src/rank_of_matrix.py)
* [Rayleigh Quotient](linear_algebra/src/rayleigh_quotient.py)
* [Schur Complement](linear_algebra/src/schur_complement.py)
* [Test Linear Algebra](linear_algebra/src/test_linear_algebra.py)
* [Transformations 2D](linear_algebra/src/transformations_2d.py)
## Linear Programming
* [Simplex](linear_programming/simplex.py)
## Machine Learning
* [Apriori Algorithm](machine_learning/apriori_algorithm.py)
* [Astar](machine_learning/astar.py)
* [Automatic Differentiation](machine_learning/automatic_differentiation.py)
* [Data Transformations](machine_learning/data_transformations.py)
* [Decision Tree](machine_learning/decision_tree.py)
* [Dimensionality Reduction](machine_learning/dimensionality_reduction.py)
* Forecasting
* [Run](machine_learning/forecasting/run.py)
* [Frequent Pattern Growth](machine_learning/frequent_pattern_growth.py)
* [Gradient Boosting Classifier](machine_learning/gradient_boosting_classifier.py)
* [Gradient Descent](machine_learning/gradient_descent.py)
* [K Means Clust](machine_learning/k_means_clust.py)
* [K Nearest Neighbours](machine_learning/k_nearest_neighbours.py)
* [Linear Discriminant Analysis](machine_learning/linear_discriminant_analysis.py)
* [Linear Regression](machine_learning/linear_regression.py)
* Local Weighted Learning
* [Local Weighted Learning](machine_learning/local_weighted_learning/local_weighted_learning.py)
* [Logistic Regression](machine_learning/logistic_regression.py)
* [Loss Functions](machine_learning/loss_functions.py)
* [Mfcc](machine_learning/mfcc.py)
* [Multilayer Perceptron Classifier](machine_learning/multilayer_perceptron_classifier.py)
* [Polynomial Regression](machine_learning/polynomial_regression.py)
* [Scoring Functions](machine_learning/scoring_functions.py)
* [Self Organizing Map](machine_learning/self_organizing_map.py)
* [Sequential Minimum Optimization](machine_learning/sequential_minimum_optimization.py)
* [Similarity Search](machine_learning/similarity_search.py)
* [Support Vector Machines](machine_learning/support_vector_machines.py)
* [Word Frequency Functions](machine_learning/word_frequency_functions.py)
* [Xgboost Classifier](machine_learning/xgboost_classifier.py)
* [Xgboost Regressor](machine_learning/xgboost_regressor.py)
## Maths
* [Abs](maths/abs.py)
* [Addition Without Arithmetic](maths/addition_without_arithmetic.py)
* [Aliquot Sum](maths/aliquot_sum.py)
* [Allocation Number](maths/allocation_number.py)
* [Arc Length](maths/arc_length.py)
* [Area](maths/area.py)
* [Area Under Curve](maths/area_under_curve.py)
* [Average Absolute Deviation](maths/average_absolute_deviation.py)
* [Average Mean](maths/average_mean.py)
* [Average Median](maths/average_median.py)
* [Average Mode](maths/average_mode.py)
* [Bailey Borwein Plouffe](maths/bailey_borwein_plouffe.py)
* [Base Neg2 Conversion](maths/base_neg2_conversion.py)
* [Basic Maths](maths/basic_maths.py)
* [Binary Exponentiation](maths/binary_exponentiation.py)
* [Binary Multiplication](maths/binary_multiplication.py)
* [Binomial Coefficient](maths/binomial_coefficient.py)
* [Binomial Distribution](maths/binomial_distribution.py)
* [Ceil](maths/ceil.py)
* [Chebyshev Distance](maths/chebyshev_distance.py)
* [Check Polygon](maths/check_polygon.py)
* [Chinese Remainder Theorem](maths/chinese_remainder_theorem.py)
* [Chudnovsky Algorithm](maths/chudnovsky_algorithm.py)
* [Collatz Sequence](maths/collatz_sequence.py)
* [Combinations](maths/combinations.py)
* [Continued Fraction](maths/continued_fraction.py)
* [Decimal Isolate](maths/decimal_isolate.py)
* [Decimal To Fraction](maths/decimal_to_fraction.py)
* [Dodecahedron](maths/dodecahedron.py)
* [Double Factorial](maths/double_factorial.py)
* [Dual Number Automatic Differentiation](maths/dual_number_automatic_differentiation.py)
* [Entropy](maths/entropy.py)
* [Euclidean Distance](maths/euclidean_distance.py)
* [Euler Method](maths/euler_method.py)
* [Euler Modified](maths/euler_modified.py)
* [Eulers Totient](maths/eulers_totient.py)
* [Extended Euclidean Algorithm](maths/extended_euclidean_algorithm.py)
* [Factorial](maths/factorial.py)
* [Factors](maths/factors.py)
* [Fast Inverse Sqrt](maths/fast_inverse_sqrt.py)
* [Fermat Little Theorem](maths/fermat_little_theorem.py)
* [Fibonacci](maths/fibonacci.py)
* [Find Max](maths/find_max.py)
* [Find Min](maths/find_min.py)
* [Floor](maths/floor.py)
* [Gamma](maths/gamma.py)
* [Gaussian](maths/gaussian.py)
* [Gaussian Error Linear Unit](maths/gaussian_error_linear_unit.py)
* [Gcd Of N Numbers](maths/gcd_of_n_numbers.py)
* [Germain Primes](maths/germain_primes.py)
* [Greatest Common Divisor](maths/greatest_common_divisor.py)
* [Hardy Ramanujanalgo](maths/hardy_ramanujanalgo.py)
* [Integer Square Root](maths/integer_square_root.py)
* [Interquartile Range](maths/interquartile_range.py)
* [Is Int Palindrome](maths/is_int_palindrome.py)
* [Is Ip V4 Address Valid](maths/is_ip_v4_address_valid.py)
* [Is Square Free](maths/is_square_free.py)
* [Jaccard Similarity](maths/jaccard_similarity.py)
* [Joint Probability Distribution](maths/joint_probability_distribution.py)
* [Josephus Problem](maths/josephus_problem.py)
* [Juggler Sequence](maths/juggler_sequence.py)
* [Karatsuba](maths/karatsuba.py)
* [Kth Lexicographic Permutation](maths/kth_lexicographic_permutation.py)
* [Largest Of Very Large Numbers](maths/largest_of_very_large_numbers.py)
* [Least Common Multiple](maths/least_common_multiple.py)
* [Line Length](maths/line_length.py)
* [Liouville Lambda](maths/liouville_lambda.py)
* [Lucas Lehmer Primality Test](maths/lucas_lehmer_primality_test.py)
* [Lucas Series](maths/lucas_series.py)
* [Maclaurin Series](maths/maclaurin_series.py)
* [Manhattan Distance](maths/manhattan_distance.py)
* [Matrix Exponentiation](maths/matrix_exponentiation.py)
* [Max Sum Sliding Window](maths/max_sum_sliding_window.py)
* [Median Of Two Arrays](maths/median_of_two_arrays.py)
* [Minkowski Distance](maths/minkowski_distance.py)
* [Mobius Function](maths/mobius_function.py)
* [Modular Division](maths/modular_division.py)
* [Modular Exponential](maths/modular_exponential.py)
* [Monte Carlo](maths/monte_carlo.py)
* [Monte Carlo Dice](maths/monte_carlo_dice.py)
* [Number Of Digits](maths/number_of_digits.py)
* Numerical Analysis
* [Adams Bashforth](maths/numerical_analysis/adams_bashforth.py)
* [Bisection](maths/numerical_analysis/bisection.py)
* [Bisection 2](maths/numerical_analysis/bisection_2.py)
* [Integration By Simpson Approx](maths/numerical_analysis/integration_by_simpson_approx.py)
* [Intersection](maths/numerical_analysis/intersection.py)
* [Nevilles Method](maths/numerical_analysis/nevilles_method.py)
* [Newton Forward Interpolation](maths/numerical_analysis/newton_forward_interpolation.py)
* [Newton Raphson](maths/numerical_analysis/newton_raphson.py)
* [Numerical Integration](maths/numerical_analysis/numerical_integration.py)
* [Runge Kutta](maths/numerical_analysis/runge_kutta.py)
* [Runge Kutta Fehlberg 45](maths/numerical_analysis/runge_kutta_fehlberg_45.py)
* [Runge Kutta Gills](maths/numerical_analysis/runge_kutta_gills.py)
* [Secant Method](maths/numerical_analysis/secant_method.py)
* [Simpson Rule](maths/numerical_analysis/simpson_rule.py)
* [Square Root](maths/numerical_analysis/square_root.py)
* [Odd Sieve](maths/odd_sieve.py)
* [Perfect Cube](maths/perfect_cube.py)
* [Perfect Number](maths/perfect_number.py)
* [Perfect Square](maths/perfect_square.py)
* [Persistence](maths/persistence.py)
* [Pi Generator](maths/pi_generator.py)
* [Pi Monte Carlo Estimation](maths/pi_monte_carlo_estimation.py)
* [Points Are Collinear 3D](maths/points_are_collinear_3d.py)
* [Pollard Rho](maths/pollard_rho.py)
* [Polynomial Evaluation](maths/polynomial_evaluation.py)
* Polynomials
* [Single Indeterminate Operations](maths/polynomials/single_indeterminate_operations.py)
* [Power Using Recursion](maths/power_using_recursion.py)
* [Prime Check](maths/prime_check.py)
* [Prime Factors](maths/prime_factors.py)
* [Prime Numbers](maths/prime_numbers.py)
* [Prime Sieve Eratosthenes](maths/prime_sieve_eratosthenes.py)
* [Primelib](maths/primelib.py)
* [Print Multiplication Table](maths/print_multiplication_table.py)
* [Pythagoras](maths/pythagoras.py)
* [Qr Decomposition](maths/qr_decomposition.py)
* [Quadratic Equations Complex Numbers](maths/quadratic_equations_complex_numbers.py)
* [Radians](maths/radians.py)
* [Radix2 Fft](maths/radix2_fft.py)
* [Remove Digit](maths/remove_digit.py)
* [Segmented Sieve](maths/segmented_sieve.py)
* Series
* [Arithmetic](maths/series/arithmetic.py)
* [Geometric](maths/series/geometric.py)
* [Geometric Series](maths/series/geometric_series.py)
* [Harmonic](maths/series/harmonic.py)
* [Harmonic Series](maths/series/harmonic_series.py)
* [Hexagonal Numbers](maths/series/hexagonal_numbers.py)
* [P Series](maths/series/p_series.py)
* [Sieve Of Eratosthenes](maths/sieve_of_eratosthenes.py)
* [Sigmoid](maths/sigmoid.py)
* [Signum](maths/signum.py)
* [Simultaneous Linear Equation Solver](maths/simultaneous_linear_equation_solver.py)
* [Sin](maths/sin.py)
* [Sock Merchant](maths/sock_merchant.py)
* [Softmax](maths/softmax.py)
* [Solovay Strassen Primality Test](maths/solovay_strassen_primality_test.py)
* Special Numbers
* [Armstrong Numbers](maths/special_numbers/armstrong_numbers.py)
* [Automorphic Number](maths/special_numbers/automorphic_number.py)
* [Bell Numbers](maths/special_numbers/bell_numbers.py)
* [Carmichael Number](maths/special_numbers/carmichael_number.py)
* [Catalan Number](maths/special_numbers/catalan_number.py)
* [Hamming Numbers](maths/special_numbers/hamming_numbers.py)
* [Happy Number](maths/special_numbers/happy_number.py)
* [Harshad Numbers](maths/special_numbers/harshad_numbers.py)
* [Hexagonal Number](maths/special_numbers/hexagonal_number.py)
* [Krishnamurthy Number](maths/special_numbers/krishnamurthy_number.py)
* [Perfect Number](maths/special_numbers/perfect_number.py)
* [Polygonal Numbers](maths/special_numbers/polygonal_numbers.py)
* [Pronic Number](maths/special_numbers/pronic_number.py)
* [Proth Number](maths/special_numbers/proth_number.py)
* [Triangular Numbers](maths/special_numbers/triangular_numbers.py)
* [Ugly Numbers](maths/special_numbers/ugly_numbers.py)
* [Weird Number](maths/special_numbers/weird_number.py)
* [Sum Of Arithmetic Series](maths/sum_of_arithmetic_series.py)
* [Sum Of Digits](maths/sum_of_digits.py)
* [Sum Of Geometric Progression](maths/sum_of_geometric_progression.py)
* [Sum Of Harmonic Series](maths/sum_of_harmonic_series.py)
* [Sumset](maths/sumset.py)
* [Sylvester Sequence](maths/sylvester_sequence.py)
* [Tanh](maths/tanh.py)
* [Test Prime Check](maths/test_prime_check.py)
* [Three Sum](maths/three_sum.py)
* [Trapezoidal Rule](maths/trapezoidal_rule.py)
* [Triplet Sum](maths/triplet_sum.py)
* [Twin Prime](maths/twin_prime.py)
* [Two Pointer](maths/two_pointer.py)
* [Two Sum](maths/two_sum.py)
* [Volume](maths/volume.py)
* [Zellers Congruence](maths/zellers_congruence.py)
## Matrix
* [Binary Search Matrix](matrix/binary_search_matrix.py)
* [Count Islands In Matrix](matrix/count_islands_in_matrix.py)
* [Count Negative Numbers In Sorted Matrix](matrix/count_negative_numbers_in_sorted_matrix.py)
* [Count Paths](matrix/count_paths.py)
* [Cramers Rule 2X2](matrix/cramers_rule_2x2.py)
* [Inverse Of Matrix](matrix/inverse_of_matrix.py)
* [Largest Square Area In Matrix](matrix/largest_square_area_in_matrix.py)
* [Matrix Class](matrix/matrix_class.py)
* [Matrix Multiplication Recursion](matrix/matrix_multiplication_recursion.py)
* [Matrix Operation](matrix/matrix_operation.py)
* [Max Area Of Island](matrix/max_area_of_island.py)
* [Median Matrix](matrix/median_matrix.py)
* [Nth Fibonacci Using Matrix Exponentiation](matrix/nth_fibonacci_using_matrix_exponentiation.py)
* [Pascal Triangle](matrix/pascal_triangle.py)
* [Rotate Matrix](matrix/rotate_matrix.py)
* [Searching In Sorted Matrix](matrix/searching_in_sorted_matrix.py)
* [Sherman Morrison](matrix/sherman_morrison.py)
* [Spiral Print](matrix/spiral_print.py)
* Tests
* [Test Matrix Operation](matrix/tests/test_matrix_operation.py)
* [Validate Sudoku Board](matrix/validate_sudoku_board.py)
## Networking Flow
* [Ford Fulkerson](networking_flow/ford_fulkerson.py)
* [Minimum Cut](networking_flow/minimum_cut.py)
## Neural Network
* [2 Hidden Layers Neural Network](neural_network/2_hidden_layers_neural_network.py)
* Activation Functions
* [Binary Step](neural_network/activation_functions/binary_step.py)
* [Exponential Linear Unit](neural_network/activation_functions/exponential_linear_unit.py)
* [Leaky Rectified Linear Unit](neural_network/activation_functions/leaky_rectified_linear_unit.py)
* [Mish](neural_network/activation_functions/mish.py)
* [Rectified Linear Unit](neural_network/activation_functions/rectified_linear_unit.py)
* [Scaled Exponential Linear Unit](neural_network/activation_functions/scaled_exponential_linear_unit.py)
* [Soboleva Modified Hyperbolic Tangent](neural_network/activation_functions/soboleva_modified_hyperbolic_tangent.py)
* [Softplus](neural_network/activation_functions/softplus.py)
* [Squareplus](neural_network/activation_functions/squareplus.py)
* [Swish](neural_network/activation_functions/swish.py)
* [Back Propagation Neural Network](neural_network/back_propagation_neural_network.py)
* [Convolution Neural Network](neural_network/convolution_neural_network.py)
* [Simple Neural Network](neural_network/simple_neural_network.py)
## Other
* [Activity Selection](other/activity_selection.py)
* [Alternative List Arrange](other/alternative_list_arrange.py)
* [Bankers Algorithm](other/bankers_algorithm.py)
* [Davis Putnam Logemann Loveland](other/davis_putnam_logemann_loveland.py)
* [Doomsday](other/doomsday.py)
* [Fischer Yates Shuffle](other/fischer_yates_shuffle.py)
* [Gauss Easter](other/gauss_easter.py)
* [Graham Scan](other/graham_scan.py)
* [Greedy](other/greedy.py)
* [Guess The Number Search](other/guess_the_number_search.py)
* [H Index](other/h_index.py)
* [Least Recently Used](other/least_recently_used.py)
* [Lfu Cache](other/lfu_cache.py)
* [Linear Congruential Generator](other/linear_congruential_generator.py)
* [Lru Cache](other/lru_cache.py)
* [Magicdiamondpattern](other/magicdiamondpattern.py)
* [Majority Vote Algorithm](other/majority_vote_algorithm.py)
* [Maximum Subsequence](other/maximum_subsequence.py)
* [Nested Brackets](other/nested_brackets.py)
* [Number Container System](other/number_container_system.py)
* [Password](other/password.py)
* [Quine](other/quine.py)
* [Scoring Algorithm](other/scoring_algorithm.py)
* [Sdes](other/sdes.py)
* [Tower Of Hanoi](other/tower_of_hanoi.py)
* [Word Search](other/word_search.py)
## Physics
* [Altitude Pressure](physics/altitude_pressure.py)
* [Archimedes Principle Of Buoyant Force](physics/archimedes_principle_of_buoyant_force.py)
* [Basic Orbital Capture](physics/basic_orbital_capture.py)
* [Casimir Effect](physics/casimir_effect.py)
* [Center Of Mass](physics/center_of_mass.py)
* [Centripetal Force](physics/centripetal_force.py)
* [Coulombs Law](physics/coulombs_law.py)
* [Doppler Frequency](physics/doppler_frequency.py)
* [Grahams Law](physics/grahams_law.py)
* [Horizontal Projectile Motion](physics/horizontal_projectile_motion.py)
* [Hubble Parameter](physics/hubble_parameter.py)
* [Ideal Gas Law](physics/ideal_gas_law.py)
* [In Static Equilibrium](physics/in_static_equilibrium.py)
* [Kinetic Energy](physics/kinetic_energy.py)
* [Lens Formulae](physics/lens_formulae.py)
* [Lorentz Transformation Four Vector](physics/lorentz_transformation_four_vector.py)
* [Malus Law](physics/malus_law.py)
* [Mass Energy Equivalence](physics/mass_energy_equivalence.py)
* [Mirror Formulae](physics/mirror_formulae.py)
* [N Body Simulation](physics/n_body_simulation.py)
* [Newtons Law Of Gravitation](physics/newtons_law_of_gravitation.py)
* [Newtons Second Law Of Motion](physics/newtons_second_law_of_motion.py)
* [Photoelectric Effect](physics/photoelectric_effect.py)
* [Potential Energy](physics/potential_energy.py)
* [Reynolds Number](physics/reynolds_number.py)
* [Rms Speed Of Molecule](physics/rms_speed_of_molecule.py)
* [Shear Stress](physics/shear_stress.py)
* [Speed Of Sound](physics/speed_of_sound.py)
* [Speeds Of Gas Molecules](physics/speeds_of_gas_molecules.py)
* [Terminal Velocity](physics/terminal_velocity.py)
## Project Euler
* Problem 001
* [Sol1](project_euler/problem_001/sol1.py)
* [Sol2](project_euler/problem_001/sol2.py)
* [Sol3](project_euler/problem_001/sol3.py)
* [Sol4](project_euler/problem_001/sol4.py)
* [Sol5](project_euler/problem_001/sol5.py)
* [Sol6](project_euler/problem_001/sol6.py)
* [Sol7](project_euler/problem_001/sol7.py)
* Problem 002
* [Sol1](project_euler/problem_002/sol1.py)
* [Sol2](project_euler/problem_002/sol2.py)
* [Sol3](project_euler/problem_002/sol3.py)
* [Sol4](project_euler/problem_002/sol4.py)
* [Sol5](project_euler/problem_002/sol5.py)
* Problem 003
* [Sol1](project_euler/problem_003/sol1.py)
* [Sol2](project_euler/problem_003/sol2.py)
* [Sol3](project_euler/problem_003/sol3.py)
* Problem 004
* [Sol1](project_euler/problem_004/sol1.py)
* [Sol2](project_euler/problem_004/sol2.py)
* Problem 005
* [Sol1](project_euler/problem_005/sol1.py)
* [Sol2](project_euler/problem_005/sol2.py)
* Problem 006
* [Sol1](project_euler/problem_006/sol1.py)
* [Sol2](project_euler/problem_006/sol2.py)
* [Sol3](project_euler/problem_006/sol3.py)
* [Sol4](project_euler/problem_006/sol4.py)
* Problem 007
* [Sol1](project_euler/problem_007/sol1.py)
* [Sol2](project_euler/problem_007/sol2.py)
* [Sol3](project_euler/problem_007/sol3.py)
* Problem 008
* [Sol1](project_euler/problem_008/sol1.py)
* [Sol2](project_euler/problem_008/sol2.py)
* [Sol3](project_euler/problem_008/sol3.py)
* Problem 009
* [Sol1](project_euler/problem_009/sol1.py)
* [Sol2](project_euler/problem_009/sol2.py)
* [Sol3](project_euler/problem_009/sol3.py)
* Problem 010
* [Sol1](project_euler/problem_010/sol1.py)
* [Sol2](project_euler/problem_010/sol2.py)
* [Sol3](project_euler/problem_010/sol3.py)
* Problem 011
* [Sol1](project_euler/problem_011/sol1.py)
* [Sol2](project_euler/problem_011/sol2.py)
* Problem 012
* [Sol1](project_euler/problem_012/sol1.py)
* [Sol2](project_euler/problem_012/sol2.py)
* Problem 013
* [Sol1](project_euler/problem_013/sol1.py)
* Problem 014
* [Sol1](project_euler/problem_014/sol1.py)
* [Sol2](project_euler/problem_014/sol2.py)
* Problem 015
* [Sol1](project_euler/problem_015/sol1.py)
* Problem 016
* [Sol1](project_euler/problem_016/sol1.py)
* [Sol2](project_euler/problem_016/sol2.py)
* Problem 017
* [Sol1](project_euler/problem_017/sol1.py)
* Problem 018
* [Solution](project_euler/problem_018/solution.py)
* Problem 019
* [Sol1](project_euler/problem_019/sol1.py)
* Problem 020
* [Sol1](project_euler/problem_020/sol1.py)
* [Sol2](project_euler/problem_020/sol2.py)
* [Sol3](project_euler/problem_020/sol3.py)
* [Sol4](project_euler/problem_020/sol4.py)
* Problem 021
* [Sol1](project_euler/problem_021/sol1.py)
* Problem 022
* [Sol1](project_euler/problem_022/sol1.py)
* [Sol2](project_euler/problem_022/sol2.py)
* Problem 023
* [Sol1](project_euler/problem_023/sol1.py)
* Problem 024
* [Sol1](project_euler/problem_024/sol1.py)
* Problem 025
* [Sol1](project_euler/problem_025/sol1.py)
* [Sol2](project_euler/problem_025/sol2.py)
* [Sol3](project_euler/problem_025/sol3.py)
* Problem 026
* [Sol1](project_euler/problem_026/sol1.py)
* Problem 027
* [Sol1](project_euler/problem_027/sol1.py)
* Problem 028
* [Sol1](project_euler/problem_028/sol1.py)
* Problem 029
* [Sol1](project_euler/problem_029/sol1.py)
* Problem 030
* [Sol1](project_euler/problem_030/sol1.py)
* Problem 031
* [Sol1](project_euler/problem_031/sol1.py)
* [Sol2](project_euler/problem_031/sol2.py)
* Problem 032
* [Sol32](project_euler/problem_032/sol32.py)
* Problem 033
* [Sol1](project_euler/problem_033/sol1.py)
* Problem 034
* [Sol1](project_euler/problem_034/sol1.py)
* Problem 035
* [Sol1](project_euler/problem_035/sol1.py)
* Problem 036
* [Sol1](project_euler/problem_036/sol1.py)
* Problem 037
* [Sol1](project_euler/problem_037/sol1.py)
* Problem 038
* [Sol1](project_euler/problem_038/sol1.py)
* Problem 039
* [Sol1](project_euler/problem_039/sol1.py)
* Problem 040
* [Sol1](project_euler/problem_040/sol1.py)
* Problem 041
* [Sol1](project_euler/problem_041/sol1.py)
* Problem 042
* [Solution42](project_euler/problem_042/solution42.py)
* Problem 043
* [Sol1](project_euler/problem_043/sol1.py)
* Problem 044
* [Sol1](project_euler/problem_044/sol1.py)
* Problem 045
* [Sol1](project_euler/problem_045/sol1.py)
* Problem 046
* [Sol1](project_euler/problem_046/sol1.py)
* Problem 047
* [Sol1](project_euler/problem_047/sol1.py)
* Problem 048
* [Sol1](project_euler/problem_048/sol1.py)
* Problem 049
* [Sol1](project_euler/problem_049/sol1.py)
* Problem 050
* [Sol1](project_euler/problem_050/sol1.py)
* Problem 051
* [Sol1](project_euler/problem_051/sol1.py)
* Problem 052
* [Sol1](project_euler/problem_052/sol1.py)
* Problem 053
* [Sol1](project_euler/problem_053/sol1.py)
* Problem 054
* [Sol1](project_euler/problem_054/sol1.py)
* [Test Poker Hand](project_euler/problem_054/test_poker_hand.py)
* Problem 055
* [Sol1](project_euler/problem_055/sol1.py)
* Problem 056
* [Sol1](project_euler/problem_056/sol1.py)
* Problem 057
* [Sol1](project_euler/problem_057/sol1.py)
* Problem 058
* [Sol1](project_euler/problem_058/sol1.py)
* Problem 059
* [Sol1](project_euler/problem_059/sol1.py)
* Problem 062
* [Sol1](project_euler/problem_062/sol1.py)
* Problem 063
* [Sol1](project_euler/problem_063/sol1.py)
* Problem 064
* [Sol1](project_euler/problem_064/sol1.py)
* Problem 065
* [Sol1](project_euler/problem_065/sol1.py)
* Problem 067
* [Sol1](project_euler/problem_067/sol1.py)
* [Sol2](project_euler/problem_067/sol2.py)
* Problem 068
* [Sol1](project_euler/problem_068/sol1.py)
* Problem 069
* [Sol1](project_euler/problem_069/sol1.py)
* Problem 070
* [Sol1](project_euler/problem_070/sol1.py)
* Problem 071
* [Sol1](project_euler/problem_071/sol1.py)
* Problem 072
* [Sol1](project_euler/problem_072/sol1.py)
* [Sol2](project_euler/problem_072/sol2.py)
* Problem 073
* [Sol1](project_euler/problem_073/sol1.py)
* Problem 074
* [Sol1](project_euler/problem_074/sol1.py)
* [Sol2](project_euler/problem_074/sol2.py)
* Problem 075
* [Sol1](project_euler/problem_075/sol1.py)
* Problem 076
* [Sol1](project_euler/problem_076/sol1.py)
* Problem 077
* [Sol1](project_euler/problem_077/sol1.py)
* Problem 078
* [Sol1](project_euler/problem_078/sol1.py)
* Problem 079
* [Sol1](project_euler/problem_079/sol1.py)
* Problem 080
* [Sol1](project_euler/problem_080/sol1.py)
* Problem 081
* [Sol1](project_euler/problem_081/sol1.py)
* Problem 082
* [Sol1](project_euler/problem_082/sol1.py)
* Problem 085
* [Sol1](project_euler/problem_085/sol1.py)
* Problem 086
* [Sol1](project_euler/problem_086/sol1.py)
* Problem 087
* [Sol1](project_euler/problem_087/sol1.py)
* Problem 089
* [Sol1](project_euler/problem_089/sol1.py)
* Problem 091
* [Sol1](project_euler/problem_091/sol1.py)
* Problem 092
* [Sol1](project_euler/problem_092/sol1.py)
* Problem 094
* [Sol1](project_euler/problem_094/sol1.py)
* Problem 097
* [Sol1](project_euler/problem_097/sol1.py)
* Problem 099
* [Sol1](project_euler/problem_099/sol1.py)
* Problem 100
* [Sol1](project_euler/problem_100/sol1.py)
* Problem 101
* [Sol1](project_euler/problem_101/sol1.py)
* Problem 102
* [Sol1](project_euler/problem_102/sol1.py)
* Problem 104
* [Sol1](project_euler/problem_104/sol1.py)
* Problem 107
* [Sol1](project_euler/problem_107/sol1.py)
* Problem 109
* [Sol1](project_euler/problem_109/sol1.py)
* Problem 112
* [Sol1](project_euler/problem_112/sol1.py)
* Problem 113
* [Sol1](project_euler/problem_113/sol1.py)
* Problem 114
* [Sol1](project_euler/problem_114/sol1.py)
* Problem 115
* [Sol1](project_euler/problem_115/sol1.py)
* Problem 116
* [Sol1](project_euler/problem_116/sol1.py)
* Problem 117
* [Sol1](project_euler/problem_117/sol1.py)
* Problem 119
* [Sol1](project_euler/problem_119/sol1.py)
* Problem 120
* [Sol1](project_euler/problem_120/sol1.py)
* Problem 121
* [Sol1](project_euler/problem_121/sol1.py)
* Problem 123
* [Sol1](project_euler/problem_123/sol1.py)
* Problem 125
* [Sol1](project_euler/problem_125/sol1.py)
* Problem 129
* [Sol1](project_euler/problem_129/sol1.py)
* Problem 131
* [Sol1](project_euler/problem_131/sol1.py)
* Problem 135
* [Sol1](project_euler/problem_135/sol1.py)
* Problem 144
* [Sol1](project_euler/problem_144/sol1.py)
* Problem 145
* [Sol1](project_euler/problem_145/sol1.py)
* Problem 173
* [Sol1](project_euler/problem_173/sol1.py)
* Problem 174
* [Sol1](project_euler/problem_174/sol1.py)
* Problem 180
* [Sol1](project_euler/problem_180/sol1.py)
* Problem 187
* [Sol1](project_euler/problem_187/sol1.py)
* Problem 188
* [Sol1](project_euler/problem_188/sol1.py)
* Problem 191
* [Sol1](project_euler/problem_191/sol1.py)
* Problem 203
* [Sol1](project_euler/problem_203/sol1.py)
* Problem 205
* [Sol1](project_euler/problem_205/sol1.py)
* Problem 206
* [Sol1](project_euler/problem_206/sol1.py)
* Problem 207
* [Sol1](project_euler/problem_207/sol1.py)
* Problem 234
* [Sol1](project_euler/problem_234/sol1.py)
* Problem 301
* [Sol1](project_euler/problem_301/sol1.py)
* Problem 493
* [Sol1](project_euler/problem_493/sol1.py)
* Problem 551
* [Sol1](project_euler/problem_551/sol1.py)
* Problem 587
* [Sol1](project_euler/problem_587/sol1.py)
* Problem 686
* [Sol1](project_euler/problem_686/sol1.py)
* Problem 800
* [Sol1](project_euler/problem_800/sol1.py)
## Quantum
* [Q Fourier Transform](quantum/q_fourier_transform.py)
## Scheduling
* [First Come First Served](scheduling/first_come_first_served.py)
* [Highest Response Ratio Next](scheduling/highest_response_ratio_next.py)
* [Job Sequence With Deadline](scheduling/job_sequence_with_deadline.py)
* [Job Sequencing With Deadline](scheduling/job_sequencing_with_deadline.py)
* [Multi Level Feedback Queue](scheduling/multi_level_feedback_queue.py)
* [Non Preemptive Shortest Job First](scheduling/non_preemptive_shortest_job_first.py)
* [Round Robin](scheduling/round_robin.py)
* [Shortest Job First](scheduling/shortest_job_first.py)
## Searches
* [Binary Search](searches/binary_search.py)
* [Binary Tree Traversal](searches/binary_tree_traversal.py)
* [Double Linear Search](searches/double_linear_search.py)
* [Double Linear Search Recursion](searches/double_linear_search_recursion.py)
* [Fibonacci Search](searches/fibonacci_search.py)
* [Hill Climbing](searches/hill_climbing.py)
* [Interpolation Search](searches/interpolation_search.py)
* [Jump Search](searches/jump_search.py)
* [Linear Search](searches/linear_search.py)
* [Median Of Medians](searches/median_of_medians.py)
* [Quick Select](searches/quick_select.py)
* [Sentinel Linear Search](searches/sentinel_linear_search.py)
* [Simple Binary Search](searches/simple_binary_search.py)
* [Simulated Annealing](searches/simulated_annealing.py)
* [Tabu Search](searches/tabu_search.py)
* [Ternary Search](searches/ternary_search.py)
## Sorts
* [Bead Sort](sorts/bead_sort.py)
* [Binary Insertion Sort](sorts/binary_insertion_sort.py)
* [Bitonic Sort](sorts/bitonic_sort.py)
* [Bogo Sort](sorts/bogo_sort.py)
* [Bubble Sort](sorts/bubble_sort.py)
* [Bucket Sort](sorts/bucket_sort.py)
* [Circle Sort](sorts/circle_sort.py)
* [Cocktail Shaker Sort](sorts/cocktail_shaker_sort.py)
* [Comb Sort](sorts/comb_sort.py)
* [Counting Sort](sorts/counting_sort.py)
* [Cycle Sort](sorts/cycle_sort.py)
* [Double Sort](sorts/double_sort.py)
* [Dutch National Flag Sort](sorts/dutch_national_flag_sort.py)
* [Exchange Sort](sorts/exchange_sort.py)
* [External Sort](sorts/external_sort.py)
* [Gnome Sort](sorts/gnome_sort.py)
* [Heap Sort](sorts/heap_sort.py)
* [Insertion Sort](sorts/insertion_sort.py)
* [Intro Sort](sorts/intro_sort.py)
* [Iterative Merge Sort](sorts/iterative_merge_sort.py)
* [Merge Insertion Sort](sorts/merge_insertion_sort.py)
* [Merge Sort](sorts/merge_sort.py)
* [Msd Radix Sort](sorts/msd_radix_sort.py)
* [Natural Sort](sorts/natural_sort.py)
* [Odd Even Sort](sorts/odd_even_sort.py)
* [Odd Even Transposition Parallel](sorts/odd_even_transposition_parallel.py)
* [Odd Even Transposition Single Threaded](sorts/odd_even_transposition_single_threaded.py)
* [Pancake Sort](sorts/pancake_sort.py)
* [Patience Sort](sorts/patience_sort.py)
* [Pigeon Sort](sorts/pigeon_sort.py)
* [Pigeonhole Sort](sorts/pigeonhole_sort.py)
* [Quick Sort](sorts/quick_sort.py)
* [Quick Sort 3 Partition](sorts/quick_sort_3_partition.py)
* [Radix Sort](sorts/radix_sort.py)
* [Recursive Insertion Sort](sorts/recursive_insertion_sort.py)
* [Recursive Mergesort Array](sorts/recursive_mergesort_array.py)
* [Recursive Quick Sort](sorts/recursive_quick_sort.py)
* [Selection Sort](sorts/selection_sort.py)
* [Shell Sort](sorts/shell_sort.py)
* [Shrink Shell Sort](sorts/shrink_shell_sort.py)
* [Slowsort](sorts/slowsort.py)
* [Stooge Sort](sorts/stooge_sort.py)
* [Strand Sort](sorts/strand_sort.py)
* [Tim Sort](sorts/tim_sort.py)
* [Topological Sort](sorts/topological_sort.py)
* [Tree Sort](sorts/tree_sort.py)
* [Unknown Sort](sorts/unknown_sort.py)
* [Wiggle Sort](sorts/wiggle_sort.py)
## Strings
* [Aho Corasick](strings/aho_corasick.py)
* [Alternative String Arrange](strings/alternative_string_arrange.py)
* [Anagrams](strings/anagrams.py)
* [Autocomplete Using Trie](strings/autocomplete_using_trie.py)
* [Barcode Validator](strings/barcode_validator.py)
* [Bitap String Match](strings/bitap_string_match.py)
* [Boyer Moore Search](strings/boyer_moore_search.py)
* [Camel Case To Snake Case](strings/camel_case_to_snake_case.py)
* [Can String Be Rearranged As Palindrome](strings/can_string_be_rearranged_as_palindrome.py)
* [Capitalize](strings/capitalize.py)
* [Check Anagrams](strings/check_anagrams.py)
* [Credit Card Validator](strings/credit_card_validator.py)
* [Damerau Levenshtein Distance](strings/damerau_levenshtein_distance.py)
* [Detecting English Programmatically](strings/detecting_english_programmatically.py)
* [Dna](strings/dna.py)
* [Edit Distance](strings/edit_distance.py)
* [Frequency Finder](strings/frequency_finder.py)
* [Hamming Distance](strings/hamming_distance.py)
* [Indian Phone Validator](strings/indian_phone_validator.py)
* [Is Contains Unique Chars](strings/is_contains_unique_chars.py)
* [Is Isogram](strings/is_isogram.py)
* [Is Pangram](strings/is_pangram.py)
* [Is Polish National Id](strings/is_polish_national_id.py)
* [Is Spain National Id](strings/is_spain_national_id.py)
* [Is Srilankan Phone Number](strings/is_srilankan_phone_number.py)
* [Is Valid Email Address](strings/is_valid_email_address.py)
* [Jaro Winkler](strings/jaro_winkler.py)
* [Join](strings/join.py)
* [Knuth Morris Pratt](strings/knuth_morris_pratt.py)
* [Levenshtein Distance](strings/levenshtein_distance.py)
* [Lower](strings/lower.py)
* [Manacher](strings/manacher.py)
* [Min Cost String Conversion](strings/min_cost_string_conversion.py)
* [Naive String Search](strings/naive_string_search.py)
* [Ngram](strings/ngram.py)
* [Palindrome](strings/palindrome.py)
* [Pig Latin](strings/pig_latin.py)
* [Prefix Function](strings/prefix_function.py)
* [Rabin Karp](strings/rabin_karp.py)
* [Remove Duplicate](strings/remove_duplicate.py)
* [Reverse Letters](strings/reverse_letters.py)
* [Reverse Words](strings/reverse_words.py)
* [Snake Case To Camel Pascal Case](strings/snake_case_to_camel_pascal_case.py)
* [Split](strings/split.py)
* [String Switch Case](strings/string_switch_case.py)
* [Strip](strings/strip.py)
* [Text Justification](strings/text_justification.py)
* [Title](strings/title.py)
* [Top K Frequent Words](strings/top_k_frequent_words.py)
* [Upper](strings/upper.py)
* [Wave](strings/wave.py)
* [Wildcard Pattern Matching](strings/wildcard_pattern_matching.py)
* [Word Occurrence](strings/word_occurrence.py)
* [Word Patterns](strings/word_patterns.py)
* [Z Function](strings/z_function.py)
## Web Programming
* [Co2 Emission](web_programming/co2_emission.py)
* [Covid Stats Via Xpath](web_programming/covid_stats_via_xpath.py)
* [Crawl Google Results](web_programming/crawl_google_results.py)
* [Crawl Google Scholar Citation](web_programming/crawl_google_scholar_citation.py)
* [Currency Converter](web_programming/currency_converter.py)
* [Current Stock Price](web_programming/current_stock_price.py)
* [Current Weather](web_programming/current_weather.py)
* [Daily Horoscope](web_programming/daily_horoscope.py)
* [Download Images From Google Query](web_programming/download_images_from_google_query.py)
* [Emails From Url](web_programming/emails_from_url.py)
* [Fetch Anime And Play](web_programming/fetch_anime_and_play.py)
* [Fetch Bbc News](web_programming/fetch_bbc_news.py)
* [Fetch Github Info](web_programming/fetch_github_info.py)
* [Fetch Jobs](web_programming/fetch_jobs.py)
* [Fetch Quotes](web_programming/fetch_quotes.py)
* [Fetch Well Rx Price](web_programming/fetch_well_rx_price.py)
* [Get Amazon Product Data](web_programming/get_amazon_product_data.py)
* [Get Imdb Top 250 Movies Csv](web_programming/get_imdb_top_250_movies_csv.py)
* [Get Imdbtop](web_programming/get_imdbtop.py)
* [Get Ip Geolocation](web_programming/get_ip_geolocation.py)
* [Get Top Billionaires](web_programming/get_top_billionaires.py)
* [Get Top Hn Posts](web_programming/get_top_hn_posts.py)
* [Get User Tweets](web_programming/get_user_tweets.py)
* [Giphy](web_programming/giphy.py)
* [Instagram Crawler](web_programming/instagram_crawler.py)
* [Instagram Pic](web_programming/instagram_pic.py)
* [Instagram Video](web_programming/instagram_video.py)
* [Nasa Data](web_programming/nasa_data.py)
* [Open Google Results](web_programming/open_google_results.py)
* [Random Anime Character](web_programming/random_anime_character.py)
* [Recaptcha Verification](web_programming/recaptcha_verification.py)
* [Reddit](web_programming/reddit.py)
* [Search Books By Isbn](web_programming/search_books_by_isbn.py)
* [Slack Message](web_programming/slack_message.py)
* [Test Fetch Github Info](web_programming/test_fetch_github_info.py)
* [World Covid19 Stats](web_programming/world_covid19_stats.py)
| 1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | [tool.ruff]
ignore = [ # `ruff rule S101` for a description of that rule
"ARG001", # Unused function argument `amount` -- FIX ME?
