Create propsegment-retrieval.py
Browse files- propsegment-retrieval.py +178 -0
propsegment-retrieval.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""PropSegmEnt: A Large-Scale Corpus for Proposition-Level Segmentation and Entailment Recognition."""
|
16 |
+
|
17 |
+
|
18 |
+
import csv
|
19 |
+
import json
|
20 |
+
import os
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
|
24 |
+
_CITATION = """\
|
25 |
+
@article{chen2023subsentence,
|
26 |
+
title={Sub-Sentence Encoder: Contrastive Learning of Propositional Semantic Representations},
|
27 |
+
author={Sihao Chen and Hongming Zhang and Tong Chen and Ben Zhou and Wenhao Yu and Dian Yu and Baolin Peng and Hongwei Wang and Dan Roth and Dong Yu},
|
28 |
+
journal={arXiv preprint arXiv:2311.04335},
|
29 |
+
year={2023},
|
30 |
+
URL = {https://arxiv.org/pdf/2311.04335.pdf}
|
31 |
+
}
|
32 |
+
|
33 |
+
@inproceedings{chen2023propsegment,
|
34 |
+
title = "{PropSegmEnt}: A Large-Scale Corpus for Proposition-Level Segmentation and Entailment Recognition",
|
35 |
+
author = "Chen, Sihao and Buthpitiya, Senaka and Fabrikant, Alex and Roth, Dan and Schuster, Tal",
|
36 |
+
booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
|
37 |
+
year = "2023",
|
38 |
+
}
|
39 |
+
"""
|
40 |
+
|
41 |
+
# TODO: Add description of the dataset here
|
42 |
+
# You can copy an official description
|
43 |
+
_DESCRIPTION = """\
|
44 |
+
This contains the processed dataset for the atomic fact retrieval task of the "PropSegment" dataset.
|
45 |
+
|
46 |
+
The task features a test set of 8,865 queries propositions.
|
47 |
+
Each query proposition corresponds to 1-2 ground truth propositions from another document.
|
48 |
+
In total, there are 43,299 target candidate propositions.
|
49 |
+
Note that the query propositions are also included in the target set, so during evaluation, the query needs to be removed from the retrieved candidates.
|
50 |
+
|
51 |
+
Check out more details in our paper -- https://arxiv.org/pdf/2311.04335.pdf.
|
52 |
+
"""
|
53 |
+
|
54 |
+
_HOMEPAGE = "https://github.com/schen149/sub-sentence-encoder"
|
55 |
+
|
56 |
+
_LICENSE = "CC-BY-4.0"
|
57 |
+
|
58 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
59 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
60 |
+
_URLS = {
|
61 |
+
"targets": {
|
62 |
+
"test": "propsegment_targets_all.jsonl",
|
63 |
+
},
|
64 |
+
"queries": {
|
65 |
+
"test": "propsegment_queries_all.jsonl",
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
_CONFIG_TO_FILENAME = {
|
70 |
+
"targets": "propsegment_targets_all",
|
71 |
+
"queries": "propsegment_queries_all"
|
72 |
+
}
|
73 |
+
|
74 |
+
class PropSegmentRetrieval(datasets.GeneratorBasedBuilder):
|
75 |
+
|
76 |
+
VERSION = datasets.Version("1.0.0")
|
77 |
+
|
78 |
+
# This is an example of a dataset with multiple configurations.
|
79 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
80 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
81 |
+
|
82 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
83 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
84 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
85 |
+
|
86 |
+
# You will be able to load one or the other configurations in the following list with
|
87 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
88 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
89 |
+
BUILDER_CONFIGS = [
|
90 |
+
datasets.BuilderConfig(name="targets", version=VERSION, description="Query propositions of the atomic fact retrieval task"),
|
91 |
+
datasets.BuilderConfig(name="queries", version=VERSION, description="Target candidate propositions of the atomic fact retrieval task"),
|
92 |
+
]
|
93 |
+
|
94 |
+
DEFAULT_CONFIG_NAME = "queries" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
95 |
+
|
96 |
+
def _info(self):
|
97 |
+
if self.config.name == "queries": # This is the name of the configuration selected in BUILDER_CONFIGS above
|
98 |
+
features = datasets.Features(
|
99 |
+
{
|
100 |
+
"id": datasets.Value("string"),
|
101 |
+
"sentence_text": datasets.Value("string"),
|
102 |
+
"spans": datasets.Value("string"),
|
103 |
+
"labels": datasets.features.Sequence(datasets.Value("string")),
|
104 |
+
"tokens": datasets.features.Sequence(
|
105 |
+
{"text": datasets.Value("string"), "character_offset_of_token_in_sentence": datasets.Value("int32"),}
|
106 |
+
),
|
107 |
+
"token_indices": datasets.features.Sequence(datasets.Value("int32"))
|
108 |
+
}
|
109 |
+
)
|
110 |
+
else:
|
111 |
+
features = datasets.Features(
|
112 |
+
{
|
113 |
+
"id": datasets.Value("string"),
|
114 |
+
"sentence_text": datasets.Value("string"),
|
115 |
+
"spans": datasets.Value("string"),
|
116 |
+
"tokens": datasets.features.Sequence(
|
117 |
+
{"text": datasets.Value("string"), "character_offset_of_token_in_sentence": datasets.Value("int32"),}
|
118 |
+
),
|
119 |
+
"token_indices": datasets.features.Sequence(datasets.Value("int32"))
|
120 |
+
}
|
121 |
+
)
|
122 |
+
return datasets.DatasetInfo(
|
123 |
+
# This is the description that will appear on the datasets page.
|
124 |
+
description=_DESCRIPTION,
|
125 |
+
# This defines the different columns of the dataset and their types
|
126 |
+
features=features, # Here we define them above because they are different between the two configurations
|
127 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
128 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
129 |
+
# supervised_keys=("sentence", "label"),
|
130 |
+
# Homepage of the dataset for documentation
|
131 |
+
homepage=_HOMEPAGE,
|
132 |
+
# License for the dataset if available
|
133 |
+
license=_LICENSE,
|
134 |
+
# Citation for the dataset
|
135 |
+
citation=_CITATION,
|
136 |
+
)
|
137 |
+
|
138 |
+
def _split_generators(self, dl_manager):
|
139 |
+
config_name = self.config.name
|
140 |
+
urls = _URLS[config_name]
|
141 |
+
|
142 |
+
data_dir = dl_manager.download(urls)
|
143 |
+
file_prefix = _CONFIG_TO_FILENAME[config_name]
|
144 |
+
|
145 |
+
return [
|
146 |
+
datasets.SplitGenerator(
|
147 |
+
name=datasets.Split.TEST,
|
148 |
+
# These kwargs will be passed to _generate_examples
|
149 |
+
gen_kwargs={
|
150 |
+
"filepath": data_dir["test"],
|
151 |
+
"split": "test"
|
152 |
+
},
|
153 |
+
),
|
154 |
+
]
|
155 |
+
|
156 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
157 |
+
def _generate_examples(self, filepath, split):
|
158 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
159 |
+
with open(filepath, encoding="utf-8") as f:
|
160 |
+
for key, row in enumerate(f):
|
161 |
+
data = json.loads(row)
|
162 |
+
if self.config.name == "queries":
|
163 |
+
yield key, {
|
164 |
+
"id": data["id"],
|
165 |
+
"sentence_text": data["sentence_text"],
|
166 |
+
"spans": data["spans"],
|
167 |
+
"label": data["label"],
|
168 |
+
"tokens": data["tokens"],
|
169 |
+
"token_indices": data["token_indices"],
|
170 |
+
}
|
171 |
+
else:
|
172 |
+
yield key, {
|
173 |
+
"id": data["id"],
|
174 |
+
"sentence_text": data["sentence_text"],
|
175 |
+
"spans": data["spans"],
|
176 |
+
"tokens": data["tokens"],
|
177 |
+
"token_indices": data["token_indices"],
|
178 |
+
}
|