"B904", # Within an `except` clause, raise exceptions with `raise ... from err` -- FIX ME
"B905", # `zip()` without an explicit `strict=` parameter -- FIX ME
"DTZ001", # The use of `datetime.datetime()` without `tzinfo` argument is not allowed -- FIX ME
"DTZ005", # The use of `datetime.datetime.now()` without `tzinfo` argument is not allowed -- FIX ME
"E741", # Ambiguous variable name 'l' -- FIX ME
"EM101", # Exception must not use a string literal, assign to variable first
"EXE001", # Shebang is present but file is not executable" -- FIX ME
"G004", # Logging statement uses f-string
"ICN001", # `matplotlib.pyplot` should be imported as `plt` -- FIX ME
"INP001", # File `x/y/z.py` is part of an implicit namespace package. Add an `__init__.py`. -- FIX ME
"N999", # Invalid module name -- FIX ME
"NPY002", # Replace legacy `np.random.choice` call with `np.random.Generator` -- FIX ME
"PGH003", # Use specific rule codes when ignoring type issues -- FIX ME
"PLC1901", # `{}` can be simplified to `{}` as an empty string is falsey
"PLR5501", # Consider using `elif` instead of `else` -- FIX ME
"PLW0120", # `else` clause on loop without a `break` statement -- FIX ME
"PLW060", # Using global for `{name}` but no assignment is done -- DO NOT FIX
"PLW2901", # PLW2901: Redefined loop variable -- FIX ME
"PT011", # `pytest.raises(Exception)` is too broad, set the `match` parameter or use a more specific exception
"PT018", # Assertion should be broken down into multiple parts
"RUF00", # Ambiguous unicode character and other rules
"RUF100", # Unused `noqa` directive -- FIX ME
"S101", # Use of `assert` detected -- DO NOT FIX
"S105", # Possible hardcoded password: 'password'
"S113", # Probable use of requests call without timeout -- FIX ME
"S311", # Standard pseudo-random generators are not suitable for cryptographic purposes -- FIX ME
"SIM102", # Use a single `if` statement instead of nested `if` statements -- FIX ME
"SLF001", # Private member accessed: `_Iterator` -- FIX ME
"UP038", # Use `X | Y` in `{}` call instead of `(X, Y)` -- DO NOT FIX
]
select = [ # https://beta.ruff.rs/docs/rules
"A", # flake8-builtins
"ARG", # flake8-unused-arguments
"ASYNC", # flake8-async
"B", # flake8-bugbear
"BLE", # flake8-blind-except
"C4", # flake8-comprehensions
"C90", # McCabe cyclomatic complexity
"DJ", # flake8-django
"DTZ", # flake8-datetimez
"E", # pycodestyle
"EM", # flake8-errmsg
"EXE", # flake8-executable
"F", # Pyflakes
"FA", # flake8-future-annotations
"FLY", # flynt
"G", # flake8-logging-format
"I", # isort
"ICN", # flake8-import-conventions
"INP", # flake8-no-pep420
"INT", # flake8-gettext
"ISC", # flake8-implicit-str-concat
"N", # pep8-naming
"NPY", # NumPy-specific rules
"PD", # pandas-vet
"PGH", # pygrep-hooks
"PIE", # flake8-pie
"PL", # Pylint
"PT", # flake8-pytest-style
"PYI", # flake8-pyi
"RSE", # flake8-raise
"RUF", # Ruff-specific rules
"S", # flake8-bandit
"SIM", # flake8-simplify
"SLF", # flake8-self
"T10", # flake8-debugger
"TD", # flake8-todos
"TID", # flake8-tidy-imports
"UP", # pyupgrade
"W", # pycodestyle
"YTT", # flake8-2020
# "ANN", # flake8-annotations # FIX ME?
# "COM", # flake8-commas
# "D", # pydocstyle -- FIX ME?
# "ERA", # eradicate -- DO NOT FIX
# "FBT", # flake8-boolean-trap # FIX ME
# "PTH", # flake8-use-pathlib # FIX ME
# "Q", # flake8-quotes
# "RET", # flake8-return # FIX ME?
# "T20", # flake8-print
# "TCH", # flake8-type-checking
# "TRY", # tryceratops
]
show-source = true
target-version = "py311"
[tool.ruff.mccabe] # DO NOT INCREASE THIS VALUE
max-complexity = 17 # default: 10
[tool.ruff.per-file-ignores]
"arithmetic_analysis/newton_raphson.py" = ["PGH001"]
"audio_filters/show_response.py" = ["ARG002"]
"data_structures/binary_tree/binary_search_tree_recursive.py" = ["BLE001"]
"data_structures/binary_tree/treap.py" = ["SIM114"]
"data_structures/hashing/hash_table.py" = ["ARG002"]
"data_structures/hashing/quadratic_probing.py" = ["ARG002"]
"data_structures/hashing/tests/test_hash_map.py" = ["BLE001"]
"data_structures/heap/max_heap.py" = ["SIM114"]
"graphs/minimum_spanning_tree_prims.py" = ["SIM114"]
"hashes/enigma_machine.py" = ["BLE001"]
"machine_learning/decision_tree.py" = ["SIM114"]
"machine_learning/linear_discriminant_analysis.py" = ["ARG005"]
"machine_learning/sequential_minimum_optimization.py" = ["SIM115"]
"matrix/sherman_morrison.py" = ["SIM103", "SIM114"]
"other/l*u_cache.py" = ["RUF012"]
"physics/newtons_second_law_of_motion.py" = ["BLE001"]
"project_euler/problem_099/sol1.py" = ["SIM115"]
"sorts/external_sort.py" = ["SIM115"]
[tool.ruff.pylint] # DO NOT INCREASE THESE VALUES
allow-magic-value-types = ["float", "int", "str"]
max-args = 10 # default: 5
max-branches = 20 # default: 12
max-returns = 8 # default: 6
max-statements = 88 # default: 50
[tool.pytest.ini_options]
markers = [
"mat_ops: mark a test as utilizing matrix operations.",
]
addopts = [
"--durations=10",
"--doctest-modules",
"--showlocals",
]
[tool.coverage.report]
omit = [
".env/*",
"project_euler/*"
]
sort = "Cover"
[tool.codespell]
ignore-words-list = "3rt,ans,bitap,crate,damon,fo,followings,hist,iff,kwanza,manuel,mater,secant,som,sur,tim,toi,zar"
skip = "./.*,*.json,ciphers/prehistoric_men.txt,project_euler/problem_022/p022_names.txt,pyproject.toml,strings/dictionary.txt,strings/words.txt"
| [tool.ruff]
ignore = [ # `ruff rule S101` for a description of that rule
"ARG001", # Unused function argument `amount` -- FIX ME?
"B904", # Within an `except` clause, raise exceptions with `raise ... from err` -- FIX ME
"B905", # `zip()` without an explicit `strict=` parameter -- FIX ME
"DTZ001", # The use of `datetime.datetime()` without `tzinfo` argument is not allowed -- FIX ME
"DTZ005", # The use of `datetime.datetime.now()` without `tzinfo` argument is not allowed -- FIX ME
"E741", # Ambiguous variable name 'l' -- FIX ME
"EM101", # Exception must not use a string literal, assign to variable first
"EXE001", # Shebang is present but file is not executable" -- FIX ME
"G004", # Logging statement uses f-string
"ICN001", # `matplotlib.pyplot` should be imported as `plt` -- FIX ME
"INP001", # File `x/y/z.py` is part of an implicit namespace package. Add an `__init__.py`. -- FIX ME
"N999", # Invalid module name -- FIX ME
"NPY002", # Replace legacy `np.random.choice` call with `np.random.Generator` -- FIX ME
"PGH003", # Use specific rule codes when ignoring type issues -- FIX ME
"PLC1901", # `{}` can be simplified to `{}` as an empty string is falsey
"PLR5501", # Consider using `elif` instead of `else` -- FIX ME
"PLW0120", # `else` clause on loop without a `break` statement -- FIX ME
"PLW060", # Using global for `{name}` but no assignment is done -- DO NOT FIX
"PLW2901", # PLW2901: Redefined loop variable -- FIX ME
"PT011", # `pytest.raises(Exception)` is too broad, set the `match` parameter or use a more specific exception
"PT018", # Assertion should be broken down into multiple parts
"RUF00", # Ambiguous unicode character and other rules
"RUF100", # Unused `noqa` directive -- FIX ME
"S101", # Use of `assert` detected -- DO NOT FIX
"S105", # Possible hardcoded password: 'password'
"S113", # Probable use of requests call without timeout -- FIX ME
"S311", # Standard pseudo-random generators are not suitable for cryptographic purposes -- FIX ME
"SIM102", # Use a single `if` statement instead of nested `if` statements -- FIX ME
"SLF001", # Private member accessed: `_Iterator` -- FIX ME
"UP038", # Use `X | Y` in `{}` call instead of `(X, Y)` -- DO NOT FIX
]
select = [ # https://beta.ruff.rs/docs/rules
"A", # flake8-builtins
"ARG", # flake8-unused-arguments
"ASYNC", # flake8-async
"B", # flake8-bugbear
"BLE", # flake8-blind-except
"C4", # flake8-comprehensions
"C90", # McCabe cyclomatic complexity
"DJ", # flake8-django
"DTZ", # flake8-datetimez
"E", # pycodestyle
"EM", # flake8-errmsg
"EXE", # flake8-executable
"F", # Pyflakes
"FA", # flake8-future-annotations
"FLY", # flynt
"G", # flake8-logging-format
"I", # isort
"ICN", # flake8-import-conventions
"INP", # flake8-no-pep420
"INT", # flake8-gettext
"ISC", # flake8-implicit-str-concat
"N", # pep8-naming
"NPY", # NumPy-specific rules
"PD", # pandas-vet
"PGH", # pygrep-hooks
"PIE", # flake8-pie
"PL", # Pylint
"PT", # flake8-pytest-style
"PYI", # flake8-pyi
"RSE", # flake8-raise
"RUF", # Ruff-specific rules
"S", # flake8-bandit
"SIM", # flake8-simplify
"SLF", # flake8-self
"T10", # flake8-debugger
"TD", # flake8-todos
"TID", # flake8-tidy-imports
"UP", # pyupgrade
"W", # pycodestyle
"YTT", # flake8-2020
# "ANN", # flake8-annotations # FIX ME?
# "COM", # flake8-commas
# "D", # pydocstyle -- FIX ME?
# "ERA", # eradicate -- DO NOT FIX
# "FBT", # flake8-boolean-trap # FIX ME
# "PTH", # flake8-use-pathlib # FIX ME
# "Q", # flake8-quotes
# "RET", # flake8-return # FIX ME?
# "T20", # flake8-print
# "TCH", # flake8-type-checking
# "TRY", # tryceratops
]
show-source = true
target-version = "py311"
[tool.ruff.mccabe] # DO NOT INCREASE THIS VALUE
max-complexity = 17 # default: 10
[tool.ruff.per-file-ignores]
"arithmetic_analysis/newton_raphson.py" = ["PGH001"]
"audio_filters/show_response.py" = ["ARG002"]
"data_structures/binary_tree/binary_search_tree_recursive.py" = ["BLE001"]
"data_structures/binary_tree/treap.py" = ["SIM114"]
"data_structures/hashing/hash_table.py" = ["ARG002"]
"data_structures/hashing/quadratic_probing.py" = ["ARG002"]
"data_structures/hashing/tests/test_hash_map.py" = ["BLE001"]
"data_structures/heap/max_heap.py" = ["SIM114"]
"graphs/minimum_spanning_tree_prims.py" = ["SIM114"]
"hashes/enigma_machine.py" = ["BLE001"]
"machine_learning/decision_tree.py" = ["SIM114"]
"machine_learning/linear_discriminant_analysis.py" = ["ARG005"]
"machine_learning/sequential_minimum_optimization.py" = ["SIM115"]
"matrix/sherman_morrison.py" = ["SIM103", "SIM114"]
"other/l*u_cache.py" = ["RUF012"]
"physics/newtons_second_law_of_motion.py" = ["BLE001"]
"project_euler/problem_099/sol1.py" = ["SIM115"]
"sorts/external_sort.py" = ["SIM115"]
[tool.ruff.pylint] # DO NOT INCREASE THESE VALUES
allow-magic-value-types = ["float", "int", "str"]
max-args = 10 # default: 5
max-branches = 20 # default: 12
max-returns = 8 # default: 6
max-statements = 88 # default: 50
[tool.codespell]
ignore-words-list = "3rt,ans,bitap,crate,damon,fo,followings,hist,iff,kwanza,manuel,mater,secant,som,sur,tim,toi,zar"
skip = "./.*,*.json,ciphers/prehistoric_men.txt,project_euler/problem_022/p022_names.txt,pyproject.toml,strings/dictionary.txt,strings/words.txt"
[tool.pytest.ini_options]
markers = [
"mat_ops: mark a test as utilizing matrix operations.",
]
addopts = [
"--durations=10",
"--doctest-modules",
"--showlocals",
]
[tool.coverage.report]
omit = [
".env/*",
"project_euler/*"
]
sort = "Cover"
| 1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | # Backtracking
Backtracking is a way to speed up the search process by removing candidates when they can't be the solution of a problem.
* <https://en.wikipedia.org/wiki/Backtracking>
* <https://en.wikipedia.org/wiki/Decision_tree_pruning>
* <https://medium.com/@priyankmistry1999/backtracking-sudoku-6e4439e4825c>
* <https://www.geeksforgeeks.org/sudoku-backtracking-7/>
| # Backtracking
Backtracking is a way to speed up the search process by removing candidates when they can't be the solution of a problem.
* <https://en.wikipedia.org/wiki/Backtracking>
* <https://en.wikipedia.org/wiki/Decision_tree_pruning>
* <https://medium.com/@priyankmistry1999/backtracking-sudoku-6e4439e4825c>
* <https://www.geeksforgeeks.org/sudoku-backtracking-7/>
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | # Compression
Data compression is everywhere, you need it to store data without taking too much space.
Either the compression loses some data (then we talk about lossy compression, such as .jpg) or it does not (and then it is lossless compression, such as .png)
Lossless compression is mainly used for archive purpose as it allows storing data without losing information about the file archived. On the other hand, lossy compression is used for transfer of file where quality isn't necessarily what is required (i.e: images on Twitter).
* <https://www.sciencedirect.com/topics/computer-science/compression-algorithm>
* <https://en.wikipedia.org/wiki/Data_compression>
* <https://en.wikipedia.org/wiki/Pigeonhole_principle>
| # Compression
Data compression is everywhere, you need it to store data without taking too much space.
Either the compression loses some data (then we talk about lossy compression, such as .jpg) or it does not (and then it is lossless compression, such as .png)
Lossless compression is mainly used for archive purpose as it allows storing data without losing information about the file archived. On the other hand, lossy compression is used for transfer of file where quality isn't necessarily what is required (i.e: images on Twitter).
* <https://www.sciencedirect.com/topics/computer-science/compression-algorithm>
* <https://en.wikipedia.org/wiki/Data_compression>
* <https://en.wikipedia.org/wiki/Pigeonhole_principle>
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | # Boolean Algebra
Boolean algebra is used to do arithmetic with bits of values True (1) or False (0).
There are three basic operations: 'and', 'or' and 'not'.
* <https://en.wikipedia.org/wiki/Boolean_algebra>
* <https://plato.stanford.edu/entries/boolalg-math/>
| # Boolean Algebra
Boolean algebra is used to do arithmetic with bits of values True (1) or False (0).
There are three basic operations: 'and', 'or' and 'not'.
* <https://en.wikipedia.org/wiki/Boolean_algebra>
* <https://plato.stanford.edu/entries/boolalg-math/>
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | # Conversion
Conversion programs convert a type of data, a number from a numerical base or unit into one of another type, base or unit, e.g. binary to decimal, integer to string or foot to meters.
* <https://en.wikipedia.org/wiki/Data_conversion>
* <https://en.wikipedia.org/wiki/Transcoding>
| # Conversion
Conversion programs convert a type of data, a number from a numerical base or unit into one of another type, base or unit, e.g. binary to decimal, integer to string or foot to meters.
* <https://en.wikipedia.org/wiki/Data_conversion>
* <https://en.wikipedia.org/wiki/Transcoding>
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | # Blockchain
A Blockchain is a type of **distributed ledger** technology (DLT) that consists of growing list of records, called **blocks**, that are securely linked together using **cryptography**.
Let's breakdown the terminologies in the above definition. We find below terminologies,
- Digital Ledger Technology (DLT)
- Blocks
- Cryptography
## Digital Ledger Technology
It is otherwise called as distributed ledger technology. It is simply the opposite of centralized database. Firstly, what is a **ledger**? A ledger is a book or collection of accounts that records account transactions.
*Why is Blockchain addressed as digital ledger if it can record more than account transactions? What other transaction details and information can it hold?*
Digital Ledger Technology is just a ledger which is shared among multiple nodes. This way there exist no need for central authority to hold the info. Okay, how is it differentiated from central database and what are their benefits?
There is an organization which has 4 branches whose data are stored in a centralized database. So even if one branch needs any data from ledger they need an approval from database in charge. And if one hacks the central database he gets to tamper and control all the data.
Now lets assume every branch has a copy of the ledger and then once anything is added to the ledger by anyone branch it is gonna automatically reflect in all other ledgers available in other branch. This is done using Peer-to-peer network.
So this means even if information is tampered in one branch we can find out. If one branch is hacked we can be alerted ,so we can safeguard other branches. Now, assume these branches as computers or nodes and the ledger is a transaction record or digital receipt. If one ledger is hacked in a node we can detect since there will be a mismatch in comparison with other node information. So this is the concept of Digital Ledger Technology.
*Is it required for all nodes to have access to all information in other nodes? Wouldn't this require enormous storage space in each node?*
## Blocks
In short a block is nothing but collections of records with a labelled header. These are connected cryptographically. Once a new block is added to a chain, the previous block is connected, more precisely said as locked and hence, will remain unaltered. We can understand this concept once we get a clear understanding of working mechanism of blockchain.
## Cryptography
It is the practice and study of secure communication techniques in the midst of adversarial behavior. More broadly, cryptography is the creation and analysis of protocols that prevent third parties or the general public from accessing private messages.
*Which cryptography technology is most widely used in blockchain and why?*
So, in general, blockchain technology is a distributed record holder which records the information about ownership of an asset. To define precisely,
> Blockchain is a distributed, immutable ledger that makes it easier to record transactions and track assets in a corporate network.
An asset could be tangible (such as a house, car, cash, or land) or intangible (such as a business) (intellectual property, patents, copyrights, branding). A blockchain network can track and sell almost anything of value, lowering risk and costs for everyone involved.
So this is all about introduction to blockchain technology. To learn more about the topic refer below links....
* <https://en.wikipedia.org/wiki/Blockchain>
* <https://en.wikipedia.org/wiki/Chinese_remainder_theorem>
* <https://en.wikipedia.org/wiki/Diophantine_equation>
* <https://www.geeksforgeeks.org/modular-division/>
| # Blockchain
A Blockchain is a type of **distributed ledger** technology (DLT) that consists of growing list of records, called **blocks**, that are securely linked together using **cryptography**.
Let's breakdown the terminologies in the above definition. We find below terminologies,
- Digital Ledger Technology (DLT)
- Blocks
- Cryptography
## Digital Ledger Technology
It is otherwise called as distributed ledger technology. It is simply the opposite of centralized database. Firstly, what is a **ledger**? A ledger is a book or collection of accounts that records account transactions.
*Why is Blockchain addressed as digital ledger if it can record more than account transactions? What other transaction details and information can it hold?*
Digital Ledger Technology is just a ledger which is shared among multiple nodes. This way there exist no need for central authority to hold the info. Okay, how is it differentiated from central database and what are their benefits?
There is an organization which has 4 branches whose data are stored in a centralized database. So even if one branch needs any data from ledger they need an approval from database in charge. And if one hacks the central database he gets to tamper and control all the data.
Now lets assume every branch has a copy of the ledger and then once anything is added to the ledger by anyone branch it is gonna automatically reflect in all other ledgers available in other branch. This is done using Peer-to-peer network.
So this means even if information is tampered in one branch we can find out. If one branch is hacked we can be alerted ,so we can safeguard other branches. Now, assume these branches as computers or nodes and the ledger is a transaction record or digital receipt. If one ledger is hacked in a node we can detect since there will be a mismatch in comparison with other node information. So this is the concept of Digital Ledger Technology.
*Is it required for all nodes to have access to all information in other nodes? Wouldn't this require enormous storage space in each node?*
## Blocks
In short a block is nothing but collections of records with a labelled header. These are connected cryptographically. Once a new block is added to a chain, the previous block is connected, more precisely said as locked and hence, will remain unaltered. We can understand this concept once we get a clear understanding of working mechanism of blockchain.
## Cryptography
It is the practice and study of secure communication techniques in the midst of adversarial behavior. More broadly, cryptography is the creation and analysis of protocols that prevent third parties or the general public from accessing private messages.
*Which cryptography technology is most widely used in blockchain and why?*
So, in general, blockchain technology is a distributed record holder which records the information about ownership of an asset. To define precisely,
> Blockchain is a distributed, immutable ledger that makes it easier to record transactions and track assets in a corporate network.
An asset could be tangible (such as a house, car, cash, or land) or intangible (such as a business) (intellectual property, patents, copyrights, branding). A blockchain network can track and sell almost anything of value, lowering risk and costs for everyone involved.
So this is all about introduction to blockchain technology. To learn more about the topic refer below links....
* <https://en.wikipedia.org/wiki/Blockchain>
* <https://en.wikipedia.org/wiki/Chinese_remainder_theorem>
* <https://en.wikipedia.org/wiki/Diophantine_equation>
* <https://www.geeksforgeeks.org/modular-division/>
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | # Welcome to Quantum Algorithms
Started at https://github.com/TheAlgorithms/Python/issues/1831
* D-Wave: https://www.dwavesys.com and https://github.com/dwavesystems
* Google: https://research.google/teams/applied-science/quantum
* IBM: https://qiskit.org and https://github.com/Qiskit
* Rigetti: https://rigetti.com and https://github.com/rigetti
* Zapata: https://www.zapatacomputing.com and https://github.com/zapatacomputing
## IBM Qiskit
- Start using by installing `pip install qiskit`, refer the [docs](https://qiskit.org/documentation/install.html) for more info.
- Tutorials & References
- https://github.com/Qiskit/qiskit-tutorials
- https://quantum-computing.ibm.com/docs/iql/first-circuit
- https://medium.com/qiskit/how-to-program-a-quantum-computer-982a9329ed02
## Google Cirq
- Start using by installing `python -m pip install cirq`, refer the [docs](https://quantumai.google/cirq/start/install) for more info.
- Tutorials & references
- https://github.com/quantumlib/cirq
- https://quantumai.google/cirq/experiments
- https://tanishabassan.medium.com/quantum-programming-with-google-cirq-3209805279bc
| # Welcome to Quantum Algorithms
Started at https://github.com/TheAlgorithms/Python/issues/1831
* D-Wave: https://www.dwavesys.com and https://github.com/dwavesystems
* Google: https://research.google/teams/applied-science/quantum
* IBM: https://qiskit.org and https://github.com/Qiskit
* Rigetti: https://rigetti.com and https://github.com/rigetti
* Zapata: https://www.zapatacomputing.com and https://github.com/zapatacomputing
## IBM Qiskit
- Start using by installing `pip install qiskit`, refer the [docs](https://qiskit.org/documentation/install.html) for more info.
- Tutorials & References
- https://github.com/Qiskit/qiskit-tutorials
- https://quantum-computing.ibm.com/docs/iql/first-circuit
- https://medium.com/qiskit/how-to-program-a-quantum-computer-982a9329ed02
## Google Cirq
- Start using by installing `python -m pip install cirq`, refer the [docs](https://quantumai.google/cirq/start/install) for more info.
- Tutorials & references
- https://github.com/quantumlib/cirq
- https://quantumai.google/cirq/experiments
- https://tanishabassan.medium.com/quantum-programming-with-google-cirq-3209805279bc
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | # A naive recursive implementation of 0-1 Knapsack Problem
This overview is taken from:
https://en.wikipedia.org/wiki/Knapsack_problem
---
## Overview
The knapsack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items. The problem often arises in resource allocation where the decision makers have to choose from a set of non-divisible projects or tasks under a fixed budget or time constraint, respectively.
The knapsack problem has been studied for more than a century, with early works dating as far back as 1897 The name "knapsack problem" dates back to the early works of mathematician Tobias Dantzig (1884–1956), and refers to the commonplace problem of packing the most valuable or useful items without overloading the luggage.
---
## Documentation
This module uses docstrings to enable the use of Python's in-built `help(...)` function.
For instance, try `help(Vector)`, `help(unit_basis_vector)`, and `help(CLASSNAME.METHODNAME)`.
---
## Usage
Import the module `knapsack.py` from the **.** directory into your project.
---
## Tests
`.` contains Python unit tests which can be run with `python3 -m unittest -v`.
| # A naive recursive implementation of 0-1 Knapsack Problem
This overview is taken from:
https://en.wikipedia.org/wiki/Knapsack_problem
---
## Overview
The knapsack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items. The problem often arises in resource allocation where the decision makers have to choose from a set of non-divisible projects or tasks under a fixed budget or time constraint, respectively.
The knapsack problem has been studied for more than a century, with early works dating as far back as 1897 The name "knapsack problem" dates back to the early works of mathematician Tobias Dantzig (1884–1956), and refers to the commonplace problem of packing the most valuable or useful items without overloading the luggage.
---
## Documentation
This module uses docstrings to enable the use of Python's in-built `help(...)` function.
For instance, try `help(Vector)`, `help(unit_basis_vector)`, and `help(CLASSNAME.METHODNAME)`.
---
## Usage
Import the module `knapsack.py` from the **.** directory into your project.
---
## Tests
`.` contains Python unit tests which can be run with `python3 -m unittest -v`.
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | ### Interest
* Compound Interest: "Compound interest is calculated by multiplying the initial principal amount by one plus the annual interest rate raised to the number of compound periods minus one." [Compound Interest](https://www.investopedia.com/)
* Simple Interest: "Simple interest paid or received over a certain period is a fixed percentage of the principal amount that was borrowed or lent. " [Simple Interest](https://www.investopedia.com/)
| ### Interest
* Compound Interest: "Compound interest is calculated by multiplying the initial principal amount by one plus the annual interest rate raised to the number of compound periods minus one." [Compound Interest](https://www.investopedia.com/)
* Simple Interest: "Simple interest paid or received over a certain period is a fixed percentage of the principal amount that was borrowed or lent. " [Simple Interest](https://www.investopedia.com/)
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | MIT License
Copyright (c) 2016-2022 TheAlgorithms and contributors
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
| MIT License
Copyright (c) 2016-2022 TheAlgorithms and contributors
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | # Sorting Algorithms
Sorting is the process of putting data in a specific order. The way to arrange data in a specific order
is specified by the sorting algorithm. The most typical orders are lexical or numerical. The significance
of sorting lies in the fact that, if data is stored in a sorted manner, data searching can be highly optimised.
Another use for sorting is to represent data in a more readable manner.
This section contains a lot of important algorithms that help us to use sorting algorithms in various scenarios.
## References
* <https://www.tutorialspoint.com/python_data_structure/python_sorting_algorithms.htm>
* <https://www.geeksforgeeks.org/sorting-algorithms-in-python>
* <https://realpython.com/sorting-algorithms-python>
| # Sorting Algorithms
Sorting is the process of putting data in a specific order. The way to arrange data in a specific order
is specified by the sorting algorithm. The most typical orders are lexical or numerical. The significance
of sorting lies in the fact that, if data is stored in a sorted manner, data searching can be highly optimised.
Another use for sorting is to represent data in a more readable manner.
This section contains a lot of important algorithms that help us to use sorting algorithms in various scenarios.
## References
* <https://www.tutorialspoint.com/python_data_structure/python_sorting_algorithms.htm>
* <https://www.geeksforgeeks.org/sorting-algorithms-in-python>
* <https://realpython.com/sorting-algorithms-python>
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | # Hashes
Hashing is the process of mapping any amount of data to a specified size using an algorithm. This is known as a hash value (or, if you're feeling fancy, a hash code, hash sums, or even a hash digest). Hashing is a one-way function, whereas encryption is a two-way function. While it is functionally conceivable to reverse-hash stuff, the required computing power makes it impractical. Hashing is a one-way street.
Unlike encryption, which is intended to protect data in transit, hashing is intended to authenticate that a file or piece of data has not been altered—that it is authentic. In other words, it functions as a checksum.
## Common hashing algorithms
### MD5
This is one of the first algorithms that has gained widespread acceptance. MD5 is hashing algorithm made by Ray Rivest that is known to suffer vulnerabilities. It was created in 1992 as the successor to MD4. Currently MD6 is in the works, but as of 2009 Rivest had removed it from NIST consideration for SHA-3.
### SHA
SHA stands for Security Hashing Algorithm and it’s probably best known as the hashing algorithm used in most SSL/TLS cipher suites. A cipher suite is a collection of ciphers and algorithms that are used for SSL/TLS connections. SHA handles the hashing aspects. SHA-1, as we mentioned earlier, is now deprecated. SHA-2 is now mandatory. SHA-2 is sometimes known as SHA-256, though variants with longer bit lengths are also available.
### SHA256
SHA 256 is a member of the SHA 2 algorithm family, under which SHA stands for Secure Hash Algorithm. It was a collaborative effort between both the NSA and NIST to implement a successor to the SHA 1 family, which was beginning to lose potency against brute force attacks. It was published in 2001.
The importance of the 256 in the name refers to the final hash digest value, i.e. the hash value will remain 256 bits regardless of the size of the plaintext/cleartext. Other algorithms in the SHA family are similar to SHA 256 in some ways.
### Luhn
The Luhn algorithm, also renowned as the modulus 10 or mod 10 algorithm, is a straightforward checksum formula used to validate a wide range of identification numbers, including credit card numbers, IMEI numbers, and Canadian Social Insurance Numbers. A community of mathematicians developed the LUHN formula in the late 1960s. Companies offering credit cards quickly followed suit. Since the algorithm is in the public interest, anyone can use it. The algorithm is used by most credit cards and many government identification numbers as a simple method of differentiating valid figures from mistyped or otherwise incorrect numbers. It was created to guard against unintentional errors, not malicious attacks.
| # Hashes
Hashing is the process of mapping any amount of data to a specified size using an algorithm. This is known as a hash value (or, if you're feeling fancy, a hash code, hash sums, or even a hash digest). Hashing is a one-way function, whereas encryption is a two-way function. While it is functionally conceivable to reverse-hash stuff, the required computing power makes it impractical. Hashing is a one-way street.
Unlike encryption, which is intended to protect data in transit, hashing is intended to authenticate that a file or piece of data has not been altered—that it is authentic. In other words, it functions as a checksum.
## Common hashing algorithms
### MD5
This is one of the first algorithms that has gained widespread acceptance. MD5 is hashing algorithm made by Ray Rivest that is known to suffer vulnerabilities. It was created in 1992 as the successor to MD4. Currently MD6 is in the works, but as of 2009 Rivest had removed it from NIST consideration for SHA-3.
### SHA
SHA stands for Security Hashing Algorithm and it’s probably best known as the hashing algorithm used in most SSL/TLS cipher suites. A cipher suite is a collection of ciphers and algorithms that are used for SSL/TLS connections. SHA handles the hashing aspects. SHA-1, as we mentioned earlier, is now deprecated. SHA-2 is now mandatory. SHA-2 is sometimes known as SHA-256, though variants with longer bit lengths are also available.
### SHA256
SHA 256 is a member of the SHA 2 algorithm family, under which SHA stands for Secure Hash Algorithm. It was a collaborative effort between both the NSA and NIST to implement a successor to the SHA 1 family, which was beginning to lose potency against brute force attacks. It was published in 2001.
The importance of the 256 in the name refers to the final hash digest value, i.e. the hash value will remain 256 bits regardless of the size of the plaintext/cleartext. Other algorithms in the SHA family are similar to SHA 256 in some ways.
### Luhn
The Luhn algorithm, also renowned as the modulus 10 or mod 10 algorithm, is a straightforward checksum formula used to validate a wide range of identification numbers, including credit card numbers, IMEI numbers, and Canadian Social Insurance Numbers. A community of mathematicians developed the LUHN formula in the late 1960s. Companies offering credit cards quickly followed suit. Since the algorithm is in the public interest, anyone can use it. The algorithm is used by most credit cards and many government identification numbers as a simple method of differentiating valid figures from mistyped or otherwise incorrect numbers. It was created to guard against unintentional errors, not malicious attacks.
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | <div align="center">
<!-- Title: -->
<a href="https://github.com/TheAlgorithms/">
<img src="https://raw.githubusercontent.com/TheAlgorithms/website/1cd824df116b27029f17c2d1b42d81731f28a920/public/logo.svg" height="100">
</a>
<h1><a href="https://github.com/TheAlgorithms/">The Algorithms</a> - Python</h1>
<!-- Labels: -->
<!-- First row: -->
<a href="https://gitpod.io/#https://github.com/TheAlgorithms/Python">
<img src="https://img.shields.io/badge/Gitpod-Ready--to--Code-blue?logo=gitpod&style=flat-square" height="20" alt="Gitpod Ready-to-Code">
</a>
<a href="https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md">
<img src="https://img.shields.io/static/v1.svg?label=Contributions&message=Welcome&color=0059b3&style=flat-square" height="20" alt="Contributions Welcome">
</a>
<img src="https://img.shields.io/github/repo-size/TheAlgorithms/Python.svg?label=Repo%20size&style=flat-square" height="20">
<a href="https://the-algorithms.com/discord">
<img src="https://img.shields.io/discord/808045925556682782.svg?logo=discord&colorB=7289DA&style=flat-square" height="20" alt="Discord chat">
</a>
<a href="https://gitter.im/TheAlgorithms/community">
<img src="https://img.shields.io/badge/Chat-Gitter-ff69b4.svg?label=Chat&logo=gitter&style=flat-square" height="20" alt="Gitter chat">
</a>
<!-- Second row: -->
<br>
<a href="https://github.com/TheAlgorithms/Python/actions">
<img src="https://img.shields.io/github/actions/workflow/status/TheAlgorithms/Python/build.yml?branch=master&label=CI&logo=github&style=flat-square" height="20" alt="GitHub Workflow Status">
</a>
<a href="https://github.com/pre-commit/pre-commit">
<img src="https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white&style=flat-square" height="20" alt="pre-commit">
</a>
<a href="https://github.com/psf/black">
<img src="https://img.shields.io/static/v1?label=code%20style&message=black&color=black&style=flat-square" height="20" alt="code style: black">
</a>
<!-- Short description: -->
<h3>All algorithms implemented in Python - for education</h3>
</div>
Implementations are for learning purposes only. They may be less efficient than the implementations in the Python standard library. Use them at your discretion.
## Getting Started
Read through our [Contribution Guidelines](CONTRIBUTING.md) before you contribute.
## Community Channels
We are on [Discord](https://the-algorithms.com/discord) and [Gitter](https://gitter.im/TheAlgorithms/community)! Community channels are a great way for you to ask questions and get help. Please join us!
## List of Algorithms
See our [directory](DIRECTORY.md) for easier navigation and a better overview of the project.
| <div align="center">
<!-- Title: -->
<a href="https://github.com/TheAlgorithms/">
<img src="https://raw.githubusercontent.com/TheAlgorithms/website/1cd824df116b27029f17c2d1b42d81731f28a920/public/logo.svg" height="100">
</a>
<h1><a href="https://github.com/TheAlgorithms/">The Algorithms</a> - Python</h1>
<!-- Labels: -->
<!-- First row: -->
<a href="https://gitpod.io/#https://github.com/TheAlgorithms/Python">
<img src="https://img.shields.io/badge/Gitpod-Ready--to--Code-blue?logo=gitpod&style=flat-square" height="20" alt="Gitpod Ready-to-Code">
</a>
<a href="https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md">
<img src="https://img.shields.io/static/v1.svg?label=Contributions&message=Welcome&color=0059b3&style=flat-square" height="20" alt="Contributions Welcome">
</a>
<img src="https://img.shields.io/github/repo-size/TheAlgorithms/Python.svg?label=Repo%20size&style=flat-square" height="20">
<a href="https://the-algorithms.com/discord">
<img src="https://img.shields.io/discord/808045925556682782.svg?logo=discord&colorB=7289DA&style=flat-square" height="20" alt="Discord chat">
</a>
<a href="https://gitter.im/TheAlgorithms/community">
<img src="https://img.shields.io/badge/Chat-Gitter-ff69b4.svg?label=Chat&logo=gitter&style=flat-square" height="20" alt="Gitter chat">
</a>
<!-- Second row: -->
<br>
<a href="https://github.com/TheAlgorithms/Python/actions">
<img src="https://img.shields.io/github/actions/workflow/status/TheAlgorithms/Python/build.yml?branch=master&label=CI&logo=github&style=flat-square" height="20" alt="GitHub Workflow Status">
</a>
<a href="https://github.com/pre-commit/pre-commit">
<img src="https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white&style=flat-square" height="20" alt="pre-commit">
</a>
<a href="https://github.com/psf/black">
<img src="https://img.shields.io/static/v1?label=code%20style&message=black&color=black&style=flat-square" height="20" alt="code style: black">
</a>
<!-- Short description: -->
<h3>All algorithms implemented in Python - for education</h3>
</div>
Implementations are for learning purposes only. They may be less efficient than the implementations in the Python standard library. Use them at your discretion.
## Getting Started
Read through our [Contribution Guidelines](CONTRIBUTING.md) before you contribute.
## Community Channels
We are on [Discord](https://the-algorithms.com/discord) and [Gitter](https://gitter.im/TheAlgorithms/community)! Community channels are a great way for you to ask questions and get help. Please join us!
## List of Algorithms
See our [directory](DIRECTORY.md) for easier navigation and a better overview of the project.
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | # Audio Filter
Audio filters work on the frequency of an audio signal to attenuate unwanted frequency and amplify wanted ones.
They are used within anything related to sound, whether it is radio communication or a hi-fi system.
* <https://www.masteringbox.com/filter-types/>
* <http://ethanwiner.com/filters.html>
* <https://en.wikipedia.org/wiki/Audio_filter>
* <https://en.wikipedia.org/wiki/Electronic_filter>
| # Audio Filter
Audio filters work on the frequency of an audio signal to attenuate unwanted frequency and amplify wanted ones.
They are used within anything related to sound, whether it is radio communication or a hi-fi system.
* <https://www.masteringbox.com/filter-types/>
* <http://ethanwiner.com/filters.html>
* <https://en.wikipedia.org/wiki/Audio_filter>
* <https://en.wikipedia.org/wiki/Electronic_filter>
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | # Project Euler
Problems are taken from https://projecteuler.net/, the Project Euler. [Problems are licensed under CC BY-NC-SA 4.0](https://projecteuler.net/copyright).
Project Euler is a series of challenging mathematical/computer programming problems that require more than just mathematical
insights to solve. Project Euler is ideal for mathematicians who are learning to code.
The solutions will be checked by our [automated testing on GitHub Actions](https://github.com/TheAlgorithms/Python/actions) with the help of [this script](https://github.com/TheAlgorithms/Python/blob/master/scripts/validate_solutions.py). The efficiency of your code is also checked. You can view the top 10 slowest solutions on GitHub Actions logs (under `slowest 10 durations`) and open a pull request to improve those solutions.
## Solution Guidelines
Welcome to [TheAlgorithms/Python](https://github.com/TheAlgorithms/Python)! Before reading the solution guidelines, make sure you read the whole [Contributing Guidelines](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md) as it won't be repeated in here. If you have any doubt on the guidelines, please feel free to [state it clearly in an issue](https://github.com/TheAlgorithms/Python/issues/new) or ask the community in [Gitter](https://gitter.im/TheAlgorithms/community). You can use the [template](https://github.com/TheAlgorithms/Python/blob/master/project_euler/README.md#solution-template) we have provided below as your starting point but be sure to read the [Coding Style](https://github.com/TheAlgorithms/Python/blob/master/project_euler/README.md#coding-style) part first.
### Coding Style
* Please maintain consistency in project directory and solution file names. Keep the following points in mind:
* Create a new directory only for the problems which do not exist yet.
* If you create a new directory, please create an empty `__init__.py` file inside it as well.
* Please name the project **directory** as `problem_<problem_number>` where `problem_number` should be filled with 0s so as to occupy 3 digits. Example: `problem_001`, `problem_002`, `problem_067`, `problem_145`, and so on.
* Please provide a link to the problem and other references, if used, in the **module-level docstring**.
* All imports should come ***after*** the module-level docstring.
* You can have as many helper functions as you want but there should be one main function called `solution` which should satisfy the conditions as stated below:
* It should contain positional argument(s) whose default value is the question input. Example: Please take a look at [Problem 1](https://projecteuler.net/problem=1) where the question is to *Find the sum of all the multiples of 3 or 5 below 1000.* In this case the main solution function will be `solution(limit: int = 1000)`.
* When the `solution` function is called without any arguments like so: `solution()`, it should return the answer to the problem.
* Every function, which includes all the helper functions, if any, and the main solution function, should have `doctest` in the function docstring along with a brief statement mentioning what the function is about.
* There should not be a `doctest` for testing the answer as that is done by our GitHub Actions build using this [script](https://github.com/TheAlgorithms/Python/blob/master/scripts/validate_solutions.py). Keeping in mind the above example of [Problem 1](https://projecteuler.net/problem=1):
```python
def solution(limit: int = 1000):
"""
A brief statement mentioning what the function is about.
You can have a detailed explanation about the solution method in the
module-level docstring.
>>> solution(1)
...
>>> solution(16)
...
>>> solution(100)
...
"""
```
### Solution Template
You can use the below template as your starting point but please read the [Coding Style](https://github.com/TheAlgorithms/Python/blob/master/project_euler/README.md#coding-style) first to understand how the template works.
Please change the name of the helper functions accordingly, change the parameter names with a descriptive one, replace the content within `[square brackets]` (including the brackets) with the appropriate content.
```python
"""
Project Euler Problem [problem number]: [link to the original problem]
... [Entire problem statement] ...
... [Solution explanation - Optional] ...
References [Optional]:
- [Wikipedia link to the topic]
- [Stackoverflow link]
...
"""
import module1
import module2
...
def helper1(arg1: [type hint], arg2: [type hint], ...) -> [Return type hint]:
"""
A brief statement explaining what the function is about.
... A more elaborate description ... [Optional]
...
[Doctest]
...
"""
...
# calculations
...
return
# You can have multiple helper functions but the solution function should be
# after all the helper functions ...
def solution(arg1: [type hint], arg2: [type hint], ...) -> [Return type hint]:
"""
A brief statement mentioning what the function is about.
You can have a detailed explanation about the solution in the
module-level docstring.
...
[Doctest as mentioned above]
...
"""
...
# calculations
...
return answer
if __name__ == "__main__":
print(f"{solution() = }")
```
| # Project Euler
Problems are taken from https://projecteuler.net/, the Project Euler. [Problems are licensed under CC BY-NC-SA 4.0](https://projecteuler.net/copyright).
Project Euler is a series of challenging mathematical/computer programming problems that require more than just mathematical
insights to solve. Project Euler is ideal for mathematicians who are learning to code.
The solutions will be checked by our [automated testing on GitHub Actions](https://github.com/TheAlgorithms/Python/actions) with the help of [this script](https://github.com/TheAlgorithms/Python/blob/master/scripts/validate_solutions.py). The efficiency of your code is also checked. You can view the top 10 slowest solutions on GitHub Actions logs (under `slowest 10 durations`) and open a pull request to improve those solutions.
## Solution Guidelines
Welcome to [TheAlgorithms/Python](https://github.com/TheAlgorithms/Python)! Before reading the solution guidelines, make sure you read the whole [Contributing Guidelines](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md) as it won't be repeated in here. If you have any doubt on the guidelines, please feel free to [state it clearly in an issue](https://github.com/TheAlgorithms/Python/issues/new) or ask the community in [Gitter](https://gitter.im/TheAlgorithms/community). You can use the [template](https://github.com/TheAlgorithms/Python/blob/master/project_euler/README.md#solution-template) we have provided below as your starting point but be sure to read the [Coding Style](https://github.com/TheAlgorithms/Python/blob/master/project_euler/README.md#coding-style) part first.
### Coding Style
* Please maintain consistency in project directory and solution file names. Keep the following points in mind:
* Create a new directory only for the problems which do not exist yet.
* If you create a new directory, please create an empty `__init__.py` file inside it as well.
* Please name the project **directory** as `problem_<problem_number>` where `problem_number` should be filled with 0s so as to occupy 3 digits. Example: `problem_001`, `problem_002`, `problem_067`, `problem_145`, and so on.
* Please provide a link to the problem and other references, if used, in the **module-level docstring**.
* All imports should come ***after*** the module-level docstring.
* You can have as many helper functions as you want but there should be one main function called `solution` which should satisfy the conditions as stated below:
* It should contain positional argument(s) whose default value is the question input. Example: Please take a look at [Problem 1](https://projecteuler.net/problem=1) where the question is to *Find the sum of all the multiples of 3 or 5 below 1000.* In this case the main solution function will be `solution(limit: int = 1000)`.
* When the `solution` function is called without any arguments like so: `solution()`, it should return the answer to the problem.
* Every function, which includes all the helper functions, if any, and the main solution function, should have `doctest` in the function docstring along with a brief statement mentioning what the function is about.
* There should not be a `doctest` for testing the answer as that is done by our GitHub Actions build using this [script](https://github.com/TheAlgorithms/Python/blob/master/scripts/validate_solutions.py). Keeping in mind the above example of [Problem 1](https://projecteuler.net/problem=1):
```python
def solution(limit: int = 1000):
"""
A brief statement mentioning what the function is about.
You can have a detailed explanation about the solution method in the
module-level docstring.
>>> solution(1)
...
>>> solution(16)
...
>>> solution(100)
...
"""
```
### Solution Template
You can use the below template as your starting point but please read the [Coding Style](https://github.com/TheAlgorithms/Python/blob/master/project_euler/README.md#coding-style) first to understand how the template works.
Please change the name of the helper functions accordingly, change the parameter names with a descriptive one, replace the content within `[square brackets]` (including the brackets) with the appropriate content.
```python
"""
Project Euler Problem [problem number]: [link to the original problem]
... [Entire problem statement] ...
... [Solution explanation - Optional] ...
References [Optional]:
- [Wikipedia link to the topic]
- [Stackoverflow link]
...
"""
import module1
import module2
...
def helper1(arg1: [type hint], arg2: [type hint], ...) -> [Return type hint]:
"""
A brief statement explaining what the function is about.
... A more elaborate description ... [Optional]
...
[Doctest]
...
"""
...
# calculations
...
return
# You can have multiple helper functions but the solution function should be
# after all the helper functions ...
def solution(arg1: [type hint], arg2: [type hint], ...) -> [Return type hint]:
"""
A brief statement mentioning what the function is about.
You can have a detailed explanation about the solution in the
module-level docstring.
...
[Doctest as mentioned above]
...
"""
...
# calculations
...
return answer
if __name__ == "__main__":
print(f"{solution() = }")
```
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | # Bit manipulation
Bit manipulation is the act of manipulating bits to detect errors (hamming code), encrypts and decrypts messages (more on that in the 'ciphers' folder) or just do anything at the lowest level of your computer.
* <https://en.wikipedia.org/wiki/Bit_manipulation>
* <https://docs.python.org/3/reference/expressions.html#binary-bitwise-operations>
* <https://docs.python.org/3/reference/expressions.html#unary-arithmetic-and-bitwise-operations>
* <https://docs.python.org/3/library/stdtypes.html#bitwise-operations-on-integer-types>
* <https://wiki.python.org/moin/BitManipulation>
* <https://wiki.python.org/moin/BitwiseOperators>
* <https://www.tutorialspoint.com/python3/bitwise_operators_example.htm>
| # Bit manipulation
Bit manipulation is the act of manipulating bits to detect errors (hamming code), encrypts and decrypts messages (more on that in the 'ciphers' folder) or just do anything at the lowest level of your computer.
* <https://en.wikipedia.org/wiki/Bit_manipulation>
* <https://docs.python.org/3/reference/expressions.html#binary-bitwise-operations>
* <https://docs.python.org/3/reference/expressions.html#unary-arithmetic-and-bitwise-operations>
* <https://docs.python.org/3/library/stdtypes.html#bitwise-operations-on-integer-types>
* <https://wiki.python.org/moin/BitManipulation>
* <https://wiki.python.org/moin/BitwiseOperators>
* <https://www.tutorialspoint.com/python3/bitwise_operators_example.htm>
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | # Linear algebra library for Python
This module contains classes and functions for doing linear algebra.
---
## Overview
### class Vector
-
- This class represents a vector of arbitrary size and related operations.
**Overview of the methods:**
- constructor(components) : init the vector
- set(components) : changes the vector components.
- \_\_str\_\_() : toString method
- component(i): gets the i-th component (0-indexed)
- \_\_len\_\_() : gets the size / length of the vector (number of components)
- euclidean_length() : returns the eulidean length of the vector
- operator + : vector addition
- operator - : vector subtraction
- operator * : scalar multiplication and dot product
- copy() : copies this vector and returns it
- change_component(pos,value) : changes the specified component
- function zero_vector(dimension)
- returns a zero vector of 'dimension'
- function unit_basis_vector(dimension, pos)
- returns a unit basis vector with a one at index 'pos' (0-indexed)
- function axpy(scalar, vector1, vector2)
- computes the axpy operation
- function random_vector(N, a, b)
- returns a random vector of size N, with random integer components between 'a' and 'b' inclusive
### class Matrix
-
- This class represents a matrix of arbitrary size and operations on it.
**Overview of the methods:**
- \_\_str\_\_() : returns a string representation
- operator * : implements the matrix vector multiplication
implements the matrix-scalar multiplication.
- change_component(x, y, value) : changes the specified component.
- component(x, y) : returns the specified component.
- width() : returns the width of the matrix
- height() : returns the height of the matrix
- determinant() : returns the determinant of the matrix if it is square
- operator + : implements the matrix-addition.
- operator - : implements the matrix-subtraction
- function square_zero_matrix(N)
- returns a square zero-matrix of dimension NxN
- function random_matrix(W, H, a, b)
- returns a random matrix WxH with integer components between 'a' and 'b' inclusive
---
## Documentation
This module uses docstrings to enable the use of Python's in-built `help(...)` function.
For instance, try `help(Vector)`, `help(unit_basis_vector)`, and `help(CLASSNAME.METHODNAME)`.
---
## Usage
Import the module `lib.py` from the **src** directory into your project.
Alternatively, you can directly use the Python bytecode file `lib.pyc`.
---
## Tests
`src/tests.py` contains Python unit tests which can be run with `python3 -m unittest -v`.
| # Linear algebra library for Python
This module contains classes and functions for doing linear algebra.
---
## Overview
### class Vector
-
- This class represents a vector of arbitrary size and related operations.
**Overview of the methods:**
- constructor(components) : init the vector
- set(components) : changes the vector components.
- \_\_str\_\_() : toString method
- component(i): gets the i-th component (0-indexed)
- \_\_len\_\_() : gets the size / length of the vector (number of components)
- euclidean_length() : returns the eulidean length of the vector
- operator + : vector addition
- operator - : vector subtraction
- operator * : scalar multiplication and dot product
- copy() : copies this vector and returns it
- change_component(pos,value) : changes the specified component
- function zero_vector(dimension)
- returns a zero vector of 'dimension'
- function unit_basis_vector(dimension, pos)
- returns a unit basis vector with a one at index 'pos' (0-indexed)
- function axpy(scalar, vector1, vector2)
- computes the axpy operation
- function random_vector(N, a, b)
- returns a random vector of size N, with random integer components between 'a' and 'b' inclusive
### class Matrix
-
- This class represents a matrix of arbitrary size and operations on it.
**Overview of the methods:**
- \_\_str\_\_() : returns a string representation
- operator * : implements the matrix vector multiplication
implements the matrix-scalar multiplication.
- change_component(x, y, value) : changes the specified component.
- component(x, y) : returns the specified component.
- width() : returns the width of the matrix
- height() : returns the height of the matrix
- determinant() : returns the determinant of the matrix if it is square
- operator + : implements the matrix-addition.
- operator - : implements the matrix-subtraction
- function square_zero_matrix(N)
- returns a square zero-matrix of dimension NxN
- function random_matrix(W, H, a, b)
- returns a random matrix WxH with integer components between 'a' and 'b' inclusive
---
## Documentation
This module uses docstrings to enable the use of Python's in-built `help(...)` function.
For instance, try `help(Vector)`, `help(unit_basis_vector)`, and `help(CLASSNAME.METHODNAME)`.
---
## Usage
Import the module `lib.py` from the **src** directory into your project.
Alternatively, you can directly use the Python bytecode file `lib.pyc`.
---
## Tests
`src/tests.py` contains Python unit tests which can be run with `python3 -m unittest -v`.
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | # Locally Weighted Linear Regression
It is a non-parametric ML algorithm that does not learn on a fixed set of parameters such as **linear regression**. \
So, here comes a question of what is *linear regression*? \
**Linear regression** is a supervised learning algorithm used for computing linear relationships between input (X) and output (Y). \
### Terminology Involved
number_of_features(i) = Number of features involved. \
number_of_training_examples(m) = Number of training examples. \
output_sequence(y) = Output Sequence. \
$\theta$ $^T$ x = predicted point. \
J($\theta$) = COst function of point.
The steps involved in ordinary linear regression are:
Training phase: Compute \theta to minimize the cost. \
J($\theta$) = $\sum_{i=1}^m$ (($\theta$)$^T$ $x^i$ - $y^i$)$^2$
Predict output: for given query point x, \
return: ($\theta$)$^T$ x
<img src="https://miro.medium.com/max/700/1*FZsLp8yTULf77qrp0Qd91g.png" alt="Linear Regression">
This training phase is possible when data points are linear, but there again comes a question can we predict non-linear relationship between x and y ? as shown below
<img src="https://miro.medium.com/max/700/1*DHYvJg55uN-Kj8jHaxDKvQ.png" alt="Non-linear Data">
<br />
<br />
So, here comes the role of non-parametric algorithm which doesn't compute predictions based on fixed set of params. Rather parameters $\theta$ are computed individually for each query point/data point x.
<br />
<br />
While Computing $\theta$ , a higher preference is given to points in the vicinity of x than points farther from x.
Cost Function J($\theta$) = $\sum_{i=1}^m$ $w^i$ (($\theta$)$^T$ $x^i$ - $y^i$)$^2$
$w^i$ is non-negative weight associated to training point $x^i$. \
$w^i$ is large fr $x^i$'s lying closer to query point $x_i$. \
$w^i$ is small for $x^i$'s lying farther to query point $x_i$.
A Typical weight can be computed using \
$w^i$ = $\exp$(-$\frac{(x^i-x)(x^i-x)^T}{2\tau^2}$)
Where $\tau$ is the bandwidth parameter that controls $w^i$ distance from x.
Let's look at a example :
Suppose, we had a query point x=5.0 and training points $x^1$=4.9 and $x^2$=5.0 than we can calculate weights as :
$w^i$ = $\exp$(-$\frac{(x^i-x)(x^i-x)^T}{2\tau^2}$) with $\tau$=0.5
$w^1$ = $\exp$(-$\frac{(4.9-5)^2}{2(0.5)^2}$) = 0.9802
$w^2$ = $\exp$(-$\frac{(3-5)^2}{2(0.5)^2}$) = 0.000335
So, J($\theta$) = 0.9802*($\theta$ $^T$ $x^1$ - $y^1$) + 0.000335*($\theta$ $^T$ $x^2$ - $y^2$)
So, here by we can conclude that the weight fall exponentially as the distance between x & $x^i$ increases and So, does the contribution of error in prediction for $x^i$ to the cost.
Steps involved in LWL are : \
Compute \theta to minimize the cost.
J($\theta$) = $\sum_{i=1}^m$ $w^i$ (($\theta$)$^T$ $x^i$ - $y^i$)$^2$ \
Predict Output: for given query point x, \
return : $\theta$ $^T$ x
<img src="https://miro.medium.com/max/700/1*H3QS05Q1GJtY-tiBL00iug.png" alt="LWL">
| # Locally Weighted Linear Regression
It is a non-parametric ML algorithm that does not learn on a fixed set of parameters such as **linear regression**. \
So, here comes a question of what is *linear regression*? \
**Linear regression** is a supervised learning algorithm used for computing linear relationships between input (X) and output (Y). \
### Terminology Involved
number_of_features(i) = Number of features involved. \
number_of_training_examples(m) = Number of training examples. \
output_sequence(y) = Output Sequence. \
$\theta$ $^T$ x = predicted point. \
J($\theta$) = COst function of point.
The steps involved in ordinary linear regression are:
Training phase: Compute \theta to minimize the cost. \
J($\theta$) = $\sum_{i=1}^m$ (($\theta$)$^T$ $x^i$ - $y^i$)$^2$
Predict output: for given query point x, \
return: ($\theta$)$^T$ x
<img src="https://miro.medium.com/max/700/1*FZsLp8yTULf77qrp0Qd91g.png" alt="Linear Regression">
This training phase is possible when data points are linear, but there again comes a question can we predict non-linear relationship between x and y ? as shown below
<img src="https://miro.medium.com/max/700/1*DHYvJg55uN-Kj8jHaxDKvQ.png" alt="Non-linear Data">
<br />
<br />
So, here comes the role of non-parametric algorithm which doesn't compute predictions based on fixed set of params. Rather parameters $\theta$ are computed individually for each query point/data point x.
<br />
<br />
While Computing $\theta$ , a higher preference is given to points in the vicinity of x than points farther from x.
Cost Function J($\theta$) = $\sum_{i=1}^m$ $w^i$ (($\theta$)$^T$ $x^i$ - $y^i$)$^2$
$w^i$ is non-negative weight associated to training point $x^i$. \
$w^i$ is large fr $x^i$'s lying closer to query point $x_i$. \
$w^i$ is small for $x^i$'s lying farther to query point $x_i$.
A Typical weight can be computed using \
$w^i$ = $\exp$(-$\frac{(x^i-x)(x^i-x)^T}{2\tau^2}$)
Where $\tau$ is the bandwidth parameter that controls $w^i$ distance from x.
Let's look at a example :
Suppose, we had a query point x=5.0 and training points $x^1$=4.9 and $x^2$=5.0 than we can calculate weights as :
$w^i$ = $\exp$(-$\frac{(x^i-x)(x^i-x)^T}{2\tau^2}$) with $\tau$=0.5
$w^1$ = $\exp$(-$\frac{(4.9-5)^2}{2(0.5)^2}$) = 0.9802
$w^2$ = $\exp$(-$\frac{(3-5)^2}{2(0.5)^2}$) = 0.000335
So, J($\theta$) = 0.9802*($\theta$ $^T$ $x^1$ - $y^1$) + 0.000335*($\theta$ $^T$ $x^2$ - $y^2$)
So, here by we can conclude that the weight fall exponentially as the distance between x & $x^i$ increases and So, does the contribution of error in prediction for $x^i$ to the cost.
Steps involved in LWL are : \
Compute \theta to minimize the cost.
J($\theta$) = $\sum_{i=1}^m$ $w^i$ (($\theta$)$^T$ $x^i$ - $y^i$)$^2$ \
Predict Output: for given query point x, \
return : $\theta$ $^T$ x
<img src="https://miro.medium.com/max/700/1*H3QS05Q1GJtY-tiBL00iug.png" alt="LWL">
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | # Computer Vision
Computer vision is a field of computer science that works on enabling computers to see, identify and process images in the same way that human does, and provide appropriate output.
It is like imparting human intelligence and instincts to a computer.
Image processing and computer vision are a little different from each other. Image processing means applying some algorithms for transforming image from one form to the other like smoothing, contrasting, stretching, etc.
While computer vision comes from modelling image processing using the techniques of machine learning, computer vision applies machine learning to recognize patterns for interpretation of images (much like the process of visual reasoning of human vision).
* <https://en.wikipedia.org/wiki/Computer_vision>
* <https://www.algorithmia.com/blog/introduction-to-computer-vision>
| # Computer Vision
Computer vision is a field of computer science that works on enabling computers to see, identify and process images in the same way that human does, and provide appropriate output.
It is like imparting human intelligence and instincts to a computer.
Image processing and computer vision are a little different from each other. Image processing means applying some algorithms for transforming image from one form to the other like smoothing, contrasting, stretching, etc.
While computer vision comes from modelling image processing using the techniques of machine learning, computer vision applies machine learning to recognize patterns for interpretation of images (much like the process of visual reasoning of human vision).
* <https://en.wikipedia.org/wiki/Computer_vision>
* <https://www.algorithmia.com/blog/introduction-to-computer-vision>
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | """
Project Euler Problem 493: https://projecteuler.net/problem=493
70 coloured balls are placed in an urn, 10 for each of the seven rainbow colours.
What is the expected number of distinct colours in 20 randomly picked balls?
Give your answer with nine digits after the decimal point (a.bcdefghij).
-----
This combinatorial problem can be solved by decomposing the problem into the
following steps:
1. Calculate the total number of possible picking combinations
[combinations := binom_coeff(70, 20)]
2. Calculate the number of combinations with one colour missing
[missing := binom_coeff(60, 20)]
3. Calculate the probability of one colour missing
[missing_prob := missing / combinations]
4. Calculate the probability of no colour missing
[no_missing_prob := 1 - missing_prob]
5. Calculate the expected number of distinct colours
[expected = 7 * no_missing_prob]
References:
- https://en.wikipedia.org/wiki/Binomial_coefficient
"""
import math
BALLS_PER_COLOUR = 10
NUM_COLOURS = 7
NUM_BALLS = BALLS_PER_COLOUR * NUM_COLOURS
def solution(num_picks: int = 20) -> str:
"""
Calculates the expected number of distinct colours
>>> solution(10)
'5.669644129'
>>> solution(30)
'6.985042712'
"""
total = math.comb(NUM_BALLS, num_picks)
missing_colour = math.comb(NUM_BALLS - BALLS_PER_COLOUR, num_picks)
result = NUM_COLOURS * (1 - missing_colour / total)
return f"{result:.9f}"
if __name__ == "__main__":
print(solution(20))
| """
Project Euler Problem 493: https://projecteuler.net/problem=493
70 coloured balls are placed in an urn, 10 for each of the seven rainbow colours.
What is the expected number of distinct colours in 20 randomly picked balls?
Give your answer with nine digits after the decimal point (a.bcdefghij).
-----
This combinatorial problem can be solved by decomposing the problem into the
following steps:
1. Calculate the total number of possible picking combinations
[combinations := binom_coeff(70, 20)]
2. Calculate the number of combinations with one colour missing
[missing := binom_coeff(60, 20)]
3. Calculate the probability of one colour missing
[missing_prob := missing / combinations]
4. Calculate the probability of no colour missing
[no_missing_prob := 1 - missing_prob]
5. Calculate the expected number of distinct colours
[expected = 7 * no_missing_prob]
References:
- https://en.wikipedia.org/wiki/Binomial_coefficient
"""
import math
BALLS_PER_COLOUR = 10
NUM_COLOURS = 7
NUM_BALLS = BALLS_PER_COLOUR * NUM_COLOURS
def solution(num_picks: int = 20) -> str:
"""
Calculates the expected number of distinct colours
>>> solution(10)
'5.669644129'
>>> solution(30)
'6.985042712'
"""
total = math.comb(NUM_BALLS, num_picks)
missing_colour = math.comb(NUM_BALLS - BALLS_PER_COLOUR, num_picks)
result = NUM_COLOURS * (1 - missing_colour / total)
return f"{result:.9f}"
if __name__ == "__main__":
print(solution(20))
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | """
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
"""
def floor(x: float) -> int:
"""
Return the floor of x as an Integral.
:param x: the number
:return: the largest integer <= x.
>>> import math
>>> all(floor(n) == math.floor(n) for n
... in (1, -1, 0, -0, 1.1, -1.1, 1.0, -1.0, 1_000_000_000))
True
"""
return int(x) if x - int(x) >= 0 else int(x) - 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| """
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
"""
def floor(x: float) -> int:
"""
Return the floor of x as an Integral.
:param x: the number
:return: the largest integer <= x.
>>> import math
>>> all(floor(n) == math.floor(n) for n
... in (1, -1, 0, -0, 1.1, -1.1, 1.0, -1.0, 1_000_000_000))
True
"""
return int(x) if x - int(x) >= 0 else int(x) - 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | def search(list_data: list, key: int, left: int = 0, right: int = 0) -> int:
"""
Iterate through the array to find the index of key using recursion.
:param list_data: the list to be searched
:param key: the key to be searched
:param left: the index of first element
:param right: the index of last element
:return: the index of key value if found, -1 otherwise.
>>> search(list(range(0, 11)), 5)
5
>>> search([1, 2, 4, 5, 3], 4)
2
>>> search([1, 2, 4, 5, 3], 6)
-1
>>> search([5], 5)
0
>>> search([], 1)
-1
"""
right = right or len(list_data) - 1
if left > right:
return -1
elif list_data[left] == key:
return left
elif list_data[right] == key:
return right
else:
return search(list_data, key, left + 1, right - 1)
if __name__ == "__main__":
import doctest
doctest.testmod()
| def search(list_data: list, key: int, left: int = 0, right: int = 0) -> int:
"""
Iterate through the array to find the index of key using recursion.
:param list_data: the list to be searched
:param key: the key to be searched
:param left: the index of first element
:param right: the index of last element
:return: the index of key value if found, -1 otherwise.
>>> search(list(range(0, 11)), 5)
5
>>> search([1, 2, 4, 5, 3], 4)
2
>>> search([1, 2, 4, 5, 3], 6)
-1
>>> search([5], 5)
0
>>> search([], 1)
-1
"""
right = right or len(list_data) - 1
if left > right:
return -1
elif list_data[left] == key:
return left
elif list_data[right] == key:
return right
else:
return search(list_data, key, left + 1, right - 1)
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | def decimal_to_fraction(decimal: float | str) -> tuple[int, int]:
"""
Return a decimal number in its simplest fraction form
>>> decimal_to_fraction(2)
(2, 1)
>>> decimal_to_fraction(89.)
(89, 1)
>>> decimal_to_fraction("67")
(67, 1)
>>> decimal_to_fraction("45.0")
(45, 1)
>>> decimal_to_fraction(1.5)
(3, 2)
>>> decimal_to_fraction("6.25")
(25, 4)
>>> decimal_to_fraction("78td")
Traceback (most recent call last):
ValueError: Please enter a valid number
"""
try:
decimal = float(decimal)
except ValueError:
raise ValueError("Please enter a valid number")
fractional_part = decimal - int(decimal)
if fractional_part == 0:
return int(decimal), 1
else:
number_of_frac_digits = len(str(decimal).split(".")[1])
numerator = int(decimal * (10**number_of_frac_digits))
denominator = 10**number_of_frac_digits
divisor, dividend = denominator, numerator
while True:
remainder = dividend % divisor
if remainder == 0:
break
dividend, divisor = divisor, remainder
numerator, denominator = numerator / divisor, denominator / divisor
return int(numerator), int(denominator)
if __name__ == "__main__":
print(f"{decimal_to_fraction(2) = }")
print(f"{decimal_to_fraction(89.0) = }")
print(f"{decimal_to_fraction('67') = }")
print(f"{decimal_to_fraction('45.0') = }")
print(f"{decimal_to_fraction(1.5) = }")
print(f"{decimal_to_fraction('6.25') = }")
print(f"{decimal_to_fraction('78td') = }")
| def decimal_to_fraction(decimal: float | str) -> tuple[int, int]:
"""
Return a decimal number in its simplest fraction form
>>> decimal_to_fraction(2)
(2, 1)
>>> decimal_to_fraction(89.)
(89, 1)
>>> decimal_to_fraction("67")
(67, 1)
>>> decimal_to_fraction("45.0")
(45, 1)
>>> decimal_to_fraction(1.5)
(3, 2)
>>> decimal_to_fraction("6.25")
(25, 4)
>>> decimal_to_fraction("78td")
Traceback (most recent call last):
ValueError: Please enter a valid number
"""
try:
decimal = float(decimal)
except ValueError:
raise ValueError("Please enter a valid number")
fractional_part = decimal - int(decimal)
if fractional_part == 0:
return int(decimal), 1
else:
number_of_frac_digits = len(str(decimal).split(".")[1])
numerator = int(decimal * (10**number_of_frac_digits))
denominator = 10**number_of_frac_digits
divisor, dividend = denominator, numerator
while True:
remainder = dividend % divisor
if remainder == 0:
break
dividend, divisor = divisor, remainder
numerator, denominator = numerator / divisor, denominator / divisor
return int(numerator), int(denominator)
if __name__ == "__main__":
print(f"{decimal_to_fraction(2) = }")
print(f"{decimal_to_fraction(89.0) = }")
print(f"{decimal_to_fraction('67') = }")
print(f"{decimal_to_fraction('45.0') = }")
print(f"{decimal_to_fraction(1.5) = }")
print(f"{decimal_to_fraction('6.25') = }")
print(f"{decimal_to_fraction('78td') = }")
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | """
This script demonstrates the implementation of the Softmax function.
Its a function that takes as input a vector of K real numbers, and normalizes
it into a probability distribution consisting of K probabilities proportional
to the exponentials of the input numbers. After softmax, the elements of the
vector always sum up to 1.
Script inspired from its corresponding Wikipedia article
https://en.wikipedia.org/wiki/Softmax_function
"""
import numpy as np
def softmax(vector):
"""
Implements the softmax function
Parameters:
vector (np.array,list,tuple): A numpy array of shape (1,n)
consisting of real values or a similar list,tuple
Returns:
softmax_vec (np.array): The input numpy array after applying
softmax.
The softmax vector adds up to one. We need to ceil to mitigate for
precision
>>> np.ceil(np.sum(softmax([1,2,3,4])))
1.0
>>> vec = np.array([5,5])
>>> softmax(vec)
array([0.5, 0.5])
>>> softmax([0])
array([1.])
"""
# Calculate e^x for each x in your vector where e is Euler's
# number (approximately 2.718)
exponent_vector = np.exp(vector)
# Add up the all the exponentials
sum_of_exponents = np.sum(exponent_vector)
# Divide every exponent by the sum of all exponents
softmax_vector = exponent_vector / sum_of_exponents
return softmax_vector
if __name__ == "__main__":
print(softmax((0,)))
| """
This script demonstrates the implementation of the Softmax function.
Its a function that takes as input a vector of K real numbers, and normalizes
it into a probability distribution consisting of K probabilities proportional
to the exponentials of the input numbers. After softmax, the elements of the
vector always sum up to 1.
Script inspired from its corresponding Wikipedia article
https://en.wikipedia.org/wiki/Softmax_function
"""
import numpy as np
def softmax(vector):
"""
Implements the softmax function
Parameters:
vector (np.array,list,tuple): A numpy array of shape (1,n)
consisting of real values or a similar list,tuple
Returns:
softmax_vec (np.array): The input numpy array after applying
softmax.
The softmax vector adds up to one. We need to ceil to mitigate for
precision
>>> np.ceil(np.sum(softmax([1,2,3,4])))
1.0
>>> vec = np.array([5,5])
>>> softmax(vec)
array([0.5, 0.5])
>>> softmax([0])
array([1.])
"""
# Calculate e^x for each x in your vector where e is Euler's
# number (approximately 2.718)
exponent_vector = np.exp(vector)
# Add up the all the exponentials
sum_of_exponents = np.sum(exponent_vector)
# Divide every exponent by the sum of all exponents
softmax_vector = exponent_vector / sum_of_exponents
return softmax_vector
if __name__ == "__main__":
print(softmax((0,)))
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | # Numbers of alphabet which we call base
alphabet_size = 256
# Modulus to hash a string
modulus = 1000003
def rabin_karp(pattern: str, text: str) -> bool:
"""
The Rabin-Karp Algorithm for finding a pattern within a piece of text
with complexity O(nm), most efficient when it is used with multiple patterns
as it is able to check if any of a set of patterns match a section of text in o(1)
given the precomputed hashes.
This will be the simple version which only assumes one pattern is being searched
for but it's not hard to modify
1) Calculate pattern hash
2) Step through the text one character at a time passing a window with the same
length as the pattern
calculating the hash of the text within the window compare it with the hash
of the pattern. Only testing equality if the hashes match
"""
p_len = len(pattern)
t_len = len(text)
if p_len > t_len:
return False
p_hash = 0
text_hash = 0
modulus_power = 1
# Calculating the hash of pattern and substring of text
for i in range(p_len):
p_hash = (ord(pattern[i]) + p_hash * alphabet_size) % modulus
text_hash = (ord(text[i]) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
modulus_power = (modulus_power * alphabet_size) % modulus
for i in range(t_len - p_len + 1):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
text_hash = (
(text_hash - ord(text[i]) * modulus_power) * alphabet_size
+ ord(text[i + p_len])
) % modulus
return False
def test_rabin_karp() -> None:
"""
>>> test_rabin_karp()
Success.
"""
# Test 1)
pattern = "abc1abc12"
text1 = "alskfjaldsabc1abc1abc12k23adsfabcabc"
text2 = "alskfjaldsk23adsfabcabc"
assert rabin_karp(pattern, text1)
assert not rabin_karp(pattern, text2)
# Test 2)
pattern = "ABABX"
text = "ABABZABABYABABX"
assert rabin_karp(pattern, text)
# Test 3)
pattern = "AAAB"
text = "ABAAAAAB"
assert rabin_karp(pattern, text)
# Test 4)
pattern = "abcdabcy"
text = "abcxabcdabxabcdabcdabcy"
assert rabin_karp(pattern, text)
# Test 5)
pattern = "Lü"
text = "Lüsai"
assert rabin_karp(pattern, text)
pattern = "Lue"
assert not rabin_karp(pattern, text)
print("Success.")
if __name__ == "__main__":
test_rabin_karp()
| # Numbers of alphabet which we call base
alphabet_size = 256
# Modulus to hash a string
modulus = 1000003
def rabin_karp(pattern: str, text: str) -> bool:
"""
The Rabin-Karp Algorithm for finding a pattern within a piece of text
with complexity O(nm), most efficient when it is used with multiple patterns
as it is able to check if any of a set of patterns match a section of text in o(1)
given the precomputed hashes.
This will be the simple version which only assumes one pattern is being searched
for but it's not hard to modify
1) Calculate pattern hash
2) Step through the text one character at a time passing a window with the same
length as the pattern
calculating the hash of the text within the window compare it with the hash
of the pattern. Only testing equality if the hashes match
"""
p_len = len(pattern)
t_len = len(text)
if p_len > t_len:
return False
p_hash = 0
text_hash = 0
modulus_power = 1
# Calculating the hash of pattern and substring of text
for i in range(p_len):
p_hash = (ord(pattern[i]) + p_hash * alphabet_size) % modulus
text_hash = (ord(text[i]) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
modulus_power = (modulus_power * alphabet_size) % modulus
for i in range(t_len - p_len + 1):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
text_hash = (
(text_hash - ord(text[i]) * modulus_power) * alphabet_size
+ ord(text[i + p_len])
) % modulus
return False
def test_rabin_karp() -> None:
"""
>>> test_rabin_karp()
Success.
"""
# Test 1)
pattern = "abc1abc12"
text1 = "alskfjaldsabc1abc1abc12k23adsfabcabc"
text2 = "alskfjaldsk23adsfabcabc"
assert rabin_karp(pattern, text1)
assert not rabin_karp(pattern, text2)
# Test 2)
pattern = "ABABX"
text = "ABABZABABYABABX"
assert rabin_karp(pattern, text)
# Test 3)
pattern = "AAAB"
text = "ABAAAAAB"
assert rabin_karp(pattern, text)
# Test 4)
pattern = "abcdabcy"
text = "abcxabcdabxabcdabcdabcy"
assert rabin_karp(pattern, text)
# Test 5)
pattern = "Lü"
text = "Lüsai"
assert rabin_karp(pattern, text)
pattern = "Lue"
assert not rabin_karp(pattern, text)
print("Success.")
if __name__ == "__main__":
test_rabin_karp()
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | """
The Fletcher checksum is an algorithm for computing a position-dependent
checksum devised by John G. Fletcher (1934–2012) at Lawrence Livermore Labs
in the late 1970s.[1] The objective of the Fletcher checksum was to
provide error-detection properties approaching those of a cyclic
redundancy check but with the lower computational effort associated
with summation techniques.
Source: https://en.wikipedia.org/wiki/Fletcher%27s_checksum
"""
def fletcher16(text: str) -> int:
"""
Loop through every character in the data and add to two sums.
>>> fletcher16('hello world')
6752
>>> fletcher16('onethousandfourhundredthirtyfour')
28347
>>> fletcher16('The quick brown fox jumps over the lazy dog.')
5655
"""
data = bytes(text, "ascii")
sum1 = 0
sum2 = 0
for character in data:
sum1 = (sum1 + character) % 255
sum2 = (sum1 + sum2) % 255
return (sum2 << 8) | sum1
if __name__ == "__main__":
import doctest
doctest.testmod()
| """
The Fletcher checksum is an algorithm for computing a position-dependent
checksum devised by John G. Fletcher (1934–2012) at Lawrence Livermore Labs
in the late 1970s.[1] The objective of the Fletcher checksum was to
provide error-detection properties approaching those of a cyclic
redundancy check but with the lower computational effort associated
with summation techniques.
Source: https://en.wikipedia.org/wiki/Fletcher%27s_checksum
"""
def fletcher16(text: str) -> int:
"""
Loop through every character in the data and add to two sums.
>>> fletcher16('hello world')
6752
>>> fletcher16('onethousandfourhundredthirtyfour')
28347
>>> fletcher16('The quick brown fox jumps over the lazy dog.')
5655
"""
data = bytes(text, "ascii")
sum1 = 0
sum2 = 0
for character in data:
sum1 = (sum1 + character) % 255
sum2 = (sum1 + sum2) % 255
return (sum2 << 8) | sum1
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | # https://en.wikipedia.org/wiki/Continuous_knapsack_problem
# https://www.guru99.com/fractional-knapsack-problem-greedy.html
# https://medium.com/walkinthecode/greedy-algorithm-fractional-knapsack-problem-9aba1daecc93
from __future__ import annotations
def fractional_knapsack(
value: list[int], weight: list[int], capacity: int
) -> tuple[float, list[float]]:
"""
>>> value = [1, 3, 5, 7, 9]
>>> weight = [0.9, 0.7, 0.5, 0.3, 0.1]
>>> fractional_knapsack(value, weight, 5)
(25, [1, 1, 1, 1, 1])
>>> fractional_knapsack(value, weight, 15)
(25, [1, 1, 1, 1, 1])
>>> fractional_knapsack(value, weight, 25)
(25, [1, 1, 1, 1, 1])
>>> fractional_knapsack(value, weight, 26)
(25, [1, 1, 1, 1, 1])
>>> fractional_knapsack(value, weight, -1)
(-90.0, [0, 0, 0, 0, -10.0])
>>> fractional_knapsack([1, 3, 5, 7], weight, 30)
(16, [1, 1, 1, 1])
>>> fractional_knapsack(value, [0.9, 0.7, 0.5, 0.3, 0.1], 30)
(25, [1, 1, 1, 1, 1])
>>> fractional_knapsack([], [], 30)
(0, [])
"""
index = list(range(len(value)))
ratio = [v / w for v, w in zip(value, weight)]
index.sort(key=lambda i: ratio[i], reverse=True)
max_value: float = 0
fractions: list[float] = [0] * len(value)
for i in index:
if weight[i] <= capacity:
fractions[i] = 1
max_value += value[i]
capacity -= weight[i]
else:
fractions[i] = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| # https://en.wikipedia.org/wiki/Continuous_knapsack_problem
# https://www.guru99.com/fractional-knapsack-problem-greedy.html
# https://medium.com/walkinthecode/greedy-algorithm-fractional-knapsack-problem-9aba1daecc93
from __future__ import annotations
def fractional_knapsack(
value: list[int], weight: list[int], capacity: int
) -> tuple[float, list[float]]:
"""
>>> value = [1, 3, 5, 7, 9]
>>> weight = [0.9, 0.7, 0.5, 0.3, 0.1]
>>> fractional_knapsack(value, weight, 5)
(25, [1, 1, 1, 1, 1])
>>> fractional_knapsack(value, weight, 15)
(25, [1, 1, 1, 1, 1])
>>> fractional_knapsack(value, weight, 25)
(25, [1, 1, 1, 1, 1])
>>> fractional_knapsack(value, weight, 26)
(25, [1, 1, 1, 1, 1])
>>> fractional_knapsack(value, weight, -1)
(-90.0, [0, 0, 0, 0, -10.0])
>>> fractional_knapsack([1, 3, 5, 7], weight, 30)
(16, [1, 1, 1, 1])
>>> fractional_knapsack(value, [0.9, 0.7, 0.5, 0.3, 0.1], 30)
(25, [1, 1, 1, 1, 1])
>>> fractional_knapsack([], [], 30)
(0, [])
"""
index = list(range(len(value)))
ratio = [v / w for v, w in zip(value, weight)]
index.sort(key=lambda i: ratio[i], reverse=True)
max_value: float = 0
fractions: list[float] = [0] * len(value)
for i in index:
if weight[i] <= capacity:
fractions[i] = 1
max_value += value[i]
capacity -= weight[i]
else:
fractions[i] = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | """
Ford-Fulkerson Algorithm for Maximum Flow Problem
* https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm
Description:
(1) Start with initial flow as 0
(2) Choose the augmenting path from source to sink and add the path to flow
"""
graph = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
def breadth_first_search(graph: list, source: int, sink: int, parents: list) -> bool:
"""
This function returns True if there is a node that has not iterated.
Args:
graph: Adjacency matrix of graph
source: Source
sink: Sink
parents: Parent list
Returns:
True if there is a node that has not iterated.
>>> breadth_first_search(graph, 0, 5, [-1, -1, -1, -1, -1, -1])
True
>>> breadth_first_search(graph, 0, 6, [-1, -1, -1, -1, -1, -1])
Traceback (most recent call last):
...
IndexError: list index out of range
"""
visited = [False] * len(graph) # Mark all nodes as not visited
queue = [] # breadth-first search queue
# Source node
queue.append(source)
visited[source] = True
while queue:
u = queue.pop(0) # Pop the front node
# Traverse all adjacent nodes of u
for ind, node in enumerate(graph[u]):
if visited[ind] is False and node > 0:
queue.append(ind)
visited[ind] = True
parents[ind] = u
return visited[sink]
def ford_fulkerson(graph: list, source: int, sink: int) -> int:
"""
This function returns the maximum flow from source to sink in the given graph.
CAUTION: This function changes the given graph.
Args:
graph: Adjacency matrix of graph
source: Source
sink: Sink
Returns:
Maximum flow
>>> test_graph = [
... [0, 16, 13, 0, 0, 0],
... [0, 0, 10, 12, 0, 0],
... [0, 4, 0, 0, 14, 0],
... [0, 0, 9, 0, 0, 20],
... [0, 0, 0, 7, 0, 4],
... [0, 0, 0, 0, 0, 0],
... ]
>>> ford_fulkerson(test_graph, 0, 5)
23
"""
# This array is filled by breadth-first search and to store path
parent = [-1] * (len(graph))
max_flow = 0
# While there is a path from source to sink
while breadth_first_search(graph, source, sink, parent):
path_flow = int(1e9) # Infinite value
s = sink
while s != source:
# Find the minimum value in the selected path
path_flow = min(path_flow, graph[parent[s]][s])
s = parent[s]
max_flow += path_flow
v = sink
while v != source:
u = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
v = parent[v]
return max_flow
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f"{ford_fulkerson(graph, source=0, sink=5) = }")
| """
Ford-Fulkerson Algorithm for Maximum Flow Problem
* https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm
Description:
(1) Start with initial flow as 0
(2) Choose the augmenting path from source to sink and add the path to flow
"""
graph = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
def breadth_first_search(graph: list, source: int, sink: int, parents: list) -> bool:
"""
This function returns True if there is a node that has not iterated.
Args:
graph: Adjacency matrix of graph
source: Source
sink: Sink
parents: Parent list
Returns:
True if there is a node that has not iterated.
>>> breadth_first_search(graph, 0, 5, [-1, -1, -1, -1, -1, -1])
True
>>> breadth_first_search(graph, 0, 6, [-1, -1, -1, -1, -1, -1])
Traceback (most recent call last):
...
IndexError: list index out of range
"""
visited = [False] * len(graph) # Mark all nodes as not visited
queue = [] # breadth-first search queue
# Source node
queue.append(source)
visited[source] = True
while queue:
u = queue.pop(0) # Pop the front node
# Traverse all adjacent nodes of u
for ind, node in enumerate(graph[u]):
if visited[ind] is False and node > 0:
queue.append(ind)
visited[ind] = True
parents[ind] = u
return visited[sink]
def ford_fulkerson(graph: list, source: int, sink: int) -> int:
"""
This function returns the maximum flow from source to sink in the given graph.
CAUTION: This function changes the given graph.
Args:
graph: Adjacency matrix of graph
source: Source
sink: Sink
Returns:
Maximum flow
>>> test_graph = [
... [0, 16, 13, 0, 0, 0],
... [0, 0, 10, 12, 0, 0],
... [0, 4, 0, 0, 14, 0],
... [0, 0, 9, 0, 0, 20],
... [0, 0, 0, 7, 0, 4],
... [0, 0, 0, 0, 0, 0],
... ]
>>> ford_fulkerson(test_graph, 0, 5)
23
"""
# This array is filled by breadth-first search and to store path
parent = [-1] * (len(graph))
max_flow = 0
# While there is a path from source to sink
while breadth_first_search(graph, source, sink, parent):
path_flow = int(1e9) # Infinite value
s = sink
while s != source:
# Find the minimum value in the selected path
path_flow = min(path_flow, graph[parent[s]][s])
s = parent[s]
max_flow += path_flow
v = sink
while v != source:
u = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
v = parent[v]
return max_flow
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f"{ford_fulkerson(graph, source=0, sink=5) = }")
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | """
Ordered fractions
Problem 71
https://projecteuler.net/problem=71
Consider the fraction n/d, where n and d are positive
integers. If n<d and HCF(n,d)=1, it is called a reduced proper fraction.
If we list the set of reduced proper fractions for d ≤ 8
in ascending order of size, we get:
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7,
1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
It can be seen that 2/5 is the fraction immediately to the left of 3/7.
By listing the set of reduced proper fractions for d ≤ 1,000,000
in ascending order of size, find the numerator of the fraction
immediately to the left of 3/7.
"""
def solution(numerator: int = 3, denominator: int = 7, limit: int = 1000000) -> int:
"""
Returns the closest numerator of the fraction immediately to the
left of given fraction (numerator/denominator) from a list of reduced
proper fractions.
>>> solution()
428570
>>> solution(3, 7, 8)
2
>>> solution(6, 7, 60)
47
"""
max_numerator = 0
max_denominator = 1
for current_denominator in range(1, limit + 1):
current_numerator = current_denominator * numerator // denominator
if current_denominator % denominator == 0:
current_numerator -= 1
if current_numerator * max_denominator > current_denominator * max_numerator:
max_numerator = current_numerator
max_denominator = current_denominator
return max_numerator
if __name__ == "__main__":
print(solution(numerator=3, denominator=7, limit=1000000))
| """
Ordered fractions
Problem 71
https://projecteuler.net/problem=71
Consider the fraction n/d, where n and d are positive
integers. If n<d and HCF(n,d)=1, it is called a reduced proper fraction.
If we list the set of reduced proper fractions for d ≤ 8
in ascending order of size, we get:
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7,
1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
It can be seen that 2/5 is the fraction immediately to the left of 3/7.
By listing the set of reduced proper fractions for d ≤ 1,000,000
in ascending order of size, find the numerator of the fraction
immediately to the left of 3/7.
"""
def solution(numerator: int = 3, denominator: int = 7, limit: int = 1000000) -> int:
"""
Returns the closest numerator of the fraction immediately to the
left of given fraction (numerator/denominator) from a list of reduced
proper fractions.
>>> solution()
428570
>>> solution(3, 7, 8)
2
>>> solution(6, 7, 60)
47
"""
max_numerator = 0
max_denominator = 1
for current_denominator in range(1, limit + 1):
current_numerator = current_denominator * numerator // denominator
if current_denominator % denominator == 0:
current_numerator -= 1
if current_numerator * max_denominator > current_denominator * max_numerator:
max_numerator = current_numerator
max_denominator = current_denominator
return max_numerator
if __name__ == "__main__":
print(solution(numerator=3, denominator=7, limit=1000000))
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | """
Project Euler Problem 206: https://projecteuler.net/problem=206
Find the unique positive integer whose square has the form 1_2_3_4_5_6_7_8_9_0,
where each “_” is a single digit.
-----
Instead of computing every single permutation of that number and going
through a 10^9 search space, we can narrow it down considerably.
If the square ends in a 0, then the square root must also end in a 0. Thus,
the last missing digit must be 0 and the square root is a multiple of 10.
We can narrow the search space down to the first 8 digits and multiply the
result of that by 10 at the end.
Now the last digit is a 9, which can only happen if the square root ends
in a 3 or 7. From this point, we can try one of two different methods to find
the answer:
1. Start at the lowest possible base number whose square would be in the
format, and count up. The base we would start at is 101010103, whose square is
the closest number to 10203040506070809. Alternate counting up by 4 and 6 so
the last digit of the base is always a 3 or 7.
2. Start at the highest possible base number whose square would be in the
format, and count down. That base would be 138902663, whose square is the
closest number to 1929394959697989. Alternate counting down by 6 and 4 so the
last digit of the base is always a 3 or 7.
The solution does option 2 because the answer happens to be much closer to the
starting point.
"""
def is_square_form(num: int) -> bool:
"""
Determines if num is in the form 1_2_3_4_5_6_7_8_9
>>> is_square_form(1)
False
>>> is_square_form(112233445566778899)
True
>>> is_square_form(123456789012345678)
False
"""
digit = 9
while num > 0:
if num % 10 != digit:
return False
num //= 100
digit -= 1
return True
def solution() -> int:
"""
Returns the first integer whose square is of the form 1_2_3_4_5_6_7_8_9_0
"""
num = 138902663
while not is_square_form(num * num):
if num % 10 == 3:
num -= 6 # (3 - 6) % 10 = 7
else:
num -= 4 # (7 - 4) % 10 = 3
return num * 10
if __name__ == "__main__":
print(f"{solution() = }")
| """
Project Euler Problem 206: https://projecteuler.net/problem=206
Find the unique positive integer whose square has the form 1_2_3_4_5_6_7_8_9_0,
where each “_” is a single digit.
-----
Instead of computing every single permutation of that number and going
through a 10^9 search space, we can narrow it down considerably.
If the square ends in a 0, then the square root must also end in a 0. Thus,
the last missing digit must be 0 and the square root is a multiple of 10.
We can narrow the search space down to the first 8 digits and multiply the
result of that by 10 at the end.
Now the last digit is a 9, which can only happen if the square root ends
in a 3 or 7. From this point, we can try one of two different methods to find
the answer:
1. Start at the lowest possible base number whose square would be in the
format, and count up. The base we would start at is 101010103, whose square is
the closest number to 10203040506070809. Alternate counting up by 4 and 6 so
the last digit of the base is always a 3 or 7.
2. Start at the highest possible base number whose square would be in the
format, and count down. That base would be 138902663, whose square is the
closest number to 1929394959697989. Alternate counting down by 6 and 4 so the
last digit of the base is always a 3 or 7.
The solution does option 2 because the answer happens to be much closer to the
starting point.
"""
def is_square_form(num: int) -> bool:
"""
Determines if num is in the form 1_2_3_4_5_6_7_8_9
>>> is_square_form(1)
False
>>> is_square_form(112233445566778899)
True
>>> is_square_form(123456789012345678)
False
"""
digit = 9
while num > 0:
if num % 10 != digit:
return False
num //= 100
digit -= 1
return True
def solution() -> int:
"""
Returns the first integer whose square is of the form 1_2_3_4_5_6_7_8_9_0
"""
num = 138902663
while not is_square_form(num * num):
if num % 10 == 3:
num -= 6 # (3 - 6) % 10 = 7
else:
num -= 4 # (7 - 4) % 10 = 3
return num * 10
if __name__ == "__main__":
print(f"{solution() = }")
| -1 |
TheAlgorithms/Python | 11,146 | [pre-commit.ci] pre-commit autoupdate | <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | pre-commit-ci[bot] | "2023-11-06T18:09:06Z" | "2023-11-07T00:49:09Z" | 12e401650c8afd4b6cf69ddab09a882d1eb6ff5c | a13e9c21374caf40652ee75cc3620f3ac0c72ff3 | [pre-commit.ci] pre-commit autoupdate. <!--pre-commit.ci start-->
updates:
- [github.com/astral-sh/ruff-pre-commit: v0.1.3 → v0.1.4](https://github.com/astral-sh/ruff-pre-commit/compare/v0.1.3...v0.1.4)
- [github.com/tox-dev/pyproject-fmt: 1.3.0 → 1.4.1](https://github.com/tox-dev/pyproject-fmt/compare/1.3.0...1.4.1)
<!--pre-commit.ci end--> | """
Totient maximum
Problem 69: https://projecteuler.net/problem=69
Euler's Totient function, φ(n) [sometimes called the phi function],
is used to determine the number of numbers less than n which are relatively prime to n.
For example, as 1, 2, 4, 5, 7, and 8,
are all less than nine and relatively prime to nine, φ(9)=6.
n Relatively Prime φ(n) n/φ(n)
2 1 1 2
3 1,2 2 1.5
4 1,3 2 2
5 1,2,3,4 4 1.25
6 1,5 2 3
7 1,2,3,4,5,6 6 1.1666...
8 1,3,5,7 4 2
9 1,2,4,5,7,8 6 1.5
10 1,3,7,9 4 2.5
It can be seen that n=6 produces a maximum n/φ(n) for n ≤ 10.
Find the value of n ≤ 1,000,000 for which n/φ(n) is a maximum.
"""
def solution(n: int = 10**6) -> int:
"""
Returns solution to problem.
Algorithm:
1. Precompute φ(k) for all natural k, k <= n using product formula (wikilink below)
https://en.wikipedia.org/wiki/Euler%27s_totient_function#Euler's_product_formula
2. Find k/φ(k) for all k ≤ n and return the k that attains maximum
>>> solution(10)
6
>>> solution(100)
30
>>> solution(9973)
2310
"""
if n <= 0:
raise ValueError("Please enter an integer greater than 0")
phi = list(range(n + 1))
for number in range(2, n + 1):
if phi[number] == number:
phi[number] -= 1
for multiple in range(number * 2, n + 1, number):
phi[multiple] = (phi[multiple] // number) * (number - 1)
answer = 1
for number in range(1, n + 1):
if (answer / phi[answer]) < (number / phi[number]):
answer = number
return answer
if __name__ == "__main__":
print(solution())
| """
Totient maximum
Problem 69: https://projecteuler.net/problem=69
Euler's Totient function, φ(n) [sometimes called the phi function],
is used to determine the number of numbers less than n which are relatively prime to n.
For example, as 1, 2, 4, 5, 7, and 8,
are all less than nine and relatively prime to nine, φ(9)=6.
n Relatively Prime φ(n) n/φ(n)
2 1 1 2
3 1,2 2 1.5
4 1,3 2 2
5 1,2,3,4 4 1.25
6 1,5 2 3
7 1,2,3,4,5,6 6 1.1666...
8 1,3,5,7 4 2
9 1,2,4,5,7,8 6 1.5
10 1,3,7,9 4 2.5
It can be seen that n=6 produces a maximum n/φ(n) for n ≤ 10.
Find the value of n ≤ 1,000,000 for which n/φ(n) is a maximum.
"""
def solution(n: int = 10**6) -> int:
"""
Returns solution to problem.
Algorithm:
1. Precompute φ(k) for all natural k, k <= n using product formula (wikilink below)
https://en.wikipedia.org/wiki/Euler%27s_totient_function#Euler's_product_formula
2. Find k/φ(k) for all k ≤ n and return the k that attains maximum
>>> solution(10)
6
>>> solution(100)
30
>>> solution(9973)
2310
"""
if n <= 0:
raise ValueError("Please enter an integer greater than 0")
phi = list(range(n + 1))
for number in range(2, n + 1):
if phi[number] == number:
phi[number] -= 1
for multiple in range(number * 2, n + 1, number):
phi[multiple] = (phi[multiple] // number) * (number - 1)
answer = 1
for number in range(1, n + 1):
if (answer / phi[answer]) < (number / phi[number]):
answer = number
return answer
if __name__ == "__main__":
print(solution())
| -1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| import random
class Onepad:
@staticmethod
def encrypt(text: str) -> tuple[list[int], list[int]]:
"""Function to encrypt text using pseudo-random numbers"""
plain = [ord(i) for i in text]
key = []
cipher = []
for i in plain:
k = random.randint(1, 300)
c = (i + k) * k
cipher.append(c)
key.append(k)
return cipher, key
@staticmethod
def decrypt(cipher: list[int], key: list[int]) -> str:
"""Function to decrypt text using pseudo-random numbers."""
plain = []
for i in range(len(key)):
p = int((cipher[i] - (key[i]) ** 2) / key[i])
plain.append(chr(p))
return "".join(plain)
if __name__ == "__main__":
c, k = Onepad().encrypt("Hello")
print(c, k)
print(Onepad().decrypt(c, k))
| import random
class Onepad:
@staticmethod
def encrypt(text: str) -> tuple[list[int], list[int]]:
"""
Function to encrypt text using pseudo-random numbers
>>> Onepad().encrypt("")
([], [])
>>> Onepad().encrypt([])
([], [])
>>> random.seed(1)
>>> Onepad().encrypt(" ")
([6969], [69])
>>> random.seed(1)
>>> Onepad().encrypt("Hello")
([9729, 114756, 4653, 31309, 10492], [69, 292, 33, 131, 61])
>>> Onepad().encrypt(1)
Traceback (most recent call last):
...
TypeError: 'int' object is not iterable
>>> Onepad().encrypt(1.1)
Traceback (most recent call last):
...
TypeError: 'float' object is not iterable
"""
plain = [ord(i) for i in text]
key = []
cipher = []
for i in plain:
k = random.randint(1, 300)
c = (i + k) * k
cipher.append(c)
key.append(k)
return cipher, key
@staticmethod
def decrypt(cipher: list[int], key: list[int]) -> str:
"""
Function to decrypt text using pseudo-random numbers.
>>> Onepad().decrypt([], [])
''
>>> Onepad().decrypt([35], [])
''
>>> Onepad().decrypt([], [35])
Traceback (most recent call last):
...
IndexError: list index out of range
>>> random.seed(1)
>>> Onepad().decrypt([9729, 114756, 4653, 31309, 10492], [69, 292, 33, 131, 61])
'Hello'
"""
plain = []
for i in range(len(key)):
p = int((cipher[i] - (key[i]) ** 2) / key[i])
plain.append(chr(p))
return "".join(plain)
if __name__ == "__main__":
c, k = Onepad().encrypt("Hello")
print(c, k)
print(Onepad().decrypt(c, k))
| 1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| # Author: Abhijeeth S
import math
def res(x, y):
if 0 not in (x, y):
# We use the relation x^y = y*log10(x), where 10 is the base.
return y * math.log10(x)
else:
if x == 0: # 0 raised to any number is 0
return 0
elif y == 0:
return 1 # any number raised to 0 is 1
raise AssertionError("This should never happen")
if __name__ == "__main__": # Main function
# Read two numbers from input and typecast them to int using map function.
# Here x is the base and y is the power.
prompt = "Enter the base and the power separated by a comma: "
x1, y1 = map(int, input(prompt).split(","))
x2, y2 = map(int, input(prompt).split(","))
# We find the log of each number, using the function res(), which takes two
# arguments.
res1 = res(x1, y1)
res2 = res(x2, y2)
# We check for the largest number
if res1 > res2:
print("Largest number is", x1, "^", y1)
elif res2 > res1:
print("Largest number is", x2, "^", y2)
else:
print("Both are equal")
| # Author: Abhijeeth S
import math
def res(x, y):
"""
Reduces large number to a more manageable number
>>> res(5, 7)
4.892790030352132
>>> res(0, 5)
0
>>> res(3, 0)
1
>>> res(-1, 5)
Traceback (most recent call last):
...
ValueError: math domain error
"""
if 0 not in (x, y):
# We use the relation x^y = y*log10(x), where 10 is the base.
return y * math.log10(x)
else:
if x == 0: # 0 raised to any number is 0
return 0
elif y == 0:
return 1 # any number raised to 0 is 1
raise AssertionError("This should never happen")
if __name__ == "__main__": # Main function
# Read two numbers from input and typecast them to int using map function.
# Here x is the base and y is the power.
prompt = "Enter the base and the power separated by a comma: "
x1, y1 = map(int, input(prompt).split(","))
x2, y2 = map(int, input(prompt).split(","))
# We find the log of each number, using the function res(), which takes two
# arguments.
res1 = res(x1, y1)
res2 = res(x2, y2)
# We check for the largest number
if res1 > res2:
print("Largest number is", x1, "^", y1)
elif res2 > res1:
print("Largest number is", x2, "^", y2)
else:
print("Both are equal")
| 1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| def get_word_pattern(word: str) -> str:
"""
>>> get_word_pattern("pattern")
'0.1.2.2.3.4.5'
>>> get_word_pattern("word pattern")
'0.1.2.3.4.5.6.7.7.8.2.9'
>>> get_word_pattern("get word pattern")
'0.1.2.3.4.5.6.7.3.8.9.2.2.1.6.10'
"""
word = word.upper()
next_num = 0
letter_nums = {}
word_pattern = []
for letter in word:
if letter not in letter_nums:
letter_nums[letter] = str(next_num)
next_num += 1
word_pattern.append(letter_nums[letter])
return ".".join(word_pattern)
if __name__ == "__main__":
import pprint
import time
start_time = time.time()
with open("dictionary.txt") as in_file:
word_list = in_file.read().splitlines()
all_patterns: dict = {}
for word in word_list:
pattern = get_word_pattern(word)
if pattern in all_patterns:
all_patterns[pattern].append(word)
else:
all_patterns[pattern] = [word]
with open("word_patterns.txt", "w") as out_file:
out_file.write(pprint.pformat(all_patterns))
total_time = round(time.time() - start_time, 2)
print(f"Done! {len(all_patterns):,} word patterns found in {total_time} seconds.")
# Done! 9,581 word patterns found in 0.58 seconds.
| def get_word_pattern(word: str) -> str:
"""
Returns numerical pattern of character appearances in given word
>>> get_word_pattern("")
''
>>> get_word_pattern(" ")
'0'
>>> get_word_pattern("pattern")
'0.1.2.2.3.4.5'
>>> get_word_pattern("word pattern")
'0.1.2.3.4.5.6.7.7.8.2.9'
>>> get_word_pattern("get word pattern")
'0.1.2.3.4.5.6.7.3.8.9.2.2.1.6.10'
>>> get_word_pattern()
Traceback (most recent call last):
...
TypeError: get_word_pattern() missing 1 required positional argument: 'word'
>>> get_word_pattern(1)
Traceback (most recent call last):
...
AttributeError: 'int' object has no attribute 'upper'
>>> get_word_pattern(1.1)
Traceback (most recent call last):
...
AttributeError: 'float' object has no attribute 'upper'
>>> get_word_pattern([])
Traceback (most recent call last):
...
AttributeError: 'list' object has no attribute 'upper'
"""
word = word.upper()
next_num = 0
letter_nums = {}
word_pattern = []
for letter in word:
if letter not in letter_nums:
letter_nums[letter] = str(next_num)
next_num += 1
word_pattern.append(letter_nums[letter])
return ".".join(word_pattern)
if __name__ == "__main__":
import pprint
import time
start_time = time.time()
with open("dictionary.txt") as in_file:
word_list = in_file.read().splitlines()
all_patterns: dict = {}
for word in word_list:
pattern = get_word_pattern(word)
if pattern in all_patterns:
all_patterns[pattern].append(word)
else:
all_patterns[pattern] = [word]
with open("word_patterns.txt", "w") as out_file:
out_file.write(pprint.pformat(all_patterns))
total_time = round(time.time() - start_time, 2)
print(f"Done! {len(all_patterns):,} word patterns found in {total_time} seconds.")
# Done! 9,581 word patterns found in 0.58 seconds.
| 1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| """
Project Euler Problem 113: https://projecteuler.net/problem=113
Working from left-to-right if no digit is exceeded by the digit to its left it is
called an increasing number; for example, 134468.
Similarly if no digit is exceeded by the digit to its right it is called a decreasing
number; for example, 66420.
We shall call a positive integer that is neither increasing nor decreasing a
"bouncy" number; for example, 155349.
As n increases, the proportion of bouncy numbers below n increases such that there
are only 12951 numbers below one-million that are not bouncy and only 277032
non-bouncy numbers below 10^10.
How many numbers below a googol (10^100) are not bouncy?
"""
def choose(n: int, r: int) -> int:
"""
Calculate the binomial coefficient c(n,r) using the multiplicative formula.
>>> choose(4,2)
6
>>> choose(5,3)
10
>>> choose(20,6)
38760
"""
ret = 1.0
for i in range(1, r + 1):
ret *= (n + 1 - i) / i
return round(ret)
def non_bouncy_exact(n: int) -> int:
"""
Calculate the number of non-bouncy numbers with at most n digits.
>>> non_bouncy_exact(1)
9
>>> non_bouncy_exact(6)
7998
>>> non_bouncy_exact(10)
136126
"""
return choose(8 + n, n) + choose(9 + n, n) - 10
def non_bouncy_upto(n: int) -> int:
"""
Calculate the number of non-bouncy numbers with at most n digits.
>>> non_bouncy_upto(1)
9
>>> non_bouncy_upto(6)
12951
>>> non_bouncy_upto(10)
277032
"""
return sum(non_bouncy_exact(i) for i in range(1, n + 1))
def solution(num_digits: int = 100) -> int:
"""
Calculate the number of non-bouncy numbers less than a googol.
>>> solution(6)
12951
>>> solution(10)
277032
"""
return non_bouncy_upto(num_digits)
if __name__ == "__main__":
print(f"{solution() = }")
| """
Project Euler Problem 113: https://projecteuler.net/problem=113
Working from left-to-right if no digit is exceeded by the digit to its left it is
called an increasing number; for example, 134468.
Similarly if no digit is exceeded by the digit to its right it is called a decreasing
number; for example, 66420.
We shall call a positive integer that is neither increasing nor decreasing a
"bouncy" number; for example, 155349.
As n increases, the proportion of bouncy numbers below n increases such that there
are only 12951 numbers below one-million that are not bouncy and only 277032
non-bouncy numbers below 10^10.
How many numbers below a googol (10^100) are not bouncy?
"""
def choose(n: int, r: int) -> int:
"""
Calculate the binomial coefficient c(n,r) using the multiplicative formula.
>>> choose(4,2)
6
>>> choose(5,3)
10
>>> choose(20,6)
38760
"""
ret = 1.0
for i in range(1, r + 1):
ret *= (n + 1 - i) / i
return round(ret)
def non_bouncy_exact(n: int) -> int:
"""
Calculate the number of non-bouncy numbers with at most n digits.
>>> non_bouncy_exact(1)
9
>>> non_bouncy_exact(6)
7998
>>> non_bouncy_exact(10)
136126
"""
return choose(8 + n, n) + choose(9 + n, n) - 10
def non_bouncy_upto(n: int) -> int:
"""
Calculate the number of non-bouncy numbers with at most n digits.
>>> non_bouncy_upto(1)
9
>>> non_bouncy_upto(6)
12951
>>> non_bouncy_upto(10)
277032
"""
return sum(non_bouncy_exact(i) for i in range(1, n + 1))
def solution(num_digits: int = 100) -> int:
"""
Calculate the number of non-bouncy numbers less than a googol.
>>> solution(6)
12951
>>> solution(10)
277032
"""
return non_bouncy_upto(num_digits)
if __name__ == "__main__":
print(f"{solution() = }")
| -1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| """
Introspective Sort is hybrid sort (Quick Sort + Heap Sort + Insertion Sort)
if the size of the list is under 16, use insertion sort
https://en.wikipedia.org/wiki/Introsort
"""
import math
def insertion_sort(array: list, start: int = 0, end: int = 0) -> list:
"""
>>> array = [4, 2, 6, 8, 1, 7, 8, 22, 14, 56, 27, 79, 23, 45, 14, 12]
>>> insertion_sort(array, 0, len(array))
[1, 2, 4, 6, 7, 8, 8, 12, 14, 14, 22, 23, 27, 45, 56, 79]
"""
end = end or len(array)
for i in range(start, end):
temp_index = i
temp_index_value = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
array[temp_index] = array[temp_index - 1]
temp_index -= 1
array[temp_index] = temp_index_value
return array
def heapify(array: list, index: int, heap_size: int) -> None: # Max Heap
"""
>>> array = [4, 2, 6, 8, 1, 7, 8, 22, 14, 56, 27, 79, 23, 45, 14, 12]
>>> heapify(array, len(array) // 2 ,len(array))
"""
largest = index
left_index = 2 * index + 1 # Left Node
right_index = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
largest = left_index
if right_index < heap_size and array[largest] < array[right_index]:
largest = right_index
if largest != index:
array[index], array[largest] = array[largest], array[index]
heapify(array, largest, heap_size)
def heap_sort(array: list) -> list:
"""
>>> array = [4, 2, 6, 8, 1, 7, 8, 22, 14, 56, 27, 79, 23, 45, 14, 12]
>>> heap_sort(array)
[1, 2, 4, 6, 7, 8, 8, 12, 14, 14, 22, 23, 27, 45, 56, 79]
"""
n = len(array)
for i in range(n // 2, -1, -1):
heapify(array, i, n)
for i in range(n - 1, 0, -1):
array[i], array[0] = array[0], array[i]
heapify(array, 0, i)
return array
def median_of_3(
array: list, first_index: int, middle_index: int, last_index: int
) -> int:
"""
>>> array = [4, 2, 6, 8, 1, 7, 8, 22, 14, 56, 27, 79, 23, 45, 14, 12]
>>> median_of_3(array, 0, 0 + ((len(array) - 0) // 2) + 1, len(array) - 1)
12
"""
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def partition(array: list, low: int, high: int, pivot: int) -> int:
"""
>>> array = [4, 2, 6, 8, 1, 7, 8, 22, 14, 56, 27, 79, 23, 45, 14, 12]
>>> partition(array, 0, len(array), 12)
8
"""
i = low
j = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
array[i], array[j] = array[j], array[i]
i += 1
def sort(array: list) -> list:
"""
:param collection: some mutable ordered collection with heterogeneous
comparable items inside
:return: the same collection ordered by ascending
Examples:
>>> sort([4, 2, 6, 8, 1, 7, 8, 22, 14, 56, 27, 79, 23, 45, 14, 12])
[1, 2, 4, 6, 7, 8, 8, 12, 14, 14, 22, 23, 27, 45, 56, 79]
>>> sort([-1, -5, -3, -13, -44])
[-44, -13, -5, -3, -1]
>>> sort([])
[]
>>> sort([5])
[5]
>>> sort([-3, 0, -7, 6, 23, -34])
[-34, -7, -3, 0, 6, 23]
>>> sort([1.7, 1.0, 3.3, 2.1, 0.3 ])
[0.3, 1.0, 1.7, 2.1, 3.3]
>>> sort(['d', 'a', 'b', 'e', 'c'])
['a', 'b', 'c', 'd', 'e']
"""
if len(array) == 0:
return array
max_depth = 2 * math.ceil(math.log2(len(array)))
size_threshold = 16
return intro_sort(array, 0, len(array), size_threshold, max_depth)
def intro_sort(
array: list, start: int, end: int, size_threshold: int, max_depth: int
) -> list:
"""
>>> array = [4, 2, 6, 8, 1, 7, 8, 22, 14, 56, 27, 79, 23, 45, 14, 12]
>>> max_depth = 2 * math.ceil(math.log2(len(array)))
>>> intro_sort(array, 0, len(array), 16, max_depth)
[1, 2, 4, 6, 7, 8, 8, 12, 14, 14, 22, 23, 27, 45, 56, 79]
"""
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(array)
max_depth -= 1
pivot = median_of_3(array, start, start + ((end - start) // 2) + 1, end - 1)
p = partition(array, start, end, pivot)
intro_sort(array, p, end, size_threshold, max_depth)
end = p
return insertion_sort(array, start, end)
if __name__ == "__main__":
import doctest
doctest.testmod()
user_input = input("Enter numbers separated by a comma : ").strip()
unsorted = [float(item) for item in user_input.split(",")]
print(sort(unsorted))
| """
Introspective Sort is hybrid sort (Quick Sort + Heap Sort + Insertion Sort)
if the size of the list is under 16, use insertion sort
https://en.wikipedia.org/wiki/Introsort
"""
import math
def insertion_sort(array: list, start: int = 0, end: int = 0) -> list:
"""
>>> array = [4, 2, 6, 8, 1, 7, 8, 22, 14, 56, 27, 79, 23, 45, 14, 12]
>>> insertion_sort(array, 0, len(array))
[1, 2, 4, 6, 7, 8, 8, 12, 14, 14, 22, 23, 27, 45, 56, 79]
"""
end = end or len(array)
for i in range(start, end):
temp_index = i
temp_index_value = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
array[temp_index] = array[temp_index - 1]
temp_index -= 1
array[temp_index] = temp_index_value
return array
def heapify(array: list, index: int, heap_size: int) -> None: # Max Heap
"""
>>> array = [4, 2, 6, 8, 1, 7, 8, 22, 14, 56, 27, 79, 23, 45, 14, 12]
>>> heapify(array, len(array) // 2 ,len(array))
"""
largest = index
left_index = 2 * index + 1 # Left Node
right_index = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
largest = left_index
if right_index < heap_size and array[largest] < array[right_index]:
largest = right_index
if largest != index:
array[index], array[largest] = array[largest], array[index]
heapify(array, largest, heap_size)
def heap_sort(array: list) -> list:
"""
>>> array = [4, 2, 6, 8, 1, 7, 8, 22, 14, 56, 27, 79, 23, 45, 14, 12]
>>> heap_sort(array)
[1, 2, 4, 6, 7, 8, 8, 12, 14, 14, 22, 23, 27, 45, 56, 79]
"""
n = len(array)
for i in range(n // 2, -1, -1):
heapify(array, i, n)
for i in range(n - 1, 0, -1):
array[i], array[0] = array[0], array[i]
heapify(array, 0, i)
return array
def median_of_3(
array: list, first_index: int, middle_index: int, last_index: int
) -> int:
"""
>>> array = [4, 2, 6, 8, 1, 7, 8, 22, 14, 56, 27, 79, 23, 45, 14, 12]
>>> median_of_3(array, 0, 0 + ((len(array) - 0) // 2) + 1, len(array) - 1)
12
"""
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def partition(array: list, low: int, high: int, pivot: int) -> int:
"""
>>> array = [4, 2, 6, 8, 1, 7, 8, 22, 14, 56, 27, 79, 23, 45, 14, 12]
>>> partition(array, 0, len(array), 12)
8
"""
i = low
j = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
array[i], array[j] = array[j], array[i]
i += 1
def sort(array: list) -> list:
"""
:param collection: some mutable ordered collection with heterogeneous
comparable items inside
:return: the same collection ordered by ascending
Examples:
>>> sort([4, 2, 6, 8, 1, 7, 8, 22, 14, 56, 27, 79, 23, 45, 14, 12])
[1, 2, 4, 6, 7, 8, 8, 12, 14, 14, 22, 23, 27, 45, 56, 79]
>>> sort([-1, -5, -3, -13, -44])
[-44, -13, -5, -3, -1]
>>> sort([])
[]
>>> sort([5])
[5]
>>> sort([-3, 0, -7, 6, 23, -34])
[-34, -7, -3, 0, 6, 23]
>>> sort([1.7, 1.0, 3.3, 2.1, 0.3 ])
[0.3, 1.0, 1.7, 2.1, 3.3]
>>> sort(['d', 'a', 'b', 'e', 'c'])
['a', 'b', 'c', 'd', 'e']
"""
if len(array) == 0:
return array
max_depth = 2 * math.ceil(math.log2(len(array)))
size_threshold = 16
return intro_sort(array, 0, len(array), size_threshold, max_depth)
def intro_sort(
array: list, start: int, end: int, size_threshold: int, max_depth: int
) -> list:
"""
>>> array = [4, 2, 6, 8, 1, 7, 8, 22, 14, 56, 27, 79, 23, 45, 14, 12]
>>> max_depth = 2 * math.ceil(math.log2(len(array)))
>>> intro_sort(array, 0, len(array), 16, max_depth)
[1, 2, 4, 6, 7, 8, 8, 12, 14, 14, 22, 23, 27, 45, 56, 79]
"""
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(array)
max_depth -= 1
pivot = median_of_3(array, start, start + ((end - start) // 2) + 1, end - 1)
p = partition(array, start, end, pivot)
intro_sort(array, p, end, size_threshold, max_depth)
end = p
return insertion_sort(array, start, end)
if __name__ == "__main__":
import doctest
doctest.testmod()
user_input = input("Enter numbers separated by a comma : ").strip()
unsorted = [float(item) for item in user_input.split(",")]
print(sort(unsorted))
| -1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| """
This program print the matrix in spiral form.
This problem has been solved through recursive way.
Matrix must satisfy below conditions
i) matrix should be only one or two dimensional
ii) number of column of all rows should be equal
"""
def check_matrix(matrix: list[list[int]]) -> bool:
# must be
matrix = [list(row) for row in matrix]
if matrix and isinstance(matrix, list):
if isinstance(matrix[0], list):
prev_len = 0
for row in matrix:
if prev_len == 0:
prev_len = len(row)
result = True
else:
result = prev_len == len(row)
else:
result = True
else:
result = False
return result
def spiral_print_clockwise(a: list[list[int]]) -> None:
"""
>>> spiral_print_clockwise([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
1
2
3
4
8
12
11
10
9
5
6
7
"""
if check_matrix(a) and len(a) > 0:
a = [list(row) for row in a]
mat_row = len(a)
if isinstance(a[0], list):
mat_col = len(a[0])
else:
for dat in a:
print(dat)
return
# horizotal printing increasing
for i in range(mat_col):
print(a[0][i])
# vertical printing down
for i in range(1, mat_row):
print(a[i][mat_col - 1])
# horizotal printing decreasing
if mat_row > 1:
for i in range(mat_col - 2, -1, -1):
print(a[mat_row - 1][i])
# vertical printing up
for i in range(mat_row - 2, 0, -1):
print(a[i][0])
remain_mat = [row[1 : mat_col - 1] for row in a[1 : mat_row - 1]]
if len(remain_mat) > 0:
spiral_print_clockwise(remain_mat)
else:
return
else:
print("Not a valid matrix")
return
# Other Easy to understand Approach
def spiral_traversal(matrix: list[list]) -> list[int]:
"""
>>> spiral_traversal([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
[1, 2, 3, 4, 8, 12, 11, 10, 9, 5, 6, 7]
Example:
matrix = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
Algorithm:
Step 1. first pop the 0 index list. (which is [1,2,3,4] and concatenate the
output of [step 2])
Step 2. Now perform matrix’s Transpose operation (Change rows to column
and vice versa) and reverse the resultant matrix.
Step 3. Pass the output of [2nd step], to same recursive function till
base case hits.
Dry Run:
Stage 1.
[1, 2, 3, 4] + spiral_traversal([
[8, 12], [7, 11], [6, 10], [5, 9]]
])
Stage 2.
[1, 2, 3, 4, 8, 12] + spiral_traversal([
[11, 10, 9], [7, 6, 5]
])
Stage 3.
[1, 2, 3, 4, 8, 12, 11, 10, 9] + spiral_traversal([
[5], [6], [7]
])
Stage 4.
[1, 2, 3, 4, 8, 12, 11, 10, 9, 5] + spiral_traversal([
[5], [6], [7]
])
Stage 5.
[1, 2, 3, 4, 8, 12, 11, 10, 9, 5] + spiral_traversal([[6, 7]])
Stage 6.
[1, 2, 3, 4, 8, 12, 11, 10, 9, 5, 6, 7] + spiral_traversal([])
"""
if matrix:
return list(matrix.pop(0)) + spiral_traversal(list(zip(*matrix))[::-1])
else:
return []
# driver code
if __name__ == "__main__":
import doctest
doctest.testmod()
a = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
spiral_print_clockwise(a)
| """
This program print the matrix in spiral form.
This problem has been solved through recursive way.
Matrix must satisfy below conditions
i) matrix should be only one or two dimensional
ii) number of column of all rows should be equal
"""
def check_matrix(matrix: list[list[int]]) -> bool:
# must be
matrix = [list(row) for row in matrix]
if matrix and isinstance(matrix, list):
if isinstance(matrix[0], list):
prev_len = 0
for row in matrix:
if prev_len == 0:
prev_len = len(row)
result = True
else:
result = prev_len == len(row)
else:
result = True
else:
result = False
return result
def spiral_print_clockwise(a: list[list[int]]) -> None:
"""
>>> spiral_print_clockwise([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
1
2
3
4
8
12
11
10
9
5
6
7
"""
if check_matrix(a) and len(a) > 0:
a = [list(row) for row in a]
mat_row = len(a)
if isinstance(a[0], list):
mat_col = len(a[0])
else:
for dat in a:
print(dat)
return
# horizotal printing increasing
for i in range(mat_col):
print(a[0][i])
# vertical printing down
for i in range(1, mat_row):
print(a[i][mat_col - 1])
# horizotal printing decreasing
if mat_row > 1:
for i in range(mat_col - 2, -1, -1):
print(a[mat_row - 1][i])
# vertical printing up
for i in range(mat_row - 2, 0, -1):
print(a[i][0])
remain_mat = [row[1 : mat_col - 1] for row in a[1 : mat_row - 1]]
if len(remain_mat) > 0:
spiral_print_clockwise(remain_mat)
else:
return
else:
print("Not a valid matrix")
return
# Other Easy to understand Approach
def spiral_traversal(matrix: list[list]) -> list[int]:
"""
>>> spiral_traversal([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
[1, 2, 3, 4, 8, 12, 11, 10, 9, 5, 6, 7]
Example:
matrix = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
Algorithm:
Step 1. first pop the 0 index list. (which is [1,2,3,4] and concatenate the
output of [step 2])
Step 2. Now perform matrix’s Transpose operation (Change rows to column
and vice versa) and reverse the resultant matrix.
Step 3. Pass the output of [2nd step], to same recursive function till
base case hits.
Dry Run:
Stage 1.
[1, 2, 3, 4] + spiral_traversal([
[8, 12], [7, 11], [6, 10], [5, 9]]
])
Stage 2.
[1, 2, 3, 4, 8, 12] + spiral_traversal([
[11, 10, 9], [7, 6, 5]
])
Stage 3.
[1, 2, 3, 4, 8, 12, 11, 10, 9] + spiral_traversal([
[5], [6], [7]
])
Stage 4.
[1, 2, 3, 4, 8, 12, 11, 10, 9, 5] + spiral_traversal([
[5], [6], [7]
])
Stage 5.
[1, 2, 3, 4, 8, 12, 11, 10, 9, 5] + spiral_traversal([[6, 7]])
Stage 6.
[1, 2, 3, 4, 8, 12, 11, 10, 9, 5, 6, 7] + spiral_traversal([])
"""
if matrix:
return list(matrix.pop(0)) + spiral_traversal(list(zip(*matrix))[::-1])
else:
return []
# driver code
if __name__ == "__main__":
import doctest
doctest.testmod()
a = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
spiral_print_clockwise(a)
| -1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| """
https://projecteuler.net/problem=234
For an integer n ≥ 4, we define the lower prime square root of n, denoted by
lps(n), as the largest prime ≤ √n and the upper prime square root of n, ups(n),
as the smallest prime ≥ √n.
So, for example, lps(4) = 2 = ups(4), lps(1000) = 31, ups(1000) = 37. Let us
call an integer n ≥ 4 semidivisible, if one of lps(n) and ups(n) divides n,
but not both.
The sum of the semidivisible numbers not exceeding 15 is 30, the numbers are 8,
10 and 12. 15 is not semidivisible because it is a multiple of both lps(15) = 3
and ups(15) = 5. As a further example, the sum of the 92 semidivisible numbers
up to 1000 is 34825.
What is the sum of all semidivisible numbers not exceeding 999966663333 ?
"""
import math
def prime_sieve(n: int) -> list:
"""
Sieve of Erotosthenes
Function to return all the prime numbers up to a certain number
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
>>> prime_sieve(3)
[2]
>>> prime_sieve(50)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]
"""
is_prime = [True] * n
is_prime[0] = False
is_prime[1] = False
is_prime[2] = True
for i in range(3, int(n**0.5 + 1), 2):
index = i * 2
while index < n:
is_prime[index] = False
index = index + i
primes = [2]
for i in range(3, n, 2):
if is_prime[i]:
primes.append(i)
return primes
def solution(limit: int = 999_966_663_333) -> int:
"""
Computes the solution to the problem up to the specified limit
>>> solution(1000)
34825
>>> solution(10_000)
1134942
>>> solution(100_000)
36393008
"""
primes_upper_bound = math.floor(math.sqrt(limit)) + 100
primes = prime_sieve(primes_upper_bound)
matches_sum = 0
prime_index = 0
last_prime = primes[prime_index]
while (last_prime**2) <= limit:
next_prime = primes[prime_index + 1]
lower_bound = last_prime**2
upper_bound = next_prime**2
# Get numbers divisible by lps(current)
current = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
current = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
current = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
last_prime = next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| """
https://projecteuler.net/problem=234
For an integer n ≥ 4, we define the lower prime square root of n, denoted by
lps(n), as the largest prime ≤ √n and the upper prime square root of n, ups(n),
as the smallest prime ≥ √n.
So, for example, lps(4) = 2 = ups(4), lps(1000) = 31, ups(1000) = 37. Let us
call an integer n ≥ 4 semidivisible, if one of lps(n) and ups(n) divides n,
but not both.
The sum of the semidivisible numbers not exceeding 15 is 30, the numbers are 8,
10 and 12. 15 is not semidivisible because it is a multiple of both lps(15) = 3
and ups(15) = 5. As a further example, the sum of the 92 semidivisible numbers
up to 1000 is 34825.
What is the sum of all semidivisible numbers not exceeding 999966663333 ?
"""
import math
def prime_sieve(n: int) -> list:
"""
Sieve of Erotosthenes
Function to return all the prime numbers up to a certain number
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
>>> prime_sieve(3)
[2]
>>> prime_sieve(50)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]
"""
is_prime = [True] * n
is_prime[0] = False
is_prime[1] = False
is_prime[2] = True
for i in range(3, int(n**0.5 + 1), 2):
index = i * 2
while index < n:
is_prime[index] = False
index = index + i
primes = [2]
for i in range(3, n, 2):
if is_prime[i]:
primes.append(i)
return primes
def solution(limit: int = 999_966_663_333) -> int:
"""
Computes the solution to the problem up to the specified limit
>>> solution(1000)
34825
>>> solution(10_000)
1134942
>>> solution(100_000)
36393008
"""
primes_upper_bound = math.floor(math.sqrt(limit)) + 100
primes = prime_sieve(primes_upper_bound)
matches_sum = 0
prime_index = 0
last_prime = primes[prime_index]
while (last_prime**2) <= limit:
next_prime = primes[prime_index + 1]
lower_bound = last_prime**2
upper_bound = next_prime**2
# Get numbers divisible by lps(current)
current = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
current = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
current = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
last_prime = next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| -1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| -1 |
||
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| from bisect import bisect
from itertools import accumulate
def frac_knapsack(vl, wt, w, n):
"""
>>> frac_knapsack([60, 100, 120], [10, 20, 30], 50, 3)
240.0
"""
r = sorted(zip(vl, wt), key=lambda x: x[0] / x[1], reverse=True)
vl, wt = [i[0] for i in r], [i[1] for i in r]
acc = list(accumulate(wt))
k = bisect(acc, w)
return (
0
if k == 0
else sum(vl[:k]) + (w - acc[k - 1]) * (vl[k]) / (wt[k])
if k != n
else sum(vl[:k])
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| from bisect import bisect
from itertools import accumulate
def frac_knapsack(vl, wt, w, n):
"""
>>> frac_knapsack([60, 100, 120], [10, 20, 30], 50, 3)
240.0
"""
r = sorted(zip(vl, wt), key=lambda x: x[0] / x[1], reverse=True)
vl, wt = [i[0] for i in r], [i[1] for i in r]
acc = list(accumulate(wt))
k = bisect(acc, w)
return (
0
if k == 0
else sum(vl[:k]) + (w - acc[k - 1]) * (vl[k]) / (wt[k])
if k != n
else sum(vl[:k])
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| """
Polynomial regression is a type of regression analysis that models the relationship
between a predictor x and the response y as an mth-degree polynomial:
y = β₀ + β₁x + β₂x² + ... + βₘxᵐ + ε
By treating x, x², ..., xᵐ as distinct variables, we see that polynomial regression is a
special case of multiple linear regression. Therefore, we can use ordinary least squares
(OLS) estimation to estimate the vector of model parameters β = (β₀, β₁, β₂, ..., βₘ)
for polynomial regression:
β = (XᵀX)⁻¹Xᵀy = X⁺y
where X is the design matrix, y is the response vector, and X⁺ denotes the Moore–Penrose
pseudoinverse of X. In the case of polynomial regression, the design matrix is
|1 x₁ x₁² ⋯ x₁ᵐ|
X = |1 x₂ x₂² ⋯ x₂ᵐ|
|⋮ ⋮ ⋮ ⋱ ⋮ |
|1 xₙ xₙ² ⋯ xₙᵐ|
In OLS estimation, inverting XᵀX to compute X⁺ can be very numerically unstable. This
implementation sidesteps this need to invert XᵀX by computing X⁺ using singular value
decomposition (SVD):
β = VΣ⁺Uᵀy
where UΣVᵀ is an SVD of X.
References:
- https://en.wikipedia.org/wiki/Polynomial_regression
- https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
- https://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
- https://en.wikipedia.org/wiki/Singular_value_decomposition
"""
import matplotlib.pyplot as plt
import numpy as np
class PolynomialRegression:
__slots__ = "degree", "params"
def __init__(self, degree: int) -> None:
"""
@raises ValueError: if the polynomial degree is negative
"""
if degree < 0:
raise ValueError("Polynomial degree must be non-negative")
self.degree = degree
self.params = None
@staticmethod
def _design_matrix(data: np.ndarray, degree: int) -> np.ndarray:
"""
Constructs a polynomial regression design matrix for the given input data. For
input data x = (x₁, x₂, ..., xₙ) and polynomial degree m, the design matrix is
the Vandermonde matrix
|1 x₁ x₁² ⋯ x₁ᵐ|
X = |1 x₂ x₂² ⋯ x₂ᵐ|
|⋮ ⋮ ⋮ ⋱ ⋮ |
|1 xₙ xₙ² ⋯ xₙᵐ|
Reference: https://en.wikipedia.org/wiki/Vandermonde_matrix
@param data: the input predictor values x, either for model fitting or for
prediction
@param degree: the polynomial degree m
@returns: the Vandermonde matrix X (see above)
@raises ValueError: if input data is not N x 1
>>> x = np.array([0, 1, 2])
>>> PolynomialRegression._design_matrix(x, degree=0)
array([[1],
[1],
[1]])
>>> PolynomialRegression._design_matrix(x, degree=1)
array([[1, 0],
[1, 1],
[1, 2]])
>>> PolynomialRegression._design_matrix(x, degree=2)
array([[1, 0, 0],
[1, 1, 1],
[1, 2, 4]])
>>> PolynomialRegression._design_matrix(x, degree=3)
array([[1, 0, 0, 0],
[1, 1, 1, 1],
[1, 2, 4, 8]])
>>> PolynomialRegression._design_matrix(np.array([[0, 0], [0 , 0]]), degree=3)
Traceback (most recent call last):
...
ValueError: Data must have dimensions N x 1
"""
rows, *remaining = data.shape
if remaining:
raise ValueError("Data must have dimensions N x 1")
return np.vander(data, N=degree + 1, increasing=True)
def fit(self, x_train: np.ndarray, y_train: np.ndarray) -> None:
"""
Computes the polynomial regression model parameters using ordinary least squares
(OLS) estimation:
β = (XᵀX)⁻¹Xᵀy = X⁺y
where X⁺ denotes the Moore–Penrose pseudoinverse of the design matrix X. This
function computes X⁺ using singular value decomposition (SVD).
References:
- https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
- https://en.wikipedia.org/wiki/Singular_value_decomposition
- https://en.wikipedia.org/wiki/Multicollinearity
@param x_train: the predictor values x for model fitting
@param y_train: the response values y for model fitting
@raises ArithmeticError: if X isn't full rank, then XᵀX is singular and β
doesn't exist
>>> x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
>>> y = x**3 - 2 * x**2 + 3 * x - 5
>>> poly_reg = PolynomialRegression(degree=3)
>>> poly_reg.fit(x, y)
>>> poly_reg.params
array([-5., 3., -2., 1.])
>>> poly_reg = PolynomialRegression(degree=20)
>>> poly_reg.fit(x, y)
Traceback (most recent call last):
...
ArithmeticError: Design matrix is not full rank, can't compute coefficients
Make sure errors don't grow too large:
>>> coefs = np.array([-250, 50, -2, 36, 20, -12, 10, 2, -1, -15, 1])
>>> y = PolynomialRegression._design_matrix(x, len(coefs) - 1) @ coefs
>>> poly_reg = PolynomialRegression(degree=len(coefs) - 1)
>>> poly_reg.fit(x, y)
>>> np.allclose(poly_reg.params, coefs, atol=10e-3)
True
"""
X = PolynomialRegression._design_matrix(x_train, self.degree) # noqa: N806
_, cols = X.shape
if np.linalg.matrix_rank(X) < cols:
raise ArithmeticError(
"Design matrix is not full rank, can't compute coefficients"
)
# np.linalg.pinv() computes the Moore–Penrose pseudoinverse using SVD
self.params = np.linalg.pinv(X) @ y_train
def predict(self, data: np.ndarray) -> np.ndarray:
"""
Computes the predicted response values y for the given input data by
constructing the design matrix X and evaluating y = Xβ.
@param data: the predictor values x for prediction
@returns: the predicted response values y = Xβ
@raises ArithmeticError: if this function is called before the model
parameters are fit
>>> x = np.array([0, 1, 2, 3, 4])
>>> y = x**3 - 2 * x**2 + 3 * x - 5
>>> poly_reg = PolynomialRegression(degree=3)
>>> poly_reg.fit(x, y)
>>> poly_reg.predict(np.array([-1]))
array([-11.])
>>> poly_reg.predict(np.array([-2]))
array([-27.])
>>> poly_reg.predict(np.array([6]))
array([157.])
>>> PolynomialRegression(degree=3).predict(x)
Traceback (most recent call last):
...
ArithmeticError: Predictor hasn't been fit yet
"""
if self.params is None:
raise ArithmeticError("Predictor hasn't been fit yet")
return PolynomialRegression._design_matrix(data, self.degree) @ self.params
def main() -> None:
"""
Fit a polynomial regression model to predict fuel efficiency using seaborn's mpg
dataset
>>> pass # Placeholder, function is only for demo purposes
"""
import seaborn as sns
mpg_data = sns.load_dataset("mpg")
poly_reg = PolynomialRegression(degree=2)
poly_reg.fit(mpg_data.weight, mpg_data.mpg)
weight_sorted = np.sort(mpg_data.weight)
predictions = poly_reg.predict(weight_sorted)
plt.scatter(mpg_data.weight, mpg_data.mpg, color="gray", alpha=0.5)
plt.plot(weight_sorted, predictions, color="red", linewidth=3)
plt.title("Predicting Fuel Efficiency Using Polynomial Regression")
plt.xlabel("Weight (lbs)")
plt.ylabel("Fuel Efficiency (mpg)")
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| """
Polynomial regression is a type of regression analysis that models the relationship
between a predictor x and the response y as an mth-degree polynomial:
y = β₀ + β₁x + β₂x² + ... + βₘxᵐ + ε
By treating x, x², ..., xᵐ as distinct variables, we see that polynomial regression is a
special case of multiple linear regression. Therefore, we can use ordinary least squares
(OLS) estimation to estimate the vector of model parameters β = (β₀, β₁, β₂, ..., βₘ)
for polynomial regression:
β = (XᵀX)⁻¹Xᵀy = X⁺y
where X is the design matrix, y is the response vector, and X⁺ denotes the Moore–Penrose
pseudoinverse of X. In the case of polynomial regression, the design matrix is
|1 x₁ x₁² ⋯ x₁ᵐ|
X = |1 x₂ x₂² ⋯ x₂ᵐ|
|⋮ ⋮ ⋮ ⋱ ⋮ |
|1 xₙ xₙ² ⋯ xₙᵐ|
In OLS estimation, inverting XᵀX to compute X⁺ can be very numerically unstable. This
implementation sidesteps this need to invert XᵀX by computing X⁺ using singular value
decomposition (SVD):
β = VΣ⁺Uᵀy
where UΣVᵀ is an SVD of X.
References:
- https://en.wikipedia.org/wiki/Polynomial_regression
- https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
- https://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
- https://en.wikipedia.org/wiki/Singular_value_decomposition
"""
import matplotlib.pyplot as plt
import numpy as np
class PolynomialRegression:
__slots__ = "degree", "params"
def __init__(self, degree: int) -> None:
"""
@raises ValueError: if the polynomial degree is negative
"""
if degree < 0:
raise ValueError("Polynomial degree must be non-negative")
self.degree = degree
self.params = None
@staticmethod
def _design_matrix(data: np.ndarray, degree: int) -> np.ndarray:
"""
Constructs a polynomial regression design matrix for the given input data. For
input data x = (x₁, x₂, ..., xₙ) and polynomial degree m, the design matrix is
the Vandermonde matrix
|1 x₁ x₁² ⋯ x₁ᵐ|
X = |1 x₂ x₂² ⋯ x₂ᵐ|
|⋮ ⋮ ⋮ ⋱ ⋮ |
|1 xₙ xₙ² ⋯ xₙᵐ|
Reference: https://en.wikipedia.org/wiki/Vandermonde_matrix
@param data: the input predictor values x, either for model fitting or for
prediction
@param degree: the polynomial degree m
@returns: the Vandermonde matrix X (see above)
@raises ValueError: if input data is not N x 1
>>> x = np.array([0, 1, 2])
>>> PolynomialRegression._design_matrix(x, degree=0)
array([[1],
[1],
[1]])
>>> PolynomialRegression._design_matrix(x, degree=1)
array([[1, 0],
[1, 1],
[1, 2]])
>>> PolynomialRegression._design_matrix(x, degree=2)
array([[1, 0, 0],
[1, 1, 1],
[1, 2, 4]])
>>> PolynomialRegression._design_matrix(x, degree=3)
array([[1, 0, 0, 0],
[1, 1, 1, 1],
[1, 2, 4, 8]])
>>> PolynomialRegression._design_matrix(np.array([[0, 0], [0 , 0]]), degree=3)
Traceback (most recent call last):
...
ValueError: Data must have dimensions N x 1
"""
rows, *remaining = data.shape
if remaining:
raise ValueError("Data must have dimensions N x 1")
return np.vander(data, N=degree + 1, increasing=True)
def fit(self, x_train: np.ndarray, y_train: np.ndarray) -> None:
"""
Computes the polynomial regression model parameters using ordinary least squares
(OLS) estimation:
β = (XᵀX)⁻¹Xᵀy = X⁺y
where X⁺ denotes the Moore–Penrose pseudoinverse of the design matrix X. This
function computes X⁺ using singular value decomposition (SVD).
References:
- https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
- https://en.wikipedia.org/wiki/Singular_value_decomposition
- https://en.wikipedia.org/wiki/Multicollinearity
@param x_train: the predictor values x for model fitting
@param y_train: the response values y for model fitting
@raises ArithmeticError: if X isn't full rank, then XᵀX is singular and β
doesn't exist
>>> x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
>>> y = x**3 - 2 * x**2 + 3 * x - 5
>>> poly_reg = PolynomialRegression(degree=3)
>>> poly_reg.fit(x, y)
>>> poly_reg.params
array([-5., 3., -2., 1.])
>>> poly_reg = PolynomialRegression(degree=20)
>>> poly_reg.fit(x, y)
Traceback (most recent call last):
...
ArithmeticError: Design matrix is not full rank, can't compute coefficients
Make sure errors don't grow too large:
>>> coefs = np.array([-250, 50, -2, 36, 20, -12, 10, 2, -1, -15, 1])
>>> y = PolynomialRegression._design_matrix(x, len(coefs) - 1) @ coefs
>>> poly_reg = PolynomialRegression(degree=len(coefs) - 1)
>>> poly_reg.fit(x, y)
>>> np.allclose(poly_reg.params, coefs, atol=10e-3)
True
"""
X = PolynomialRegression._design_matrix(x_train, self.degree) # noqa: N806
_, cols = X.shape
if np.linalg.matrix_rank(X) < cols:
raise ArithmeticError(
"Design matrix is not full rank, can't compute coefficients"
)
# np.linalg.pinv() computes the Moore–Penrose pseudoinverse using SVD
self.params = np.linalg.pinv(X) @ y_train
def predict(self, data: np.ndarray) -> np.ndarray:
"""
Computes the predicted response values y for the given input data by
constructing the design matrix X and evaluating y = Xβ.
@param data: the predictor values x for prediction
@returns: the predicted response values y = Xβ
@raises ArithmeticError: if this function is called before the model
parameters are fit
>>> x = np.array([0, 1, 2, 3, 4])
>>> y = x**3 - 2 * x**2 + 3 * x - 5
>>> poly_reg = PolynomialRegression(degree=3)
>>> poly_reg.fit(x, y)
>>> poly_reg.predict(np.array([-1]))
array([-11.])
>>> poly_reg.predict(np.array([-2]))
array([-27.])
>>> poly_reg.predict(np.array([6]))
array([157.])
>>> PolynomialRegression(degree=3).predict(x)
Traceback (most recent call last):
...
ArithmeticError: Predictor hasn't been fit yet
"""
if self.params is None:
raise ArithmeticError("Predictor hasn't been fit yet")
return PolynomialRegression._design_matrix(data, self.degree) @ self.params
def main() -> None:
"""
Fit a polynomial regression model to predict fuel efficiency using seaborn's mpg
dataset
>>> pass # Placeholder, function is only for demo purposes
"""
import seaborn as sns
mpg_data = sns.load_dataset("mpg")
poly_reg = PolynomialRegression(degree=2)
poly_reg.fit(mpg_data.weight, mpg_data.mpg)
weight_sorted = np.sort(mpg_data.weight)
predictions = poly_reg.predict(weight_sorted)
plt.scatter(mpg_data.weight, mpg_data.mpg, color="gray", alpha=0.5)
plt.plot(weight_sorted, predictions, color="red", linewidth=3)
plt.title("Predicting Fuel Efficiency Using Polynomial Regression")
plt.xlabel("Weight (lbs)")
plt.ylabel("Fuel Efficiency (mpg)")
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| -1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| from collections.abc import Callable
import numpy as np
def euler_modified(
ode_func: Callable, y0: float, x0: float, step_size: float, x_end: float
) -> np.ndarray:
"""
Calculate solution at each step to an ODE using Euler's Modified Method
The Euler Method is straightforward to implement, but can't give accurate solutions.
So, some changes were proposed to improve accuracy.
https://en.wikipedia.org/wiki/Euler_method
Arguments:
ode_func -- The ode as a function of x and y
y0 -- the initial value for y
x0 -- the initial value for x
stepsize -- the increment value for x
x_end -- the end value for x
>>> # the exact solution is math.exp(x)
>>> def f1(x, y):
... return -2*x*(y**2)
>>> y = euler_modified(f1, 1.0, 0.0, 0.2, 1.0)
>>> y[-1]
0.503338255442106
>>> import math
>>> def f2(x, y):
... return -2*y + (x**3)*math.exp(-2*x)
>>> y = euler_modified(f2, 1.0, 0.0, 0.1, 0.3)
>>> y[-1]
0.5525976431951775
"""
n = int(np.ceil((x_end - x0) / step_size))
y = np.zeros((n + 1,))
y[0] = y0
x = x0
for k in range(n):
y_get = y[k] + step_size * ode_func(x, y[k])
y[k + 1] = y[k] + (
(step_size / 2) * (ode_func(x, y[k]) + ode_func(x + step_size, y_get))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| from collections.abc import Callable
import numpy as np
def euler_modified(
ode_func: Callable, y0: float, x0: float, step_size: float, x_end: float
) -> np.ndarray:
"""
Calculate solution at each step to an ODE using Euler's Modified Method
The Euler Method is straightforward to implement, but can't give accurate solutions.
So, some changes were proposed to improve accuracy.
https://en.wikipedia.org/wiki/Euler_method
Arguments:
ode_func -- The ode as a function of x and y
y0 -- the initial value for y
x0 -- the initial value for x
stepsize -- the increment value for x
x_end -- the end value for x
>>> # the exact solution is math.exp(x)
>>> def f1(x, y):
... return -2*x*(y**2)
>>> y = euler_modified(f1, 1.0, 0.0, 0.2, 1.0)
>>> y[-1]
0.503338255442106
>>> import math
>>> def f2(x, y):
... return -2*y + (x**3)*math.exp(-2*x)
>>> y = euler_modified(f2, 1.0, 0.0, 0.1, 0.3)
>>> y[-1]
0.5525976431951775
"""
n = int(np.ceil((x_end - x0) / step_size))
y = np.zeros((n + 1,))
y[0] = y0
x = x0
for k in range(n):
y_get = y[k] + step_size * ode_func(x, y[k])
y[k + 1] = y[k] + (
(step_size / 2) * (ode_func(x, y[k]) + ode_func(x + step_size, y_get))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| """
Implementation of gradient descent algorithm for minimizing cost of a linear hypothesis
function.
"""
import numpy
# List of input, output pairs
train_data = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
test_data = (((515, 22, 13), 555), ((61, 35, 49), 150))
parameter_vector = [2, 4, 1, 5]
m = len(train_data)
LEARNING_RATE = 0.009
def _error(example_no, data_set="train"):
"""
:param data_set: train data or test data
:param example_no: example number whose error has to be checked
:return: error in example pointed by example number.
"""
return calculate_hypothesis_value(example_no, data_set) - output(
example_no, data_set
)
def _hypothesis_value(data_input_tuple):
"""
Calculates hypothesis function value for a given input
:param data_input_tuple: Input tuple of a particular example
:return: Value of hypothesis function at that point.
Note that there is an 'biased input' whose value is fixed as 1.
It is not explicitly mentioned in input data.. But, ML hypothesis functions use it.
So, we have to take care of it separately. Line 36 takes care of it.
"""
hyp_val = 0
for i in range(len(parameter_vector) - 1):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def output(example_no, data_set):
"""
:param data_set: test data or train data
:param example_no: example whose output is to be fetched
:return: output for that example
"""
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def calculate_hypothesis_value(example_no, data_set):
"""
Calculates hypothesis value for a given example
:param data_set: test data or train_data
:param example_no: example whose hypothesis value is to be calculated
:return: hypothesis value for that example
"""
if data_set == "train":
return _hypothesis_value(train_data[example_no][0])
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0])
return None
def summation_of_cost_derivative(index, end=m):
"""
Calculates the sum of cost function derivative
:param index: index wrt derivative is being calculated
:param end: value where summation ends, default is m, number of examples
:return: Returns the summation of cost derivative
Note: If index is -1, this means we are calculating summation wrt to biased
parameter.
"""
summation_value = 0
for i in range(end):
if index == -1:
summation_value += _error(i)
else:
summation_value += _error(i) * train_data[i][0][index]
return summation_value
def get_cost_derivative(index):
"""
:param index: index of the parameter vector wrt to derivative is to be calculated
:return: derivative wrt to that index
Note: If index is -1, this means we are calculating summation wrt to biased
parameter.
"""
cost_derivative_value = summation_of_cost_derivative(index, m) / m
return cost_derivative_value
def run_gradient_descent():
global parameter_vector
# Tune these values to set a tolerance value for predicted output
absolute_error_limit = 0.000002
relative_error_limit = 0
j = 0
while True:
j += 1
temp_parameter_vector = [0, 0, 0, 0]
for i in range(len(parameter_vector)):
cost_derivative = get_cost_derivative(i - 1)
temp_parameter_vector[i] = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
parameter_vector,
temp_parameter_vector,
atol=absolute_error_limit,
rtol=relative_error_limit,
):
break
parameter_vector = temp_parameter_vector
print(("Number of iterations:", j))
def test_gradient_descent():
for i in range(len(test_data)):
print(("Actual output value:", output(i, "test")))
print(("Hypothesis output:", calculate_hypothesis_value(i, "test")))
if __name__ == "__main__":
run_gradient_descent()
print("\nTesting gradient descent for a linear hypothesis function.\n")
test_gradient_descent()
| """
Implementation of gradient descent algorithm for minimizing cost of a linear hypothesis
function.
"""
import numpy
# List of input, output pairs
train_data = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
test_data = (((515, 22, 13), 555), ((61, 35, 49), 150))
parameter_vector = [2, 4, 1, 5]
m = len(train_data)
LEARNING_RATE = 0.009
def _error(example_no, data_set="train"):
"""
:param data_set: train data or test data
:param example_no: example number whose error has to be checked
:return: error in example pointed by example number.
"""
return calculate_hypothesis_value(example_no, data_set) - output(
example_no, data_set
)
def _hypothesis_value(data_input_tuple):
"""
Calculates hypothesis function value for a given input
:param data_input_tuple: Input tuple of a particular example
:return: Value of hypothesis function at that point.
Note that there is an 'biased input' whose value is fixed as 1.
It is not explicitly mentioned in input data.. But, ML hypothesis functions use it.
So, we have to take care of it separately. Line 36 takes care of it.
"""
hyp_val = 0
for i in range(len(parameter_vector) - 1):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def output(example_no, data_set):
"""
:param data_set: test data or train data
:param example_no: example whose output is to be fetched
:return: output for that example
"""
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def calculate_hypothesis_value(example_no, data_set):
"""
Calculates hypothesis value for a given example
:param data_set: test data or train_data
:param example_no: example whose hypothesis value is to be calculated
:return: hypothesis value for that example
"""
if data_set == "train":
return _hypothesis_value(train_data[example_no][0])
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0])
return None
def summation_of_cost_derivative(index, end=m):
"""
Calculates the sum of cost function derivative
:param index: index wrt derivative is being calculated
:param end: value where summation ends, default is m, number of examples
:return: Returns the summation of cost derivative
Note: If index is -1, this means we are calculating summation wrt to biased
parameter.
"""
summation_value = 0
for i in range(end):
if index == -1:
summation_value += _error(i)
else:
summation_value += _error(i) * train_data[i][0][index]
return summation_value
def get_cost_derivative(index):
"""
:param index: index of the parameter vector wrt to derivative is to be calculated
:return: derivative wrt to that index
Note: If index is -1, this means we are calculating summation wrt to biased
parameter.
"""
cost_derivative_value = summation_of_cost_derivative(index, m) / m
return cost_derivative_value
def run_gradient_descent():
global parameter_vector
# Tune these values to set a tolerance value for predicted output
absolute_error_limit = 0.000002
relative_error_limit = 0
j = 0
while True:
j += 1
temp_parameter_vector = [0, 0, 0, 0]
for i in range(len(parameter_vector)):
cost_derivative = get_cost_derivative(i - 1)
temp_parameter_vector[i] = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
parameter_vector,
temp_parameter_vector,
atol=absolute_error_limit,
rtol=relative_error_limit,
):
break
parameter_vector = temp_parameter_vector
print(("Number of iterations:", j))
def test_gradient_descent():
for i in range(len(test_data)):
print(("Actual output value:", output(i, "test")))
print(("Hypothesis output:", calculate_hypothesis_value(i, "test")))
if __name__ == "__main__":
run_gradient_descent()
print("\nTesting gradient descent for a linear hypothesis function.\n")
test_gradient_descent()
| -1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| -1 |
||
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| """
LeetCode 36. Valid Sudoku
https://leetcode.com/problems/valid-sudoku/
https://en.wikipedia.org/wiki/Sudoku
Determine if a 9 x 9 Sudoku board is valid. Only the filled cells need to be
validated according to the following rules:
- Each row must contain the digits 1-9 without repetition.
- Each column must contain the digits 1-9 without repetition.
- Each of the nine 3 x 3 sub-boxes of the grid must contain the digits 1-9
without repetition.
Note:
A Sudoku board (partially filled) could be valid but is not necessarily
solvable.
Only the filled cells need to be validated according to the mentioned rules.
"""
from collections import defaultdict
NUM_SQUARES = 9
EMPTY_CELL = "."
def is_valid_sudoku_board(sudoku_board: list[list[str]]) -> bool:
"""
This function validates (but does not solve) a sudoku board.
The board may be valid but unsolvable.
>>> is_valid_sudoku_board([
... ["5","3",".",".","7",".",".",".","."]
... ,["6",".",".","1","9","5",".",".","."]
... ,[".","9","8",".",".",".",".","6","."]
... ,["8",".",".",".","6",".",".",".","3"]
... ,["4",".",".","8",".","3",".",".","1"]
... ,["7",".",".",".","2",".",".",".","6"]
... ,[".","6",".",".",".",".","2","8","."]
... ,[".",".",".","4","1","9",".",".","5"]
... ,[".",".",".",".","8",".",".","7","9"]
... ])
True
>>> is_valid_sudoku_board([
... ["8","3",".",".","7",".",".",".","."]
... ,["6",".",".","1","9","5",".",".","."]
... ,[".","9","8",".",".",".",".","6","."]
... ,["8",".",".",".","6",".",".",".","3"]
... ,["4",".",".","8",".","3",".",".","1"]
... ,["7",".",".",".","2",".",".",".","6"]
... ,[".","6",".",".",".",".","2","8","."]
... ,[".",".",".","4","1","9",".",".","5"]
... ,[".",".",".",".","8",".",".","7","9"]
... ])
False
>>> is_valid_sudoku_board([["1", "2", "3", "4", "5", "6", "7", "8", "9"]])
Traceback (most recent call last):
...
ValueError: Sudoku boards must be 9x9 squares.
>>> is_valid_sudoku_board(
... [["1"], ["2"], ["3"], ["4"], ["5"], ["6"], ["7"], ["8"], ["9"]]
... )
Traceback (most recent call last):
...
ValueError: Sudoku boards must be 9x9 squares.
"""
if len(sudoku_board) != NUM_SQUARES or (
any(len(row) != NUM_SQUARES for row in sudoku_board)
):
error_message = f"Sudoku boards must be {NUM_SQUARES}x{NUM_SQUARES} squares."
raise ValueError(error_message)
row_values: defaultdict[int, set[str]] = defaultdict(set)
col_values: defaultdict[int, set[str]] = defaultdict(set)
box_values: defaultdict[tuple[int, int], set[str]] = defaultdict(set)
for row in range(NUM_SQUARES):
for col in range(NUM_SQUARES):
value = sudoku_board[row][col]
if value == EMPTY_CELL:
continue
box = (row // 3, col // 3)
if (
value in row_values[row]
or value in col_values[col]
or value in box_values[box]
):
return False
row_values[row].add(value)
col_values[col].add(value)
box_values[box].add(value)
return True
if __name__ == "__main__":
from doctest import testmod
from timeit import timeit
testmod()
print(timeit("is_valid_sudoku_board(valid_board)", globals=globals()))
print(timeit("is_valid_sudoku_board(invalid_board)", globals=globals()))
| """
LeetCode 36. Valid Sudoku
https://leetcode.com/problems/valid-sudoku/
https://en.wikipedia.org/wiki/Sudoku
Determine if a 9 x 9 Sudoku board is valid. Only the filled cells need to be
validated according to the following rules:
- Each row must contain the digits 1-9 without repetition.
- Each column must contain the digits 1-9 without repetition.
- Each of the nine 3 x 3 sub-boxes of the grid must contain the digits 1-9
without repetition.
Note:
A Sudoku board (partially filled) could be valid but is not necessarily
solvable.
Only the filled cells need to be validated according to the mentioned rules.
"""
from collections import defaultdict
NUM_SQUARES = 9
EMPTY_CELL = "."
def is_valid_sudoku_board(sudoku_board: list[list[str]]) -> bool:
"""
This function validates (but does not solve) a sudoku board.
The board may be valid but unsolvable.
>>> is_valid_sudoku_board([
... ["5","3",".",".","7",".",".",".","."]
... ,["6",".",".","1","9","5",".",".","."]
... ,[".","9","8",".",".",".",".","6","."]
... ,["8",".",".",".","6",".",".",".","3"]
... ,["4",".",".","8",".","3",".",".","1"]
... ,["7",".",".",".","2",".",".",".","6"]
... ,[".","6",".",".",".",".","2","8","."]
... ,[".",".",".","4","1","9",".",".","5"]
... ,[".",".",".",".","8",".",".","7","9"]
... ])
True
>>> is_valid_sudoku_board([
... ["8","3",".",".","7",".",".",".","."]
... ,["6",".",".","1","9","5",".",".","."]
... ,[".","9","8",".",".",".",".","6","."]
... ,["8",".",".",".","6",".",".",".","3"]
... ,["4",".",".","8",".","3",".",".","1"]
... ,["7",".",".",".","2",".",".",".","6"]
... ,[".","6",".",".",".",".","2","8","."]
... ,[".",".",".","4","1","9",".",".","5"]
... ,[".",".",".",".","8",".",".","7","9"]
... ])
False
>>> is_valid_sudoku_board([["1", "2", "3", "4", "5", "6", "7", "8", "9"]])
Traceback (most recent call last):
...
ValueError: Sudoku boards must be 9x9 squares.
>>> is_valid_sudoku_board(
... [["1"], ["2"], ["3"], ["4"], ["5"], ["6"], ["7"], ["8"], ["9"]]
... )
Traceback (most recent call last):
...
ValueError: Sudoku boards must be 9x9 squares.
"""
if len(sudoku_board) != NUM_SQUARES or (
any(len(row) != NUM_SQUARES for row in sudoku_board)
):
error_message = f"Sudoku boards must be {NUM_SQUARES}x{NUM_SQUARES} squares."
raise ValueError(error_message)
row_values: defaultdict[int, set[str]] = defaultdict(set)
col_values: defaultdict[int, set[str]] = defaultdict(set)
box_values: defaultdict[tuple[int, int], set[str]] = defaultdict(set)
for row in range(NUM_SQUARES):
for col in range(NUM_SQUARES):
value = sudoku_board[row][col]
if value == EMPTY_CELL:
continue
box = (row // 3, col // 3)
if (
value in row_values[row]
or value in col_values[col]
or value in box_values[box]
):
return False
row_values[row].add(value)
col_values[col].add(value)
box_values[box].add(value)
return True
if __name__ == "__main__":
from doctest import testmod
from timeit import timeit
testmod()
print(timeit("is_valid_sudoku_board(valid_board)", globals=globals()))
print(timeit("is_valid_sudoku_board(invalid_board)", globals=globals()))
| -1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| -1 |
||
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| -1 |
||
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| """
Scraping jobs given job title and location from indeed website
"""
from __future__ import annotations
from collections.abc import Generator
import requests
from bs4 import BeautifulSoup
url = "https://www.indeed.co.in/jobs?q=mobile+app+development&l="
def fetch_jobs(location: str = "mumbai") -> Generator[tuple[str, str], None, None]:
soup = BeautifulSoup(requests.get(url + location).content, "html.parser")
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("div", attrs={"data-tn-component": "organicJob"}):
job_title = job.find("a", attrs={"data-tn-element": "jobTitle"}).text.strip()
company_name = job.find("span", {"class": "company"}).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("Bangalore"), 1):
print(f"Job {i:>2} is {job[0]} at {job[1]}")
| """
Scraping jobs given job title and location from indeed website
"""
from __future__ import annotations
from collections.abc import Generator
import requests
from bs4 import BeautifulSoup
url = "https://www.indeed.co.in/jobs?q=mobile+app+development&l="
def fetch_jobs(location: str = "mumbai") -> Generator[tuple[str, str], None, None]:
soup = BeautifulSoup(requests.get(url + location).content, "html.parser")
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("div", attrs={"data-tn-component": "organicJob"}):
job_title = job.find("a", attrs={"data-tn-element": "jobTitle"}).text.strip()
company_name = job.find("span", {"class": "company"}).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("Bangalore"), 1):
print(f"Job {i:>2} is {job[0]} at {job[1]}")
| -1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| """
The RGB color model is an additive color model in which red, green, and blue light
are added together in various ways to reproduce a broad array of colors. The name
of the model comes from the initials of the three additive primary colors, red,
green, and blue. Meanwhile, the HSV representation models how colors appear under
light. In it, colors are represented using three components: hue, saturation and
(brightness-)value. This file provides functions for converting colors from one
representation to the other.
(description adapted from https://en.wikipedia.org/wiki/RGB_color_model and
https://en.wikipedia.org/wiki/HSL_and_HSV).
"""
def hsv_to_rgb(hue: float, saturation: float, value: float) -> list[int]:
"""
Conversion from the HSV-representation to the RGB-representation.
Expected RGB-values taken from
https://www.rapidtables.com/convert/color/hsv-to-rgb.html
>>> hsv_to_rgb(0, 0, 0)
[0, 0, 0]
>>> hsv_to_rgb(0, 0, 1)
[255, 255, 255]
>>> hsv_to_rgb(0, 1, 1)
[255, 0, 0]
>>> hsv_to_rgb(60, 1, 1)
[255, 255, 0]
>>> hsv_to_rgb(120, 1, 1)
[0, 255, 0]
>>> hsv_to_rgb(240, 1, 1)
[0, 0, 255]
>>> hsv_to_rgb(300, 1, 1)
[255, 0, 255]
>>> hsv_to_rgb(180, 0.5, 0.5)
[64, 128, 128]
>>> hsv_to_rgb(234, 0.14, 0.88)
[193, 196, 224]
>>> hsv_to_rgb(330, 0.75, 0.5)
[128, 32, 80]
"""
if hue < 0 or hue > 360:
raise Exception("hue should be between 0 and 360")
if saturation < 0 or saturation > 1:
raise Exception("saturation should be between 0 and 1")
if value < 0 or value > 1:
raise Exception("value should be between 0 and 1")
chroma = value * saturation
hue_section = hue / 60
second_largest_component = chroma * (1 - abs(hue_section % 2 - 1))
match_value = value - chroma
if hue_section >= 0 and hue_section <= 1:
red = round(255 * (chroma + match_value))
green = round(255 * (second_largest_component + match_value))
blue = round(255 * (match_value))
elif hue_section > 1 and hue_section <= 2:
red = round(255 * (second_largest_component + match_value))
green = round(255 * (chroma + match_value))
blue = round(255 * (match_value))
elif hue_section > 2 and hue_section <= 3:
red = round(255 * (match_value))
green = round(255 * (chroma + match_value))
blue = round(255 * (second_largest_component + match_value))
elif hue_section > 3 and hue_section <= 4:
red = round(255 * (match_value))
green = round(255 * (second_largest_component + match_value))
blue = round(255 * (chroma + match_value))
elif hue_section > 4 and hue_section <= 5:
red = round(255 * (second_largest_component + match_value))
green = round(255 * (match_value))
blue = round(255 * (chroma + match_value))
else:
red = round(255 * (chroma + match_value))
green = round(255 * (match_value))
blue = round(255 * (second_largest_component + match_value))
return [red, green, blue]
def rgb_to_hsv(red: int, green: int, blue: int) -> list[float]:
"""
Conversion from the RGB-representation to the HSV-representation.
The tested values are the reverse values from the hsv_to_rgb-doctests.
Function "approximately_equal_hsv" is needed because of small deviations due to
rounding for the RGB-values.
>>> approximately_equal_hsv(rgb_to_hsv(0, 0, 0), [0, 0, 0])
True
>>> approximately_equal_hsv(rgb_to_hsv(255, 255, 255), [0, 0, 1])
True
>>> approximately_equal_hsv(rgb_to_hsv(255, 0, 0), [0, 1, 1])
True
>>> approximately_equal_hsv(rgb_to_hsv(255, 255, 0), [60, 1, 1])
True
>>> approximately_equal_hsv(rgb_to_hsv(0, 255, 0), [120, 1, 1])
True
>>> approximately_equal_hsv(rgb_to_hsv(0, 0, 255), [240, 1, 1])
True
>>> approximately_equal_hsv(rgb_to_hsv(255, 0, 255), [300, 1, 1])
True
>>> approximately_equal_hsv(rgb_to_hsv(64, 128, 128), [180, 0.5, 0.5])
True
>>> approximately_equal_hsv(rgb_to_hsv(193, 196, 224), [234, 0.14, 0.88])
True
>>> approximately_equal_hsv(rgb_to_hsv(128, 32, 80), [330, 0.75, 0.5])
True
"""
if red < 0 or red > 255:
raise Exception("red should be between 0 and 255")
if green < 0 or green > 255:
raise Exception("green should be between 0 and 255")
if blue < 0 or blue > 255:
raise Exception("blue should be between 0 and 255")
float_red = red / 255
float_green = green / 255
float_blue = blue / 255
value = max(float_red, float_green, float_blue)
chroma = value - min(float_red, float_green, float_blue)
saturation = 0 if value == 0 else chroma / value
if chroma == 0:
hue = 0.0
elif value == float_red:
hue = 60 * (0 + (float_green - float_blue) / chroma)
elif value == float_green:
hue = 60 * (2 + (float_blue - float_red) / chroma)
else:
hue = 60 * (4 + (float_red - float_green) / chroma)
hue = (hue + 360) % 360
return [hue, saturation, value]
def approximately_equal_hsv(hsv_1: list[float], hsv_2: list[float]) -> bool:
"""
Utility-function to check that two hsv-colors are approximately equal
>>> approximately_equal_hsv([0, 0, 0], [0, 0, 0])
True
>>> approximately_equal_hsv([180, 0.5, 0.3], [179.9999, 0.500001, 0.30001])
True
>>> approximately_equal_hsv([0, 0, 0], [1, 0, 0])
False
>>> approximately_equal_hsv([180, 0.5, 0.3], [179.9999, 0.6, 0.30001])
False
"""
check_hue = abs(hsv_1[0] - hsv_2[0]) < 0.2
check_saturation = abs(hsv_1[1] - hsv_2[1]) < 0.002
check_value = abs(hsv_1[2] - hsv_2[2]) < 0.002
return check_hue and check_saturation and check_value
| """
The RGB color model is an additive color model in which red, green, and blue light
are added together in various ways to reproduce a broad array of colors. The name
of the model comes from the initials of the three additive primary colors, red,
green, and blue. Meanwhile, the HSV representation models how colors appear under
light. In it, colors are represented using three components: hue, saturation and
(brightness-)value. This file provides functions for converting colors from one
representation to the other.
(description adapted from https://en.wikipedia.org/wiki/RGB_color_model and
https://en.wikipedia.org/wiki/HSL_and_HSV).
"""
def hsv_to_rgb(hue: float, saturation: float, value: float) -> list[int]:
"""
Conversion from the HSV-representation to the RGB-representation.
Expected RGB-values taken from
https://www.rapidtables.com/convert/color/hsv-to-rgb.html
>>> hsv_to_rgb(0, 0, 0)
[0, 0, 0]
>>> hsv_to_rgb(0, 0, 1)
[255, 255, 255]
>>> hsv_to_rgb(0, 1, 1)
[255, 0, 0]
>>> hsv_to_rgb(60, 1, 1)
[255, 255, 0]
>>> hsv_to_rgb(120, 1, 1)
[0, 255, 0]
>>> hsv_to_rgb(240, 1, 1)
[0, 0, 255]
>>> hsv_to_rgb(300, 1, 1)
[255, 0, 255]
>>> hsv_to_rgb(180, 0.5, 0.5)
[64, 128, 128]
>>> hsv_to_rgb(234, 0.14, 0.88)
[193, 196, 224]
>>> hsv_to_rgb(330, 0.75, 0.5)
[128, 32, 80]
"""
if hue < 0 or hue > 360:
raise Exception("hue should be between 0 and 360")
if saturation < 0 or saturation > 1:
raise Exception("saturation should be between 0 and 1")
if value < 0 or value > 1:
raise Exception("value should be between 0 and 1")
chroma = value * saturation
hue_section = hue / 60
second_largest_component = chroma * (1 - abs(hue_section % 2 - 1))
match_value = value - chroma
if hue_section >= 0 and hue_section <= 1:
red = round(255 * (chroma + match_value))
green = round(255 * (second_largest_component + match_value))
blue = round(255 * (match_value))
elif hue_section > 1 and hue_section <= 2:
red = round(255 * (second_largest_component + match_value))
green = round(255 * (chroma + match_value))
blue = round(255 * (match_value))
elif hue_section > 2 and hue_section <= 3:
red = round(255 * (match_value))
green = round(255 * (chroma + match_value))
blue = round(255 * (second_largest_component + match_value))
elif hue_section > 3 and hue_section <= 4:
red = round(255 * (match_value))
green = round(255 * (second_largest_component + match_value))
blue = round(255 * (chroma + match_value))
elif hue_section > 4 and hue_section <= 5:
red = round(255 * (second_largest_component + match_value))
green = round(255 * (match_value))
blue = round(255 * (chroma + match_value))
else:
red = round(255 * (chroma + match_value))
green = round(255 * (match_value))
blue = round(255 * (second_largest_component + match_value))
return [red, green, blue]
def rgb_to_hsv(red: int, green: int, blue: int) -> list[float]:
"""
Conversion from the RGB-representation to the HSV-representation.
The tested values are the reverse values from the hsv_to_rgb-doctests.
Function "approximately_equal_hsv" is needed because of small deviations due to
rounding for the RGB-values.
>>> approximately_equal_hsv(rgb_to_hsv(0, 0, 0), [0, 0, 0])
True
>>> approximately_equal_hsv(rgb_to_hsv(255, 255, 255), [0, 0, 1])
True
>>> approximately_equal_hsv(rgb_to_hsv(255, 0, 0), [0, 1, 1])
True
>>> approximately_equal_hsv(rgb_to_hsv(255, 255, 0), [60, 1, 1])
True
>>> approximately_equal_hsv(rgb_to_hsv(0, 255, 0), [120, 1, 1])
True
>>> approximately_equal_hsv(rgb_to_hsv(0, 0, 255), [240, 1, 1])
True
>>> approximately_equal_hsv(rgb_to_hsv(255, 0, 255), [300, 1, 1])
True
>>> approximately_equal_hsv(rgb_to_hsv(64, 128, 128), [180, 0.5, 0.5])
True
>>> approximately_equal_hsv(rgb_to_hsv(193, 196, 224), [234, 0.14, 0.88])
True
>>> approximately_equal_hsv(rgb_to_hsv(128, 32, 80), [330, 0.75, 0.5])
True
"""
if red < 0 or red > 255:
raise Exception("red should be between 0 and 255")
if green < 0 or green > 255:
raise Exception("green should be between 0 and 255")
if blue < 0 or blue > 255:
raise Exception("blue should be between 0 and 255")
float_red = red / 255
float_green = green / 255
float_blue = blue / 255
value = max(float_red, float_green, float_blue)
chroma = value - min(float_red, float_green, float_blue)
saturation = 0 if value == 0 else chroma / value
if chroma == 0:
hue = 0.0
elif value == float_red:
hue = 60 * (0 + (float_green - float_blue) / chroma)
elif value == float_green:
hue = 60 * (2 + (float_blue - float_red) / chroma)
else:
hue = 60 * (4 + (float_red - float_green) / chroma)
hue = (hue + 360) % 360
return [hue, saturation, value]
def approximately_equal_hsv(hsv_1: list[float], hsv_2: list[float]) -> bool:
"""
Utility-function to check that two hsv-colors are approximately equal
>>> approximately_equal_hsv([0, 0, 0], [0, 0, 0])
True
>>> approximately_equal_hsv([180, 0.5, 0.3], [179.9999, 0.500001, 0.30001])
True
>>> approximately_equal_hsv([0, 0, 0], [1, 0, 0])
False
>>> approximately_equal_hsv([180, 0.5, 0.3], [179.9999, 0.6, 0.30001])
False
"""
check_hue = abs(hsv_1[0] - hsv_2[0]) < 0.2
check_saturation = abs(hsv_1[1] - hsv_2[1]) < 0.002
check_value = abs(hsv_1[2] - hsv_2[2]) < 0.002
return check_hue and check_saturation and check_value
| -1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| """
Python program for the Fractionated Morse Cipher.
The Fractionated Morse cipher first converts the plaintext to Morse code,
then enciphers fixed-size blocks of Morse code back to letters.
This procedure means plaintext letters are mixed into the ciphertext letters,
making it more secure than substitution ciphers.
http://practicalcryptography.com/ciphers/fractionated-morse-cipher/
"""
import string
MORSE_CODE_DICT = {
"A": ".-",
"B": "-...",
"C": "-.-.",
"D": "-..",
"E": ".",
"F": "..-.",
"G": "--.",
"H": "....",
"I": "..",
"J": ".---",
"K": "-.-",
"L": ".-..",
"M": "--",
"N": "-.",
"O": "---",
"P": ".--.",
"Q": "--.-",
"R": ".-.",
"S": "...",
"T": "-",
"U": "..-",
"V": "...-",
"W": ".--",
"X": "-..-",
"Y": "-.--",
"Z": "--..",
" ": "",
}
# Define possible trigrams of Morse code
MORSE_COMBINATIONS = [
"...",
"..-",
"..x",
".-.",
".--",
".-x",
".x.",
".x-",
".xx",
"-..",
"-.-",
"-.x",
"--.",
"---",
"--x",
"-x.",
"-x-",
"-xx",
"x..",
"x.-",
"x.x",
"x-.",
"x--",
"x-x",
"xx.",
"xx-",
"xxx",
]
# Create a reverse dictionary for Morse code
REVERSE_DICT = {value: key for key, value in MORSE_CODE_DICT.items()}
def encode_to_morse(plaintext: str) -> str:
"""Encode a plaintext message into Morse code.
Args:
plaintext: The plaintext message to encode.
Returns:
The Morse code representation of the plaintext message.
Example:
>>> encode_to_morse("defend the east")
'-..x.x..-.x.x-.x-..xx-x....x.xx.x.-x...x-'
"""
return "x".join([MORSE_CODE_DICT.get(letter.upper(), "") for letter in plaintext])
def encrypt_fractionated_morse(plaintext: str, key: str) -> str:
"""Encrypt a plaintext message using Fractionated Morse Cipher.
Args:
plaintext: The plaintext message to encrypt.
key: The encryption key.
Returns:
The encrypted ciphertext.
Example:
>>> encrypt_fractionated_morse("defend the east","Roundtable")
'ESOAVVLJRSSTRX'
"""
morse_code = encode_to_morse(plaintext)
key = key.upper() + string.ascii_uppercase
key = "".join(sorted(set(key), key=key.find))
# Ensure morse_code length is a multiple of 3
padding_length = 3 - (len(morse_code) % 3)
morse_code += "x" * padding_length
fractionated_morse_dict = {v: k for k, v in zip(key, MORSE_COMBINATIONS)}
fractionated_morse_dict["xxx"] = ""
encrypted_text = "".join(
[
fractionated_morse_dict[morse_code[i : i + 3]]
for i in range(0, len(morse_code), 3)
]
)
return encrypted_text
def decrypt_fractionated_morse(ciphertext: str, key: str) -> str:
"""Decrypt a ciphertext message encrypted with Fractionated Morse Cipher.
Args:
ciphertext: The ciphertext message to decrypt.
key: The decryption key.
Returns:
The decrypted plaintext message.
Example:
>>> decrypt_fractionated_morse("ESOAVVLJRSSTRX","Roundtable")
'DEFEND THE EAST'
"""
key = key.upper() + string.ascii_uppercase
key = "".join(sorted(set(key), key=key.find))
inverse_fractionated_morse_dict = dict(zip(key, MORSE_COMBINATIONS))
morse_code = "".join(
[inverse_fractionated_morse_dict.get(letter, "") for letter in ciphertext]
)
decrypted_text = "".join(
[REVERSE_DICT[code] for code in morse_code.split("x")]
).strip()
return decrypted_text
if __name__ == "__main__":
"""
Example usage of Fractionated Morse Cipher.
"""
plaintext = "defend the east"
print("Plain Text:", plaintext)
key = "ROUNDTABLE"
ciphertext = encrypt_fractionated_morse(plaintext, key)
print("Encrypted:", ciphertext)
decrypted_text = decrypt_fractionated_morse(ciphertext, key)
print("Decrypted:", decrypted_text)
| """
Python program for the Fractionated Morse Cipher.
The Fractionated Morse cipher first converts the plaintext to Morse code,
then enciphers fixed-size blocks of Morse code back to letters.
This procedure means plaintext letters are mixed into the ciphertext letters,
making it more secure than substitution ciphers.
http://practicalcryptography.com/ciphers/fractionated-morse-cipher/
"""
import string
MORSE_CODE_DICT = {
"A": ".-",
"B": "-...",
"C": "-.-.",
"D": "-..",
"E": ".",
"F": "..-.",
"G": "--.",
"H": "....",
"I": "..",
"J": ".---",
"K": "-.-",
"L": ".-..",
"M": "--",
"N": "-.",
"O": "---",
"P": ".--.",
"Q": "--.-",
"R": ".-.",
"S": "...",
"T": "-",
"U": "..-",
"V": "...-",
"W": ".--",
"X": "-..-",
"Y": "-.--",
"Z": "--..",
" ": "",
}
# Define possible trigrams of Morse code
MORSE_COMBINATIONS = [
"...",
"..-",
"..x",
".-.",
".--",
".-x",
".x.",
".x-",
".xx",
"-..",
"-.-",
"-.x",
"--.",
"---",
"--x",
"-x.",
"-x-",
"-xx",
"x..",
"x.-",
"x.x",
"x-.",
"x--",
"x-x",
"xx.",
"xx-",
"xxx",
]
# Create a reverse dictionary for Morse code
REVERSE_DICT = {value: key for key, value in MORSE_CODE_DICT.items()}
def encode_to_morse(plaintext: str) -> str:
"""Encode a plaintext message into Morse code.
Args:
plaintext: The plaintext message to encode.
Returns:
The Morse code representation of the plaintext message.
Example:
>>> encode_to_morse("defend the east")
'-..x.x..-.x.x-.x-..xx-x....x.xx.x.-x...x-'
"""
return "x".join([MORSE_CODE_DICT.get(letter.upper(), "") for letter in plaintext])
def encrypt_fractionated_morse(plaintext: str, key: str) -> str:
"""Encrypt a plaintext message using Fractionated Morse Cipher.
Args:
plaintext: The plaintext message to encrypt.
key: The encryption key.
Returns:
The encrypted ciphertext.
Example:
>>> encrypt_fractionated_morse("defend the east","Roundtable")
'ESOAVVLJRSSTRX'
"""
morse_code = encode_to_morse(plaintext)
key = key.upper() + string.ascii_uppercase
key = "".join(sorted(set(key), key=key.find))
# Ensure morse_code length is a multiple of 3
padding_length = 3 - (len(morse_code) % 3)
morse_code += "x" * padding_length
fractionated_morse_dict = {v: k for k, v in zip(key, MORSE_COMBINATIONS)}
fractionated_morse_dict["xxx"] = ""
encrypted_text = "".join(
[
fractionated_morse_dict[morse_code[i : i + 3]]
for i in range(0, len(morse_code), 3)
]
)
return encrypted_text
def decrypt_fractionated_morse(ciphertext: str, key: str) -> str:
"""Decrypt a ciphertext message encrypted with Fractionated Morse Cipher.
Args:
ciphertext: The ciphertext message to decrypt.
key: The decryption key.
Returns:
The decrypted plaintext message.
Example:
>>> decrypt_fractionated_morse("ESOAVVLJRSSTRX","Roundtable")
'DEFEND THE EAST'
"""
key = key.upper() + string.ascii_uppercase
key = "".join(sorted(set(key), key=key.find))
inverse_fractionated_morse_dict = dict(zip(key, MORSE_COMBINATIONS))
morse_code = "".join(
[inverse_fractionated_morse_dict.get(letter, "") for letter in ciphertext]
)
decrypted_text = "".join(
[REVERSE_DICT[code] for code in morse_code.split("x")]
).strip()
return decrypted_text
if __name__ == "__main__":
"""
Example usage of Fractionated Morse Cipher.
"""
plaintext = "defend the east"
print("Plain Text:", plaintext)
key = "ROUNDTABLE"
ciphertext = encrypt_fractionated_morse(plaintext, key)
print("Encrypted:", ciphertext)
decrypted_text = decrypt_fractionated_morse(ciphertext, key)
print("Decrypted:", decrypted_text)
| -1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| """
Project Euler Problem 79: https://projecteuler.net/problem=79
Passcode derivation
A common security method used for online banking is to ask the user for three
random characters from a passcode. For example, if the passcode was 531278,
they may ask for the 2nd, 3rd, and 5th characters; the expected reply would
be: 317.
The text file, keylog.txt, contains fifty successful login attempts.
Given that the three characters are always asked for in order, analyse the file
so as to determine the shortest possible secret passcode of unknown length.
"""
import itertools
from pathlib import Path
def find_secret_passcode(logins: list[str]) -> int:
"""
Returns the shortest possible secret passcode of unknown length.
>>> find_secret_passcode(["135", "259", "235", "189", "690", "168", "120",
... "136", "289", "589", "160", "165", "580", "369", "250", "280"])
12365890
>>> find_secret_passcode(["426", "281", "061", "819" "268", "406", "420",
... "428", "209", "689", "019", "421", "469", "261", "681", "201"])
4206819
"""
# Split each login by character e.g. '319' -> ('3', '1', '9')
split_logins = [tuple(login) for login in logins]
unique_chars = {char for login in split_logins for char in login}
for permutation in itertools.permutations(unique_chars):
satisfied = True
for login in logins:
if not (
permutation.index(login[0])
< permutation.index(login[1])
< permutation.index(login[2])
):
satisfied = False
break
if satisfied:
return int("".join(permutation))
raise Exception("Unable to find the secret passcode")
def solution(input_file: str = "keylog.txt") -> int:
"""
Returns the shortest possible secret passcode of unknown length
for successful login attempts given by `input_file` text file.
>>> solution("keylog_test.txt")
6312980
"""
logins = Path(__file__).parent.joinpath(input_file).read_text().splitlines()
return find_secret_passcode(logins)
if __name__ == "__main__":
print(f"{solution() = }")
| """
Project Euler Problem 79: https://projecteuler.net/problem=79
Passcode derivation
A common security method used for online banking is to ask the user for three
random characters from a passcode. For example, if the passcode was 531278,
they may ask for the 2nd, 3rd, and 5th characters; the expected reply would
be: 317.
The text file, keylog.txt, contains fifty successful login attempts.
Given that the three characters are always asked for in order, analyse the file
so as to determine the shortest possible secret passcode of unknown length.
"""
import itertools
from pathlib import Path
def find_secret_passcode(logins: list[str]) -> int:
"""
Returns the shortest possible secret passcode of unknown length.
>>> find_secret_passcode(["135", "259", "235", "189", "690", "168", "120",
... "136", "289", "589", "160", "165", "580", "369", "250", "280"])
12365890
>>> find_secret_passcode(["426", "281", "061", "819" "268", "406", "420",
... "428", "209", "689", "019", "421", "469", "261", "681", "201"])
4206819
"""
# Split each login by character e.g. '319' -> ('3', '1', '9')
split_logins = [tuple(login) for login in logins]
unique_chars = {char for login in split_logins for char in login}
for permutation in itertools.permutations(unique_chars):
satisfied = True
for login in logins:
if not (
permutation.index(login[0])
< permutation.index(login[1])
< permutation.index(login[2])
):
satisfied = False
break
if satisfied:
return int("".join(permutation))
raise Exception("Unable to find the secret passcode")
def solution(input_file: str = "keylog.txt") -> int:
"""
Returns the shortest possible secret passcode of unknown length
for successful login attempts given by `input_file` text file.
>>> solution("keylog_test.txt")
6312980
"""
logins = Path(__file__).parent.joinpath(input_file).read_text().splitlines()
return find_secret_passcode(logins)
if __name__ == "__main__":
print(f"{solution() = }")
| -1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| from __future__ import annotations
import sys
from collections import deque
from typing import Generic, TypeVar
T = TypeVar("T")
class LRUCache(Generic[T]):
"""
Page Replacement Algorithm, Least Recently Used (LRU) Caching.
>>> lru_cache: LRUCache[str | int] = LRUCache(4)
>>> lru_cache.refer("A")
>>> lru_cache.refer(2)
>>> lru_cache.refer(3)
>>> lru_cache
LRUCache(4) => [3, 2, 'A']
>>> lru_cache.refer("A")
>>> lru_cache
LRUCache(4) => ['A', 3, 2]
>>> lru_cache.refer(4)
>>> lru_cache.refer(5)
>>> lru_cache
LRUCache(4) => [5, 4, 'A', 3]
"""
dq_store: deque[T] # Cache store of keys
key_reference: set[T] # References of the keys in cache
_MAX_CAPACITY: int = 10 # Maximum capacity of cache
def __init__(self, n: int) -> None:
"""Creates an empty store and map for the keys.
The LRUCache is set the size n.
"""
self.dq_store = deque()
self.key_reference = set()
if not n:
LRUCache._MAX_CAPACITY = sys.maxsize
elif n < 0:
raise ValueError("n should be an integer greater than 0.")
else:
LRUCache._MAX_CAPACITY = n
def refer(self, x: T) -> None:
"""
Looks for a page in the cache store and adds reference to the set.
Remove the least recently used key if the store is full.
Update store to reflect recent access.
"""
if x not in self.key_reference:
if len(self.dq_store) == LRUCache._MAX_CAPACITY:
last_element = self.dq_store.pop()
self.key_reference.remove(last_element)
else:
self.dq_store.remove(x)
self.dq_store.appendleft(x)
self.key_reference.add(x)
def display(self) -> None:
"""
Prints all the elements in the store.
"""
for k in self.dq_store:
print(k)
def __repr__(self) -> str:
return f"LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store)}"
if __name__ == "__main__":
import doctest
doctest.testmod()
lru_cache: LRUCache[str | int] = LRUCache(4)
lru_cache.refer("A")
lru_cache.refer(2)
lru_cache.refer(3)
lru_cache.refer("A")
lru_cache.refer(4)
lru_cache.refer(5)
lru_cache.display()
print(lru_cache)
assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
| from __future__ import annotations
import sys
from collections import deque
from typing import Generic, TypeVar
T = TypeVar("T")
class LRUCache(Generic[T]):
"""
Page Replacement Algorithm, Least Recently Used (LRU) Caching.
>>> lru_cache: LRUCache[str | int] = LRUCache(4)
>>> lru_cache.refer("A")
>>> lru_cache.refer(2)
>>> lru_cache.refer(3)
>>> lru_cache
LRUCache(4) => [3, 2, 'A']
>>> lru_cache.refer("A")
>>> lru_cache
LRUCache(4) => ['A', 3, 2]
>>> lru_cache.refer(4)
>>> lru_cache.refer(5)
>>> lru_cache
LRUCache(4) => [5, 4, 'A', 3]
"""
dq_store: deque[T] # Cache store of keys
key_reference: set[T] # References of the keys in cache
_MAX_CAPACITY: int = 10 # Maximum capacity of cache
def __init__(self, n: int) -> None:
"""Creates an empty store and map for the keys.
The LRUCache is set the size n.
"""
self.dq_store = deque()
self.key_reference = set()
if not n:
LRUCache._MAX_CAPACITY = sys.maxsize
elif n < 0:
raise ValueError("n should be an integer greater than 0.")
else:
LRUCache._MAX_CAPACITY = n
def refer(self, x: T) -> None:
"""
Looks for a page in the cache store and adds reference to the set.
Remove the least recently used key if the store is full.
Update store to reflect recent access.
"""
if x not in self.key_reference:
if len(self.dq_store) == LRUCache._MAX_CAPACITY:
last_element = self.dq_store.pop()
self.key_reference.remove(last_element)
else:
self.dq_store.remove(x)
self.dq_store.appendleft(x)
self.key_reference.add(x)
def display(self) -> None:
"""
Prints all the elements in the store.
"""
for k in self.dq_store:
print(k)
def __repr__(self) -> str:
return f"LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store)}"
if __name__ == "__main__":
import doctest
doctest.testmod()
lru_cache: LRUCache[str | int] = LRUCache(4)
lru_cache.refer("A")
lru_cache.refer(2)
lru_cache.refer(3)
lru_cache.refer("A")
lru_cache.refer(4)
lru_cache.refer(5)
lru_cache.display()
print(lru_cache)
assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
| -1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| -1 |
||
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| -1 |
||
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| """
Project Euler Problem 1: https://projecteuler.net/problem=1
Multiples of 3 and 5
If we list all the natural numbers below 10 that are multiples of 3 or 5,
we get 3, 5, 6 and 9. The sum of these multiples is 23.
Find the sum of all the multiples of 3 or 5 below 1000.
"""
def solution(n: int = 1000) -> int:
"""
This solution is based on the pattern that the successive numbers in the
series follow: 0+3,+2,+1,+3,+1,+2,+3.
Returns the sum of all the multiples of 3 or 5 below n.
>>> solution(3)
0
>>> solution(4)
3
>>> solution(10)
23
>>> solution(600)
83700
"""
total = 0
num = 0
while 1:
num += 3
if num >= n:
break
total += num
num += 2
if num >= n:
break
total += num
num += 1
if num >= n:
break
total += num
num += 3
if num >= n:
break
total += num
num += 1
if num >= n:
break
total += num
num += 2
if num >= n:
break
total += num
num += 3
if num >= n:
break
total += num
return total
if __name__ == "__main__":
print(f"{solution() = }")
| """
Project Euler Problem 1: https://projecteuler.net/problem=1
Multiples of 3 and 5
If we list all the natural numbers below 10 that are multiples of 3 or 5,
we get 3, 5, 6 and 9. The sum of these multiples is 23.
Find the sum of all the multiples of 3 or 5 below 1000.
"""
def solution(n: int = 1000) -> int:
"""
This solution is based on the pattern that the successive numbers in the
series follow: 0+3,+2,+1,+3,+1,+2,+3.
Returns the sum of all the multiples of 3 or 5 below n.
>>> solution(3)
0
>>> solution(4)
3
>>> solution(10)
23
>>> solution(600)
83700
"""
total = 0
num = 0
while 1:
num += 3
if num >= n:
break
total += num
num += 2
if num >= n:
break
total += num
num += 1
if num >= n:
break
total += num
num += 3
if num >= n:
break
total += num
num += 1
if num >= n:
break
total += num
num += 2
if num >= n:
break
total += num
num += 3
if num >= n:
break
total += num
return total
if __name__ == "__main__":
print(f"{solution() = }")
| -1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| """
Project Euler Problem 6: https://projecteuler.net/problem=6
Sum square difference
The sum of the squares of the first ten natural numbers is,
1^2 + 2^2 + ... + 10^2 = 385
The square of the sum of the first ten natural numbers is,
(1 + 2 + ... + 10)^2 = 55^2 = 3025
Hence the difference between the sum of the squares of the first ten
natural numbers and the square of the sum is 3025 - 385 = 2640.
Find the difference between the sum of the squares of the first one
hundred natural numbers and the square of the sum.
"""
def solution(n: int = 100) -> int:
"""
Returns the difference between the sum of the squares of the first n
natural numbers and the square of the sum.
>>> solution(10)
2640
>>> solution(15)
13160
>>> solution(20)
41230
>>> solution(50)
1582700
"""
sum_of_squares = 0
sum_of_ints = 0
for i in range(1, n + 1):
sum_of_squares += i**2
sum_of_ints += i
return sum_of_ints**2 - sum_of_squares
if __name__ == "__main__":
print(f"{solution() = }")
| """
Project Euler Problem 6: https://projecteuler.net/problem=6
Sum square difference
The sum of the squares of the first ten natural numbers is,
1^2 + 2^2 + ... + 10^2 = 385
The square of the sum of the first ten natural numbers is,
(1 + 2 + ... + 10)^2 = 55^2 = 3025
Hence the difference between the sum of the squares of the first ten
natural numbers and the square of the sum is 3025 - 385 = 2640.
Find the difference between the sum of the squares of the first one
hundred natural numbers and the square of the sum.
"""
def solution(n: int = 100) -> int:
"""
Returns the difference between the sum of the squares of the first n
natural numbers and the square of the sum.
>>> solution(10)
2640
>>> solution(15)
13160
>>> solution(20)
41230
>>> solution(50)
1582700
"""
sum_of_squares = 0
sum_of_ints = 0
for i in range(1, n + 1):
sum_of_squares += i**2
sum_of_ints += i
return sum_of_ints**2 - sum_of_squares
if __name__ == "__main__":
print(f"{solution() = }")
| -1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| # A naive recursive implementation of 0-1 Knapsack Problem
This overview is taken from:
https://en.wikipedia.org/wiki/Knapsack_problem
---
## Overview
The knapsack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items. The problem often arises in resource allocation where the decision makers have to choose from a set of non-divisible projects or tasks under a fixed budget or time constraint, respectively.
The knapsack problem has been studied for more than a century, with early works dating as far back as 1897 The name "knapsack problem" dates back to the early works of mathematician Tobias Dantzig (1884–1956), and refers to the commonplace problem of packing the most valuable or useful items without overloading the luggage.
---
## Documentation
This module uses docstrings to enable the use of Python's in-built `help(...)` function.
For instance, try `help(Vector)`, `help(unit_basis_vector)`, and `help(CLASSNAME.METHODNAME)`.
---
## Usage
Import the module `knapsack.py` from the **.** directory into your project.
---
## Tests
`.` contains Python unit tests which can be run with `python3 -m unittest -v`.
| # A naive recursive implementation of 0-1 Knapsack Problem
This overview is taken from:
https://en.wikipedia.org/wiki/Knapsack_problem
---
## Overview
The knapsack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items. The problem often arises in resource allocation where the decision makers have to choose from a set of non-divisible projects or tasks under a fixed budget or time constraint, respectively.
The knapsack problem has been studied for more than a century, with early works dating as far back as 1897 The name "knapsack problem" dates back to the early works of mathematician Tobias Dantzig (1884–1956), and refers to the commonplace problem of packing the most valuable or useful items without overloading the luggage.
---
## Documentation
This module uses docstrings to enable the use of Python's in-built `help(...)` function.
For instance, try `help(Vector)`, `help(unit_basis_vector)`, and `help(CLASSNAME.METHODNAME)`.
---
## Usage
Import the module `knapsack.py` from the **.** directory into your project.
---
## Tests
`.` contains Python unit tests which can be run with `python3 -m unittest -v`.
| -1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| #!/usr/bin/env python3
"""
Build quantum teleportation circuit using three quantum bits
and 1 classical bit. The main idea is to send one qubit from
Alice to Bob using the entanglement properties. This experiment
run in IBM Q simulator with 1000 shots.
.
References:
https://en.wikipedia.org/wiki/Quantum_teleportation
https://qiskit.org/textbook/ch-algorithms/teleportation.html
"""
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def quantum_teleportation(
theta: float = np.pi / 2, phi: float = np.pi / 2, lam: float = np.pi / 2
) -> qiskit.result.counts.Counts:
"""
# >>> quantum_teleportation()
#{'00': 500, '11': 500} # ideally
# ┌─────────────────┐ ┌───┐
#qr_0: ┤ U(π/2,π/2,π/2) ├───────■──┤ H ├─■─────────
# └──────┬───┬──────┘ ┌─┴─┐└───┘ │
#qr_1: ───────┤ H ├─────────■──┤ X ├──────┼───■─────
# └───┘ ┌─┴─┐└───┘ │ ┌─┴─┐┌─┐
#qr_2: ───────────────────┤ X ├───────────■─┤ X ├┤M├
# └───┘ └───┘└╥┘
#cr: 1/═══════════════════════════════════════════╩═
Args:
theta (float): Single qubit rotation U Gate theta parameter. Default to np.pi/2
phi (float): Single qubit rotation U Gate phi parameter. Default to np.pi/2
lam (float): Single qubit rotation U Gate lam parameter. Default to np.pi/2
Returns:
qiskit.result.counts.Counts: Teleported qubit counts.
"""
qr = QuantumRegister(3, "qr") # Define the number of quantum bits
cr = ClassicalRegister(1, "cr") # Define the number of classical bits
quantum_circuit = QuantumCircuit(qr, cr) # Define the quantum circuit.
# Build the circuit
quantum_circuit.u(theta, phi, lam, 0) # Quantum State to teleport
quantum_circuit.h(1) # add hadamard gate
quantum_circuit.cx(
1, 2
) # add control gate with qubit 1 as control and 2 as target.
quantum_circuit.cx(0, 1)
quantum_circuit.h(0)
quantum_circuit.cz(0, 2) # add control z gate.
quantum_circuit.cx(1, 2)
quantum_circuit.measure([2], [0]) # measure the qubit.
# Simulate the circuit using qasm simulator
backend = Aer.get_backend("aer_simulator")
job = execute(quantum_circuit, backend, shots=1000)
return job.result().get_counts(quantum_circuit)
if __name__ == "__main__":
print(
"Total count for teleported state is: "
f"{quantum_teleportation(np.pi/2, np.pi/2, np.pi/2)}"
)
| #!/usr/bin/env python3
"""
Build quantum teleportation circuit using three quantum bits
and 1 classical bit. The main idea is to send one qubit from
Alice to Bob using the entanglement properties. This experiment
run in IBM Q simulator with 1000 shots.
.
References:
https://en.wikipedia.org/wiki/Quantum_teleportation
https://qiskit.org/textbook/ch-algorithms/teleportation.html
"""
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def quantum_teleportation(
theta: float = np.pi / 2, phi: float = np.pi / 2, lam: float = np.pi / 2
) -> qiskit.result.counts.Counts:
"""
# >>> quantum_teleportation()
#{'00': 500, '11': 500} # ideally
# ┌─────────────────┐ ┌───┐
#qr_0: ┤ U(π/2,π/2,π/2) ├───────■──┤ H ├─■─────────
# └──────┬───┬──────┘ ┌─┴─┐└───┘ │
#qr_1: ───────┤ H ├─────────■──┤ X ├──────┼───■─────
# └───┘ ┌─┴─┐└───┘ │ ┌─┴─┐┌─┐
#qr_2: ───────────────────┤ X ├───────────■─┤ X ├┤M├
# └───┘ └───┘└╥┘
#cr: 1/═══════════════════════════════════════════╩═
Args:
theta (float): Single qubit rotation U Gate theta parameter. Default to np.pi/2
phi (float): Single qubit rotation U Gate phi parameter. Default to np.pi/2
lam (float): Single qubit rotation U Gate lam parameter. Default to np.pi/2
Returns:
qiskit.result.counts.Counts: Teleported qubit counts.
"""
qr = QuantumRegister(3, "qr") # Define the number of quantum bits
cr = ClassicalRegister(1, "cr") # Define the number of classical bits
quantum_circuit = QuantumCircuit(qr, cr) # Define the quantum circuit.
# Build the circuit
quantum_circuit.u(theta, phi, lam, 0) # Quantum State to teleport
quantum_circuit.h(1) # add hadamard gate
quantum_circuit.cx(
1, 2
) # add control gate with qubit 1 as control and 2 as target.
quantum_circuit.cx(0, 1)
quantum_circuit.h(0)
quantum_circuit.cz(0, 2) # add control z gate.
quantum_circuit.cx(1, 2)
quantum_circuit.measure([2], [0]) # measure the qubit.
# Simulate the circuit using qasm simulator
backend = Aer.get_backend("aer_simulator")
job = execute(quantum_circuit, backend, shots=1000)
return job.result().get_counts(quantum_circuit)
if __name__ == "__main__":
print(
"Total count for teleported state is: "
f"{quantum_teleportation(np.pi/2, np.pi/2, np.pi/2)}"
)
| -1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| """
Program to encode and decode Baconian or Bacon's Cipher
Wikipedia reference : https://en.wikipedia.org/wiki/Bacon%27s_cipher
"""
encode_dict = {
"a": "AAAAA",
"b": "AAAAB",
"c": "AAABA",
"d": "AAABB",
"e": "AABAA",
"f": "AABAB",
"g": "AABBA",
"h": "AABBB",
"i": "ABAAA",
"j": "BBBAA",
"k": "ABAAB",
"l": "ABABA",
"m": "ABABB",
"n": "ABBAA",
"o": "ABBAB",
"p": "ABBBA",
"q": "ABBBB",
"r": "BAAAA",
"s": "BAAAB",
"t": "BAABA",
"u": "BAABB",
"v": "BBBAB",
"w": "BABAA",
"x": "BABAB",
"y": "BABBA",
"z": "BABBB",
" ": " ",
}
decode_dict = {value: key for key, value in encode_dict.items()}
def encode(word: str) -> str:
"""
Encodes to Baconian cipher
>>> encode("hello")
'AABBBAABAAABABAABABAABBAB'
>>> encode("hello world")
'AABBBAABAAABABAABABAABBAB BABAAABBABBAAAAABABAAAABB'
>>> encode("hello world!")
Traceback (most recent call last):
...
Exception: encode() accepts only letters of the alphabet and spaces
"""
encoded = ""
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception("encode() accepts only letters of the alphabet and spaces")
return encoded
def decode(coded: str) -> str:
"""
Decodes from Baconian cipher
>>> decode("AABBBAABAAABABAABABAABBAB BABAAABBABBAAAAABABAAAABB")
'hello world'
>>> decode("AABBBAABAAABABAABABAABBAB")
'hello'
>>> decode("AABBBAABAAABABAABABAABBAB BABAAABBABBAAAAABABAAAABB!")
Traceback (most recent call last):
...
Exception: decode() accepts only 'A', 'B' and spaces
"""
if set(coded) - {"A", "B", " "} != set():
raise Exception("decode() accepts only 'A', 'B' and spaces")
decoded = ""
for word in coded.split():
while len(word) != 0:
decoded += decode_dict[word[:5]]
word = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| """
Program to encode and decode Baconian or Bacon's Cipher
Wikipedia reference : https://en.wikipedia.org/wiki/Bacon%27s_cipher
"""
encode_dict = {
"a": "AAAAA",
"b": "AAAAB",
"c": "AAABA",
"d": "AAABB",
"e": "AABAA",
"f": "AABAB",
"g": "AABBA",
"h": "AABBB",
"i": "ABAAA",
"j": "BBBAA",
"k": "ABAAB",
"l": "ABABA",
"m": "ABABB",
"n": "ABBAA",
"o": "ABBAB",
"p": "ABBBA",
"q": "ABBBB",
"r": "BAAAA",
"s": "BAAAB",
"t": "BAABA",
"u": "BAABB",
"v": "BBBAB",
"w": "BABAA",
"x": "BABAB",
"y": "BABBA",
"z": "BABBB",
" ": " ",
}
decode_dict = {value: key for key, value in encode_dict.items()}
def encode(word: str) -> str:
"""
Encodes to Baconian cipher
>>> encode("hello")
'AABBBAABAAABABAABABAABBAB'
>>> encode("hello world")
'AABBBAABAAABABAABABAABBAB BABAAABBABBAAAAABABAAAABB'
>>> encode("hello world!")
Traceback (most recent call last):
...
Exception: encode() accepts only letters of the alphabet and spaces
"""
encoded = ""
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception("encode() accepts only letters of the alphabet and spaces")
return encoded
def decode(coded: str) -> str:
"""
Decodes from Baconian cipher
>>> decode("AABBBAABAAABABAABABAABBAB BABAAABBABBAAAAABABAAAABB")
'hello world'
>>> decode("AABBBAABAAABABAABABAABBAB")
'hello'
>>> decode("AABBBAABAAABABAABABAABBAB BABAAABBABBAAAAABABAAAABB!")
Traceback (most recent call last):
...
Exception: decode() accepts only 'A', 'B' and spaces
"""
if set(coded) - {"A", "B", " "} != set():
raise Exception("decode() accepts only 'A', 'B' and spaces")
decoded = ""
for word in coded.split():
while len(word) != 0:
decoded += decode_dict[word[:5]]
word = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| -1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| # https://www.tutorialspoint.com/python3/bitwise_operators_example.htm
def binary_and(a: int, b: int) -> str:
"""
Take in 2 integers, convert them to binary,
return a binary number that is the
result of a binary and operation on the integers provided.
>>> binary_and(25, 32)
'0b000000'
>>> binary_and(37, 50)
'0b100000'
>>> binary_and(21, 30)
'0b10100'
>>> binary_and(58, 73)
'0b0001000'
>>> binary_and(0, 255)
'0b00000000'
>>> binary_and(256, 256)
'0b100000000'
>>> binary_and(0, -1)
Traceback (most recent call last):
...
ValueError: the value of both inputs must be positive
>>> binary_and(0, 1.1)
Traceback (most recent call last):
...
TypeError: 'float' object cannot be interpreted as an integer
>>> binary_and("0", "1")
Traceback (most recent call last):
...
TypeError: '<' not supported between instances of 'str' and 'int'
"""
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive")
a_binary = str(bin(a))[2:] # remove the leading "0b"
b_binary = str(bin(b))[2:] # remove the leading "0b"
max_len = max(len(a_binary), len(b_binary))
return "0b" + "".join(
str(int(char_a == "1" and char_b == "1"))
for char_a, char_b in zip(a_binary.zfill(max_len), b_binary.zfill(max_len))
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| # https://www.tutorialspoint.com/python3/bitwise_operators_example.htm
def binary_and(a: int, b: int) -> str:
"""
Take in 2 integers, convert them to binary,
return a binary number that is the
result of a binary and operation on the integers provided.
>>> binary_and(25, 32)
'0b000000'
>>> binary_and(37, 50)
'0b100000'
>>> binary_and(21, 30)
'0b10100'
>>> binary_and(58, 73)
'0b0001000'
>>> binary_and(0, 255)
'0b00000000'
>>> binary_and(256, 256)
'0b100000000'
>>> binary_and(0, -1)
Traceback (most recent call last):
...
ValueError: the value of both inputs must be positive
>>> binary_and(0, 1.1)
Traceback (most recent call last):
...
TypeError: 'float' object cannot be interpreted as an integer
>>> binary_and("0", "1")
Traceback (most recent call last):
...
TypeError: '<' not supported between instances of 'str' and 'int'
"""
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive")
a_binary = str(bin(a))[2:] # remove the leading "0b"
b_binary = str(bin(b))[2:] # remove the leading "0b"
max_len = max(len(a_binary), len(b_binary))
return "0b" + "".join(
str(int(char_a == "1" and char_b == "1"))
for char_a, char_b in zip(a_binary.zfill(max_len), b_binary.zfill(max_len))
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def norm_squared(vector: ndarray) -> float:
"""
Return the squared second norm of vector
norm_squared(v) = sum(x * x for x in v)
Args:
vector (ndarray): input vector
Returns:
float: squared second norm of vector
>>> norm_squared([1, 2])
5
>>> norm_squared(np.asarray([1, 2]))
5
>>> norm_squared([0, 0])
0
"""
return np.dot(vector, vector)
class SVC:
"""
Support Vector Classifier
Args:
kernel (str): kernel to use. Default: linear
Possible choices:
- linear
regularization: constraint for soft margin (data not linearly separable)
Default: unbound
>>> SVC(kernel="asdf")
Traceback (most recent call last):
...
ValueError: Unknown kernel: asdf
>>> SVC(kernel="rbf")
Traceback (most recent call last):
...
ValueError: rbf kernel requires gamma
>>> SVC(kernel="rbf", gamma=-1)
Traceback (most recent call last):
...
ValueError: gamma must be > 0
"""
def __init__(
self,
*,
regularization: float = np.inf,
kernel: str = "linear",
gamma: float = 0.0,
) -> None:
self.regularization = regularization
self.gamma = gamma
if kernel == "linear":
self.kernel = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError("rbf kernel requires gamma")
if not isinstance(self.gamma, (float, int)):
raise ValueError("gamma must be float or int")
if not self.gamma > 0:
raise ValueError("gamma must be > 0")
self.kernel = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
msg = f"Unknown kernel: {kernel}"
raise ValueError(msg)
# kernels
def __linear(self, vector1: ndarray, vector2: ndarray) -> float:
"""Linear kernel (as if no kernel used at all)"""
return np.dot(vector1, vector2)
def __rbf(self, vector1: ndarray, vector2: ndarray) -> float:
"""
RBF: Radial Basis Function Kernel
Note: for more information see:
https://en.wikipedia.org/wiki/Radial_basis_function_kernel
Args:
vector1 (ndarray): first vector
vector2 (ndarray): second vector)
Returns:
float: exp(-(gamma * norm_squared(vector1 - vector2)))
"""
return np.exp(-(self.gamma * norm_squared(vector1 - vector2)))
def fit(self, observations: list[ndarray], classes: ndarray) -> None:
"""
Fits the SVC with a set of observations.
Args:
observations (list[ndarray]): list of observations
classes (ndarray): classification of each observation (in {1, -1})
"""
self.observations = observations
self.classes = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
(n,) = np.shape(classes)
def to_minimize(candidate: ndarray) -> float:
"""
Opposite of the function to maximize
Args:
candidate (ndarray): candidate array to test
Return:
float: Wolfe's Dual result to minimize
"""
s = 0
(n,) = np.shape(candidate)
for i in range(n):
for j in range(n):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i], observations[j])
)
return 1 / 2 * s - sum(candidate)
ly_contraint = LinearConstraint(classes, 0, 0)
l_bounds = Bounds(0, self.regularization)
l_star = minimize(
to_minimize, np.ones(n), bounds=l_bounds, constraints=[ly_contraint]
).x
self.optimum = l_star
# calculating mean offset of separation plane to points
s = 0
for i in range(n):
for j in range(n):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i], observations[j]
)
self.offset = s / n
def predict(self, observation: ndarray) -> int:
"""
Get the expected class of an observation
Args:
observation (Vector): observation
Returns:
int {1, -1}: expected class
>>> xs = [
... np.asarray([0, 1]), np.asarray([0, 2]),
... np.asarray([1, 1]), np.asarray([1, 2])
... ]
>>> y = np.asarray([1, 1, -1, -1])
>>> s = SVC()
>>> s.fit(xs, y)
>>> s.predict(np.asarray([0, 1]))
1
>>> s.predict(np.asarray([1, 1]))
-1
>>> s.predict(np.asarray([2, 2]))
-1
"""
s = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n], observation)
for n in range(len(self.classes))
)
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def norm_squared(vector: ndarray) -> float:
"""
Return the squared second norm of vector
norm_squared(v) = sum(x * x for x in v)
Args:
vector (ndarray): input vector
Returns:
float: squared second norm of vector
>>> norm_squared([1, 2])
5
>>> norm_squared(np.asarray([1, 2]))
5
>>> norm_squared([0, 0])
0
"""
return np.dot(vector, vector)
class SVC:
"""
Support Vector Classifier
Args:
kernel (str): kernel to use. Default: linear
Possible choices:
- linear
regularization: constraint for soft margin (data not linearly separable)
Default: unbound
>>> SVC(kernel="asdf")
Traceback (most recent call last):
...
ValueError: Unknown kernel: asdf
>>> SVC(kernel="rbf")
Traceback (most recent call last):
...
ValueError: rbf kernel requires gamma
>>> SVC(kernel="rbf", gamma=-1)
Traceback (most recent call last):
...
ValueError: gamma must be > 0
"""
def __init__(
self,
*,
regularization: float = np.inf,
kernel: str = "linear",
gamma: float = 0.0,
) -> None:
self.regularization = regularization
self.gamma = gamma
if kernel == "linear":
self.kernel = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError("rbf kernel requires gamma")
if not isinstance(self.gamma, (float, int)):
raise ValueError("gamma must be float or int")
if not self.gamma > 0:
raise ValueError("gamma must be > 0")
self.kernel = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
msg = f"Unknown kernel: {kernel}"
raise ValueError(msg)
# kernels
def __linear(self, vector1: ndarray, vector2: ndarray) -> float:
"""Linear kernel (as if no kernel used at all)"""
return np.dot(vector1, vector2)
def __rbf(self, vector1: ndarray, vector2: ndarray) -> float:
"""
RBF: Radial Basis Function Kernel
Note: for more information see:
https://en.wikipedia.org/wiki/Radial_basis_function_kernel
Args:
vector1 (ndarray): first vector
vector2 (ndarray): second vector)
Returns:
float: exp(-(gamma * norm_squared(vector1 - vector2)))
"""
return np.exp(-(self.gamma * norm_squared(vector1 - vector2)))
def fit(self, observations: list[ndarray], classes: ndarray) -> None:
"""
Fits the SVC with a set of observations.
Args:
observations (list[ndarray]): list of observations
classes (ndarray): classification of each observation (in {1, -1})
"""
self.observations = observations
self.classes = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
(n,) = np.shape(classes)
def to_minimize(candidate: ndarray) -> float:
"""
Opposite of the function to maximize
Args:
candidate (ndarray): candidate array to test
Return:
float: Wolfe's Dual result to minimize
"""
s = 0
(n,) = np.shape(candidate)
for i in range(n):
for j in range(n):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i], observations[j])
)
return 1 / 2 * s - sum(candidate)
ly_contraint = LinearConstraint(classes, 0, 0)
l_bounds = Bounds(0, self.regularization)
l_star = minimize(
to_minimize, np.ones(n), bounds=l_bounds, constraints=[ly_contraint]
).x
self.optimum = l_star
# calculating mean offset of separation plane to points
s = 0
for i in range(n):
for j in range(n):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i], observations[j]
)
self.offset = s / n
def predict(self, observation: ndarray) -> int:
"""
Get the expected class of an observation
Args:
observation (Vector): observation
Returns:
int {1, -1}: expected class
>>> xs = [
... np.asarray([0, 1]), np.asarray([0, 2]),
... np.asarray([1, 1]), np.asarray([1, 2])
... ]
>>> y = np.asarray([1, 1, -1, -1])
>>> s = SVC()
>>> s.fit(xs, y)
>>> s.predict(np.asarray([0, 1]))
1
>>> s.predict(np.asarray([1, 1]))
-1
>>> s.predict(np.asarray([2, 2]))
-1
"""
s = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n], observation)
for n in range(len(self.classes))
)
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| from sklearn.neural_network import MLPClassifier
X = [[0.0, 0.0], [1.0, 1.0], [1.0, 0.0], [0.0, 1.0]]
y = [0, 1, 0, 0]
clf = MLPClassifier(
solver="lbfgs", alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1
)
clf.fit(X, y)
test = [[0.0, 0.0], [0.0, 1.0], [1.0, 1.0]]
Y = clf.predict(test)
def wrapper(y):
"""
>>> wrapper(Y)
[0, 0, 1]
"""
return list(y)
if __name__ == "__main__":
import doctest
doctest.testmod()
| from sklearn.neural_network import MLPClassifier
X = [[0.0, 0.0], [1.0, 1.0], [1.0, 0.0], [0.0, 1.0]]
y = [0, 1, 0, 0]
clf = MLPClassifier(
solver="lbfgs", alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1
)
clf.fit(X, y)
test = [[0.0, 0.0], [0.0, 1.0], [1.0, 1.0]]
Y = clf.predict(test)
def wrapper(y):
"""
>>> wrapper(Y)
[0, 0, 1]
"""
return list(y)
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| """
Testing here assumes that numpy and linalg is ALWAYS correct!!!!
If running from PyCharm you can place the following line in "Additional Arguments" for
the pytest run configuration
-vv -m mat_ops -p no:cacheprovider
"""
import logging
# standard libraries
import sys
import numpy as np
import pytest # type: ignore
# Custom/local libraries
from matrix import matrix_operation as matop
mat_a = [[12, 10], [3, 9]]
mat_b = [[3, 4], [7, 4]]
mat_c = [[3, 0, 2], [2, 0, -2], [0, 1, 1]]
mat_d = [[3, 0, -2], [2, 0, 2], [0, 1, 1]]
mat_e = [[3, 0, 2], [2, 0, -2], [0, 1, 1], [2, 0, -2]]
mat_f = [1]
mat_h = [2]
logger = logging.getLogger()
logger.level = logging.DEBUG
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
@pytest.mark.mat_ops()
@pytest.mark.parametrize(
("mat1", "mat2"), [(mat_a, mat_b), (mat_c, mat_d), (mat_d, mat_e), (mat_f, mat_h)]
)
def test_addition(mat1, mat2):
if (np.array(mat1)).shape < (2, 2) or (np.array(mat2)).shape < (2, 2):
logger.info(f"\n\t{test_addition.__name__} returned integer")
with pytest.raises(TypeError):
matop.add(mat1, mat2)
elif (np.array(mat1)).shape == (np.array(mat2)).shape:
logger.info(f"\n\t{test_addition.__name__} with same matrix dims")
act = (np.array(mat1) + np.array(mat2)).tolist()
theo = matop.add(mat1, mat2)
assert theo == act
else:
logger.info(f"\n\t{test_addition.__name__} with different matrix dims")
with pytest.raises(ValueError):
matop.add(mat1, mat2)
@pytest.mark.mat_ops()
@pytest.mark.parametrize(
("mat1", "mat2"), [(mat_a, mat_b), (mat_c, mat_d), (mat_d, mat_e), (mat_f, mat_h)]
)
def test_subtraction(mat1, mat2):
if (np.array(mat1)).shape < (2, 2) or (np.array(mat2)).shape < (2, 2):
logger.info(f"\n\t{test_subtraction.__name__} returned integer")
with pytest.raises(TypeError):
matop.subtract(mat1, mat2)
elif (np.array(mat1)).shape == (np.array(mat2)).shape:
logger.info(f"\n\t{test_subtraction.__name__} with same matrix dims")
act = (np.array(mat1) - np.array(mat2)).tolist()
theo = matop.subtract(mat1, mat2)
assert theo == act
else:
logger.info(f"\n\t{test_subtraction.__name__} with different matrix dims")
with pytest.raises(ValueError):
assert matop.subtract(mat1, mat2)
@pytest.mark.mat_ops()
@pytest.mark.parametrize(
("mat1", "mat2"), [(mat_a, mat_b), (mat_c, mat_d), (mat_d, mat_e), (mat_f, mat_h)]
)
def test_multiplication(mat1, mat2):
if (np.array(mat1)).shape < (2, 2) or (np.array(mat2)).shape < (2, 2):
logger.info(f"\n\t{test_multiplication.__name__} returned integer")
with pytest.raises(TypeError):
matop.add(mat1, mat2)
elif (np.array(mat1)).shape == (np.array(mat2)).shape:
logger.info(f"\n\t{test_multiplication.__name__} meets dim requirements")
act = (np.matmul(mat1, mat2)).tolist()
theo = matop.multiply(mat1, mat2)
assert theo == act
else:
logger.info(
f"\n\t{test_multiplication.__name__} does not meet dim requirements"
)
with pytest.raises(ValueError):
assert matop.subtract(mat1, mat2)
@pytest.mark.mat_ops()
def test_scalar_multiply():
act = (3.5 * np.array(mat_a)).tolist()
theo = matop.scalar_multiply(mat_a, 3.5)
assert theo == act
@pytest.mark.mat_ops()
def test_identity():
act = (np.identity(5)).tolist()
theo = matop.identity(5)
assert theo == act
@pytest.mark.mat_ops()
@pytest.mark.parametrize("mat", [mat_a, mat_b, mat_c, mat_d, mat_e, mat_f])
def test_transpose(mat):
if (np.array(mat)).shape < (2, 2):
logger.info(f"\n\t{test_transpose.__name__} returned integer")
with pytest.raises(TypeError):
matop.transpose(mat)
else:
act = (np.transpose(mat)).tolist()
theo = matop.transpose(mat, return_map=False)
assert theo == act
| """
Testing here assumes that numpy and linalg is ALWAYS correct!!!!
If running from PyCharm you can place the following line in "Additional Arguments" for
the pytest run configuration
-vv -m mat_ops -p no:cacheprovider
"""
import logging
# standard libraries
import sys
import numpy as np
import pytest # type: ignore
# Custom/local libraries
from matrix import matrix_operation as matop
mat_a = [[12, 10], [3, 9]]
mat_b = [[3, 4], [7, 4]]
mat_c = [[3, 0, 2], [2, 0, -2], [0, 1, 1]]
mat_d = [[3, 0, -2], [2, 0, 2], [0, 1, 1]]
mat_e = [[3, 0, 2], [2, 0, -2], [0, 1, 1], [2, 0, -2]]
mat_f = [1]
mat_h = [2]
logger = logging.getLogger()
logger.level = logging.DEBUG
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
@pytest.mark.mat_ops()
@pytest.mark.parametrize(
("mat1", "mat2"), [(mat_a, mat_b), (mat_c, mat_d), (mat_d, mat_e), (mat_f, mat_h)]
)
def test_addition(mat1, mat2):
if (np.array(mat1)).shape < (2, 2) or (np.array(mat2)).shape < (2, 2):
logger.info(f"\n\t{test_addition.__name__} returned integer")
with pytest.raises(TypeError):
matop.add(mat1, mat2)
elif (np.array(mat1)).shape == (np.array(mat2)).shape:
logger.info(f"\n\t{test_addition.__name__} with same matrix dims")
act = (np.array(mat1) + np.array(mat2)).tolist()
theo = matop.add(mat1, mat2)
assert theo == act
else:
logger.info(f"\n\t{test_addition.__name__} with different matrix dims")
with pytest.raises(ValueError):
matop.add(mat1, mat2)
@pytest.mark.mat_ops()
@pytest.mark.parametrize(
("mat1", "mat2"), [(mat_a, mat_b), (mat_c, mat_d), (mat_d, mat_e), (mat_f, mat_h)]
)
def test_subtraction(mat1, mat2):
if (np.array(mat1)).shape < (2, 2) or (np.array(mat2)).shape < (2, 2):
logger.info(f"\n\t{test_subtraction.__name__} returned integer")
with pytest.raises(TypeError):
matop.subtract(mat1, mat2)
elif (np.array(mat1)).shape == (np.array(mat2)).shape:
logger.info(f"\n\t{test_subtraction.__name__} with same matrix dims")
act = (np.array(mat1) - np.array(mat2)).tolist()
theo = matop.subtract(mat1, mat2)
assert theo == act
else:
logger.info(f"\n\t{test_subtraction.__name__} with different matrix dims")
with pytest.raises(ValueError):
assert matop.subtract(mat1, mat2)
@pytest.mark.mat_ops()
@pytest.mark.parametrize(
("mat1", "mat2"), [(mat_a, mat_b), (mat_c, mat_d), (mat_d, mat_e), (mat_f, mat_h)]
)
def test_multiplication(mat1, mat2):
if (np.array(mat1)).shape < (2, 2) or (np.array(mat2)).shape < (2, 2):
logger.info(f"\n\t{test_multiplication.__name__} returned integer")
with pytest.raises(TypeError):
matop.add(mat1, mat2)
elif (np.array(mat1)).shape == (np.array(mat2)).shape:
logger.info(f"\n\t{test_multiplication.__name__} meets dim requirements")
act = (np.matmul(mat1, mat2)).tolist()
theo = matop.multiply(mat1, mat2)
assert theo == act
else:
logger.info(
f"\n\t{test_multiplication.__name__} does not meet dim requirements"
)
with pytest.raises(ValueError):
assert matop.subtract(mat1, mat2)
@pytest.mark.mat_ops()
def test_scalar_multiply():
act = (3.5 * np.array(mat_a)).tolist()
theo = matop.scalar_multiply(mat_a, 3.5)
assert theo == act
@pytest.mark.mat_ops()
def test_identity():
act = (np.identity(5)).tolist()
theo = matop.identity(5)
assert theo == act
@pytest.mark.mat_ops()
@pytest.mark.parametrize("mat", [mat_a, mat_b, mat_c, mat_d, mat_e, mat_f])
def test_transpose(mat):
if (np.array(mat)).shape < (2, 2):
logger.info(f"\n\t{test_transpose.__name__} returned integer")
with pytest.raises(TypeError):
matop.transpose(mat)
else:
act = (np.transpose(mat)).tolist()
theo = matop.transpose(mat, return_map=False)
assert theo == act
| -1 |
TheAlgorithms/Python | 10,740 | Add tests without modifying code | ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| gio-puter | "2023-10-21T00:21:22Z" | "2023-10-22T05:42:26Z" | d73a4c2ee035698de437086230985574766f195b | 0601b56173021fe96fb070d20085962b036e85c3 | Add tests without modifying code. ### Describe your change:
Contributes to #9943
Added doctest to maths/largest_of_very_large_numbers.py
Added doctest to strings/words_patterns.py
Added doctest to ciphers/onepad_cipher.py
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [x] Add or change doctests? -- Note: Please avoid changing both code and tests in a single pull request.
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| """
The Horn-Schunck method estimates the optical flow for every single pixel of
a sequence of images.
It works by assuming brightness constancy between two consecutive frames
and smoothness in the optical flow.
Useful resources:
Wikipedia: https://en.wikipedia.org/wiki/Horn%E2%80%93Schunck_method
Paper: http://image.diku.dk/imagecanon/material/HornSchunckOptical_Flow.pdf
"""
from typing import SupportsIndex
import numpy as np
from scipy.ndimage import convolve
def warp(
image: np.ndarray, horizontal_flow: np.ndarray, vertical_flow: np.ndarray
) -> np.ndarray:
"""
Warps the pixels of an image into a new image using the horizontal and vertical
flows.
Pixels that are warped from an invalid location are set to 0.
Parameters:
image: Grayscale image
horizontal_flow: Horizontal flow
vertical_flow: Vertical flow
Returns: Warped image
>>> warp(np.array([[0, 1, 2], [0, 3, 0], [2, 2, 2]]), \
np.array([[0, 1, -1], [-1, 0, 0], [1, 1, 1]]), \
np.array([[0, 0, 0], [0, 1, 0], [0, 0, 1]]))
array([[0, 0, 0],
[3, 1, 0],
[0, 2, 3]])
"""
flow = np.stack((horizontal_flow, vertical_flow), 2)
# Create a grid of all pixel coordinates and subtract the flow to get the
# target pixels coordinates
grid = np.stack(
np.meshgrid(np.arange(0, image.shape[1]), np.arange(0, image.shape[0])), 2
)
grid = np.round(grid - flow).astype(np.int32)
# Find the locations outside of the original image
invalid = (grid < 0) | (grid >= np.array([image.shape[1], image.shape[0]]))
grid[invalid] = 0
warped = image[grid[:, :, 1], grid[:, :, 0]]
# Set pixels at invalid locations to 0
warped[invalid[:, :, 0] | invalid[:, :, 1]] = 0
return warped
def horn_schunck(
image0: np.ndarray,
image1: np.ndarray,
num_iter: SupportsIndex,
alpha: float | None = None,
) -> tuple[np.ndarray, np.ndarray]:
"""
This function performs the Horn-Schunck algorithm and returns the estimated
optical flow. It is assumed that the input images are grayscale and
normalized to be in [0, 1].
Parameters:
image0: First image of the sequence
image1: Second image of the sequence
alpha: Regularization constant
num_iter: Number of iterations performed
Returns: estimated horizontal & vertical flow
>>> np.round(horn_schunck(np.array([[0, 0, 2], [0, 0, 2]]), \
np.array([[0, 2, 0], [0, 2, 0]]), alpha=0.1, num_iter=110)).\
astype(np.int32)
array([[[ 0, -1, -1],
[ 0, -1, -1]],
<BLANKLINE>
[[ 0, 0, 0],
[ 0, 0, 0]]], dtype=int32)
"""
if alpha is None:
alpha = 0.1
# Initialize flow
horizontal_flow = np.zeros_like(image0)
vertical_flow = np.zeros_like(image0)
# Prepare kernels for the calculation of the derivatives and the average velocity
kernel_x = np.array([[-1, 1], [-1, 1]]) * 0.25
kernel_y = np.array([[-1, -1], [1, 1]]) * 0.25
kernel_t = np.array([[1, 1], [1, 1]]) * 0.25
kernel_laplacian = np.array(
[[1 / 12, 1 / 6, 1 / 12], [1 / 6, 0, 1 / 6], [1 / 12, 1 / 6, 1 / 12]]
)
# Iteratively refine the flow
for _ in range(num_iter):
warped_image = warp(image0, horizontal_flow, vertical_flow)
derivative_x = convolve(warped_image, kernel_x) + convolve(image1, kernel_x)
derivative_y = convolve(warped_image, kernel_y) + convolve(image1, kernel_y)
derivative_t = convolve(warped_image, kernel_t) + convolve(image1, -kernel_t)
avg_horizontal_velocity = convolve(horizontal_flow, kernel_laplacian)
avg_vertical_velocity = convolve(vertical_flow, kernel_laplacian)
# This updates the flow as proposed in the paper (Step 12)
update = (
derivative_x * avg_horizontal_velocity
+ derivative_y * avg_vertical_velocity
+ derivative_t
)
update = update / (alpha**2 + derivative_x**2 + derivative_y**2)
horizontal_flow = avg_horizontal_velocity - derivative_x * update
vertical_flow = avg_vertical_velocity - derivative_y * update
return horizontal_flow, vertical_flow
if __name__ == "__main__":
import doctest
doctest.testmod()
| """
The Horn-Schunck method estimates the optical flow for every single pixel of
a sequence of images.
It works by assuming brightness constancy between two consecutive frames
and smoothness in the optical flow.
Useful resources:
Wikipedia: https://en.wikipedia.org/wiki/Horn%E2%80%93Schunck_method
Paper: http://image.diku.dk/imagecanon/material/HornSchunckOptical_Flow.pdf
"""
from typing import SupportsIndex
import numpy as np
from scipy.ndimage import convolve
def warp(
image: np.ndarray, horizontal_flow: np.ndarray, vertical_flow: np.ndarray
) -> np.ndarray:
"""
Warps the pixels of an image into a new image using the horizontal and vertical
flows.
Pixels that are warped from an invalid location are set to 0.
Parameters:
image: Grayscale image
horizontal_flow: Horizontal flow
vertical_flow: Vertical flow
Returns: Warped image
>>> warp(np.array([[0, 1, 2], [0, 3, 0], [2, 2, 2]]), \
np.array([[0, 1, -1], [-1, 0, 0], [1, 1, 1]]), \
np.array([[0, 0, 0], [0, 1, 0], [0, 0, 1]]))
array([[0, 0, 0],
[3, 1, 0],
[0, 2, 3]])
"""
flow = np.stack((horizontal_flow, vertical_flow), 2)
# Create a grid of all pixel coordinates and subtract the flow to get the
# target pixels coordinates
grid = np.stack(
np.meshgrid(np.arange(0, image.shape[1]), np.arange(0, image.shape[0])), 2
)
grid = np.round(grid - flow).astype(np.int32)
# Find the locations outside of the original image
invalid = (grid < 0) | (grid >= np.array([image.shape[1], image.shape[0]]))
grid[invalid] = 0
warped = image[grid[:, :, 1], grid[:, :, 0]]
# Set pixels at invalid locations to 0
warped[invalid[:, :, 0] | invalid[:, :, 1]] = 0
return warped
def horn_schunck(
image0: np.ndarray,
image1: np.ndarray,
num_iter: SupportsIndex,
alpha: float | None = None,
) -> tuple[np.ndarray, np.ndarray]:
"""
This function performs the Horn-Schunck algorithm and returns the estimated
optical flow. It is assumed that the input images are grayscale and
normalized to be in [0, 1].
Parameters:
image0: First image of the sequence
image1: Second image of the sequence
alpha: Regularization constant
num_iter: Number of iterations performed
Returns: estimated horizontal & vertical flow
>>> np.round(horn_schunck(np.array([[0, 0, 2], [0, 0, 2]]), \
np.array([[0, 2, 0], [0, 2, 0]]), alpha=0.1, num_iter=110)).\
astype(np.int32)
array([[[ 0, -1, -1],
[ 0, -1, -1]],
<BLANKLINE>
[[ 0, 0, 0],
[ 0, 0, 0]]], dtype=int32)
"""
if alpha is None:
alpha = 0.1
# Initialize flow
horizontal_flow = np.zeros_like(image0)
vertical_flow = np.zeros_like(image0)
# Prepare kernels for the calculation of the derivatives and the average velocity
kernel_x = np.array([[-1, 1], [-1, 1]]) * 0.25
kernel_y = np.array([[-1, -1], [1, 1]]) * 0.25
kernel_t = np.array([[1, 1], [1, 1]]) * 0.25
kernel_laplacian = np.array(
[[1 / 12, 1 / 6, 1 / 12], [1 / 6, 0, 1 / 6], [1 / 12, 1 / 6, 1 / 12]]
)
# Iteratively refine the flow
for _ in range(num_iter):
warped_image = warp(image0, horizontal_flow, vertical_flow)
derivative_x = convolve(warped_image, kernel_x) + convolve(image1, kernel_x)
derivative_y = convolve(warped_image, kernel_y) + convolve(image1, kernel_y)
derivative_t = convolve(warped_image, kernel_t) + convolve(image1, -kernel_t)
avg_horizontal_velocity = convolve(horizontal_flow, kernel_laplacian)
avg_vertical_velocity = convolve(vertical_flow, kernel_laplacian)
# This updates the flow as proposed in the paper (Step 12)
update = (
derivative_x * avg_horizontal_velocity
+ derivative_y * avg_vertical_velocity
+ derivative_t
)
update = update / (alpha**2 + derivative_x**2 + derivative_y**2)
horizontal_flow = avg_horizontal_velocity - derivative_x * update
vertical_flow = avg_vertical_velocity - derivative_y * update
return horizontal_flow, vertical_flow
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 10,572 | Converted tests into doctests | ### Describe your change:
Turned tests into doctests in the Boolean Algebra section for consistency and as an improved way of testing.
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
* [x] Changed code
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| AksharGoyal | "2023-10-16T03:30:49Z" | "2023-10-16T07:21:44Z" | cc0405d05cb4c5009e8bf826e3f641c427ba70d5 | f4ff73b1bdaa4349315beaf44e093c59f6c87fd3 | Converted tests into doctests. ### Describe your change:
Turned tests into doctests in the Boolean Algebra section for consistency and as an improved way of testing.
* [ ] Add an algorithm?
* [ ] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
* [x] Changed code
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [x] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [x] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [x] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
| """
An AND Gate is a logic gate in boolean algebra which results to 1 (True) if both the
inputs are 1, and 0 (False) otherwise.
Following is the truth table of an AND Gate:
------------------------------
| Input 1 | Input 2 | Output |
------------------------------
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |
------------------------------
Refer - https://www.geeksforgeeks.org/logic-gates-in-python/
"""
def and_gate(input_1: int, input_2: int) -> int:
"""
Calculate AND of the input values
>>> and_gate(0, 0)
0
>>> and_gate(0, 1)
0
>>> and_gate(1, 0)
0
>>> and_gate(1, 1)
1
"""
return int((input_1, input_2).count(0) == 0)
def test_and_gate() -> None:
"""
Tests the and_gate function
"""
assert and_gate(0, 0) == 0
assert and_gate(0, 1) == 0
assert and_gate(1, 0) == 0
assert and_gate(1, 1) == 1
if __name__ == "__main__":
test_and_gate()
print(and_gate(1, 0))
print(and_gate(0, 0))
print(and_gate(0, 1))
print(and_gate(1, 1))
| """
An AND Gate is a logic gate in boolean algebra which results to 1 (True) if both the
inputs are 1, and 0 (False) otherwise.
Following is the truth table of an AND Gate:
------------------------------
| Input 1 | Input 2 | Output |
------------------------------
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |
------------------------------
Refer - https://www.geeksforgeeks.org/logic-gates-in-python/
"""
def and_gate(input_1: int, input_2: int) -> int:
"""
Calculate AND of the input values
>>> and_gate(0, 0)
0
>>> and_gate(0, 1)
0
>>> and_gate(1, 0)
0
>>> and_gate(1, 1)
1
"""
return int((input_1, input_2).count(0) == 0)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1 |